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We argue that dynamical systems involving discrete and continuous data can be modelled
by Turing machines with oracles that are physical processes. Using the theory introduced
in Beggs et al. [2,3], we consider the scope and limits of polynomial time computations
by such systems. We propose a general polynomial time Church-Turing Thesis for feasi-
ble computations by analogue-digital systems, having the non-uniform complexity class
BPP//log⋆ as theoretical upper bound. We show why BPP//log⋆ should be replace
P/poly , which was proposed by Siegelmann for neural nets [23,24]. Then we examine
whether other sources of hypercomputation can be found in analogue-digital systems
besides the oracle itself. We prove that the higher polytime limit P/poly can be attained
via non-computable analogue-digital interface protocols.
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1. Introduction

Consider a dynamical system involving discrete and continuous data. We suppose

that the system can be modelled mathematically by algorithms operating on discrete

data in discrete time but with real number parameters. We address the mathemat-

ical question:
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What is the computational power of algorithms with real number parameters?

There are many examples of such systems, such as neural nets, analogue comput-

ers and hybrid systems. But even for familiar systems, the presence of real number

parameters can lead to controversial answers.a

To address the question in general we will reflect on the raison d’être for real

numbers in systems. A system accesses continuous data by some form of measure-

ment. A part of the control structure of the system is able to read the expansion

of some real number valued quantity, digit by digit. At any moment the system is

in possession of only finitely many approximate measurements of the continuous

quantities. Mathematically, at any stage the algorithm has received finitely many

rational approximations to its real parameters. We propose that such dynamical

systems have the following form:

Models of systems with real number parameters perform measurements gov-

erned by an algorithmic procedure that are combined with an algorithmic

computation of arbitrary complexity.

We will argue that the measurement of the real number parameter can be mod-

elled by a special kind of oracle to the algorithm, which encodes an advice function.

The use of advice functions can be found in the

(i) analogue recurrent neural nets (ARNN) of Siegelmann and Sontag (see [25]);

(ii) optical computers of Woods and Naughton (see [27]); and

(iii) mirror systems of Bournez and Cosnard (see [14]).

In the ARNN case, a subsystem of about eleven neurones performs a measure-

ment of the unique non-rational weight of the network, approximating its value both

from above and from below. Once the measurement is done, up to some precision,

the computation resumes, simulated by a system of a thousand rational neurones

interconnected with integer and a few rational weights. In the case of the optical

computer, the physical parameters are encoded in the image, and the control part

of the system operates to successively extract the bits of the real-valued coordinates

of the pixels. The mirror systems are an analogue extension of the mirror system of

Moore (see [22]).

To tackle the general question we will consider Turing machines with the ability

of making measurements. Using the theory introduced in Beggs et al. [2,3], we

consider measurement as an oracle to the machine. We will use Turing machines

operating in polynomial time with advice functions taken from some familiar non-

uniform complexity classes.

The interface between the oracle and the machine is an analogue-digital in-

terface. Its protocols are more complex than the standard conventions for oracle

queries. First, this oracle must have a cost function T : N → N that gives the number

aSee the controversy over results for neural nets in [16,17,21,23].
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of time steps allowed to perform measurements. The common dynamical systems

having real parameters, perform measurements that cannot be accomplished in lin-

ear time, even in an idealised world. To take the simplest sort of measurement, in

a balance scale the pans move with acceleration that depends on the difference of

masses placed in them, in such a way that the time needed to detect a mass differ-

ence increases exponentially with the number of bits of precision of the measurement,

no matter how small that difference may be. This measurement has an exponential

cost that should be considered in the complexity of the decision problem.b

Second, there is the matter of precision: operations and tests can be performed

with infinite precision, in the sense that the real is taken as a whole entity; or with

unbounded precision, in the sense that the machine can obtain as many bits of the

real number as needed; or with arbitrary finite but fixed precision, defined once and

for all for the particular equipment in use. In any of these scenarios we are still in

an idealised world. Such a model of computation requires a theory of computation

with oracles that have a cost (for the measurement or consultation) and, indeed,

can be stochastic (for the precision).

A possible objection is that a measurement (cf. [19]) is never exact, for however

precise, sooner or later it finds the obstacle of the atomic structure — though even

quantum theory is infested with real number parameters and concepts. In fact, clas-

sical measurement has its own theoretical domain (see [7,15,19,20]) and can only be

conceived as an asymptotic procedure. As observed by Geroch and Hartle in [18]:

Regard number w as measurable if there exists a finite set of instructions for per-

forming an experiment such that a technician, given an abundance of unprepared

raw materials and an allowed error ε, is able by following those instructions to per-

form the experiment, yielding ultimately a rational number within ε of w. It means

that measurement — like complexity — can only be conceived asymptotically. Once

we fix space or time resources, complexity as we know it disappears.c

Any oracle can be encoded in a real number just by concatenating in lexical

order all the words of the oracle. A real number is the right way of incorporating an

oracle in a system making numerical computations by sums, products etc., such as

in the ARNN case or analogue networks. The neural model, the optical computer,

the mirror system, etc., perform some measurement in linear time. However, a

typical experiment to measure some quantity x (mass, position etc.) is nonlinear.

It consists of performing the experiment with a test value z, for which we could

test one or both of the comparisons “z < x” and “x < z”. Both comparisons (or

two-sided experiments) are considered in [2–4]. In [4], we considered one comparison

bIn the neural net case, with piecewise linear activation functions, the cost function is like the
standard oracle Turing machine: a one-step consultation device, since any further bit has the
constant cost of k transitions, for some constant k ∈ N (see [25]). This is due to the fact that the
activation function is piecewise linear instead of the common analytic sigmoid.
cFor example, only regular languages can be decided in finite space. We could say that tapes can
have as many cells as the number of particles in the observable universe, but such conditions do
not lead to an interesting theory.
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— threshold measurements — like the measurement of the threshold of a neurone,

which can be approximated just from one side, since from the other side the neurone

is always firing. Different types of measurements may reveal different complexity

classes.

To sum up: thinking about measurement provides intuitions about real number

oracles, namely that: (a) they are based on comparisons making approximations;

(b) they have a cost, i.e. the oracle answers queries in a time T : N → N, dependent

on the size of the query, modelling the fact that successive approximations have

a cost that is not necessarily linear in the number of bits of precision; (c) they

can contain errors; and (d) they can be stochastic. Although experiments can be

replaced by mathematical oracles of some kind, they provide valuable intuitions to

better reason about analogue-digital systems. In this paper we propose a method

of answering the general question and make a clear new statement of a general

analogue-digital Church-Turing Thesis — one that differs from that proposed for

the neural net case by Siegelmann in [23,24]. We also discuss for the first time the

power of protocols between the digital computer and the physical device.

We will begin by introducing the analogue-digital model in Sec. 2. In Sec. 3 we

exemplify with just one analogue-digital machine taken from previous papers and,

in Sec. 4, we summarise the computational power of analogue-digital machines with

a variety of physical oracles. The analogue-digital Church-Turing Thesis is then

stated in Sec. 5. In Sec. 6, we look at time schedules for protocols. Finally, in Sec. 7,

we address some open problems and next steps.

2. The Physical Oracle

Our object of study is the analogue-digital Turing machine. In [2,3,5,8,11] we char-

acterised these types of machines and the complexity classes decided by them. There

are three important components of an analogue-digital machine, which we describe

individually:

AD machine = physical experiment + interface + Turing machine.

2.1. On Turing machines

Following [2,8,9], the Turing machines are equipped with one input tape and several

work tapes for performing calculations. The control unit of the machine includes

at fewest three special states to begin and end the computation: these are called

the initial state, the accepting state and the rejecting state, respectively. The Turing

machines are either deterministic or probabilistic. (No non-deterministic machine

per se will be considered.)

The Turing machines have additional properties: one query tape, for the purpose

of instructing the physical experiment, and a finite amount of states that are used

for interacting with the physical experiment: one of these is called the query state,
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and the others refer to each possible outcome of the experiment. For the time being

we consider three outcomes, and thus three additional states: the yes state, the no

state and the timeout state. Observe that there is a difference between what we call

an oracle Turing machine and the usual definition where two additional states are

considered (the yes state and the no state) which represent the possible answers of

an oracle (= a set) to a query. However, in our definition, the number of additional

states is arbitrary (but finite) and equals the number of possible outcomes.

2.2. On physical experiments

In [2,4,5,9,12,13] we have analysed a variety of physical experiments. They have

in common (a) some initial conditions that can be tuned to some specific values;

(b) a physical process, depending on the initial conditions, which takes a (possibly

infinite) amount of time; and (c) a finite set of possible results or outcomes. Thus,

we will say that a physical experiment is completely characterised by a set of initial

conditions I, a set of outcomes R, a time function texp : I → R and an outcome

function r : I → R. A physical theory is needed to specify these components.

2.3. On the interface

The interface between the Turing machine (digital) and the physical experiment

(analogue) has two main components. First, the protocol, which is the sequence

of instructions that operates a physical experiment. The protocol should begin by

reading a query word from the query tape, and it should end by resuming the

computation of the Turing machine in a particular state. Second, a time schedule,

which is used to specify the time allowed for the experiment. In most cases we will

want some way to interrupt a physical experiment that has been going on for too

much time.

A time schedule T is a function T : N → N. Our standard definition is that it

is a time-constructible function.d But this condition can be changed, e.g., we could

require only that T is computable and that T (n) ≥ n. However, any computable

function f can be majorised by some time-constructible function f ′ (see [1]).

3. On the Experiment

A portfolio of experiments has been described in [5,10,13], as sophisticated as the

Rutherford’s scattering experiment in a Coulomb field. We will now focus on the

Broken Balance Experiment. There are two main reasons for doing so.

dA function f : N → N is said to be time constructible if there is a deterministic Turing machine
M and a natural number n0 such that for any input word z of size |z| = n > n0 the machine M
halts after exactly f(n) steps.
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The balance experiments are fairly simple to analyse and understand, as they

contain the most basic properties of two-sided and threshold experiments.

Also, their proof techniques are applicable in the other experiments, so that

the main results concerning complexity classes should not be different.

The threshold version of the balance scale, also known as the broken balance

scale, consists of a balance scale with two pans (see Fig. 1). In the right pan we

have some body with an unknown mass a. To measure a we place test masses z on

the left pan of the balance: if z < a, then the scale will not move since the rigid

block prevents the right pan from moving down; if z > a, then the left pan of the

scale will move down, which will be detected in some way; if z = a, then we assume

that the scale will not move since it is in equilibrium.

We assume several features of the apparatus, namely: we can take a to be a

real number in the interval [0, 1]; the mass z can be set to any dyadic rational

in the interval [0, 1]; a pressure-sensitive stick is placed below the left side of the

balance, such that, when the left pan touches the pressure-sensitive stick, it reacts

producing a signal; the mass z can be set so that the system begins in absolute rest;

the pressure required to trigger the pressure stick is small enough so that a signal is

always produced whenever the left pan of the scale sinks; the friction between the

masses and the pans is large enough so that these will not slide away from their

original position once the scale is in motion; and the bar on which the masses are

placed is made of an homogeneous material, so that the two pans have exactly the

same weight.

z y

Rigid block
h

Fig. 1. Schematic representation of the broken balance experiment.

Definition 1. For a ∈ [0, 1], we denote by BBE(a) the broken balance experiment

with unknown mass a, which is defined by the following properties: (a) initial condi-

tions I = [0, 1] and set of outcomes R = {yes}, (b) experimental time function texp
defined on (a, 1] such that texp(z) = ( z+a

z−a )
1/2 if z > a, and (c) outcome function r

defined on (a, 1] such that r(z) = yes if z > a. We also denote by BBE the family

of experiments BBE = {BBE(a) : a ∈ [0, 1]}.

Notice that the physical time taken grows exponentially with the precision of z

as the test mass approaches the unknown mass, as in the two-sided case (without

the rigid block), e.g. as in [12]. Moreover, if z > a, there are constants C,D ∈ N
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such that

D√
z − a

< texp(z, a) <
C√
z − a

. (1)

3.1. Precision

Just as in previous investigations (see, e.g., [2,8,11]), we will consider different

types of precision, i.e., different communication protocols between the experi-

menter/Turing machine and the analogue device/oracle. The query word z ∈
{0, 1}|z| of length |z| is converted to a dyadic rational in [0, 1) by taking zero point

(the query word) in binary notation. Depending on the context, the experiment is

performed either with infinite, unbounded or finite precision as follows:

(1) infinite precision: when the dyadic z is read on the query tape, a test mass

z′ = z is simultaneously placed in the left pan.

(2) unbounded precision: when the dyadic z is read on the query tape, a test mass

z′ is simultaneously placed in the left pan such that z − 2−|z| ≤ z′ ≤ z + 2−|z|.

Here z′ ∈ R is independently and uniformly distributed in the interval.

(3) fixed precision ǫ > 0: when the dyadic z is read on the query tape, a test mass

z′ is simultaneously placed in the left pan such that z − ǫ ≤ z′ ≤ z + ǫ. Here

z′ ∈ R is independently and uniformly distributed in the interval.

We write M for any such analogue-digital Turing machine.

3.2. The time schedule

To the oracle Turing machine model M we associate a schedule T : N → N. On

submitting the query z, the Turing machine waits a time T (|z|), and then receives

the answer to the query. By default, if no other answer is provided, the answer

timeout is returned. We suppose that T (ℓ) is a time constructible function, i.e.

that the Turing machine can itself count its own waiting time, a condition we might

call busy waiting.

The threshold oracles have answers yes or timeout. For y ∈ (0, 1), the broken

balance experiment BBE with unknown mass y is characterised by the following

property:

For a test mass z′ ∈ [0, 1) the experiment, having z′ approaching y from

above, takes a time provided in Definition 1. If the experiment completes

(by touching the pressure sensitive stick), then z′ > y and the outcome of

the experiment is Mass(z) = YES. If the experiment does not complete (i.e.

if the experimental time texp exceeds the time schedule T (|z|)), the outcome

of the experiment is Mass(z) = TIMEOUT.
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3.3. Measurement

We now give the procedure “Mass” for the BBE for some unknown mass y and some

time schedule T ; it comes in three cases. The algorithm Binary Search of Fig. 2

measures a mass, in the cases of infinite or unbounded precision.e The experimental

procedure Mass is either deterministic (for the infinite precision case) or stochastic

(for the unbounded precision case) and takes the scheduled time T (ℓ), where ℓ is

the size of the query and T an arbitrary time constructible function.

Protocol ip: “Mass”: Infinite Precision Case

Receive as input the description of a dyadic rational z (possibly padded with 0s);

Place a mass z in the left pan;

Wait T (|z|) units of time;

Check if the pressure stick has sent a signal. If so, return yes, otherwise timeout.

Protocol up: “Mass”: Unbounded Precision Case

Receive as input the description of a dyadic rational z (possibly padded with 0s);

Place a mass z′ in the left pan, where z′ ∈ (z − 2−|z|, z + 2−|z|);

Wait T (|z|) units of time;

Check if the pressure stick has sent a signal. If so, return yes, otherwise timeout.

Protocol fp: “Mass”: Finite Precision Case (ǫ)

Receive as input the description of a dyadic rational z (possibly padded with 0s);

Place a mass z′ in the left pan, where z′ ∈ (z − ǫ, z + ǫ);

Wait T (|z|) units of time;

Check if the pressure stick has sent a signal. If so, return yes, otherwise timeout.

Algorithm “Binary Search”

input number ℓ ∈ N; % Number of places to the right of the leftmost 0

x0 := 0; m := 0, x1 := 1;

while x1 − x0 > 2−ℓ do begin

m := (x0 + x1)/2;

s := Mass(m⇃ℓ); % Procedure Mass takes time T (ℓ)

if s = yes then x1 := m else x0 := m;

end while;

output x0.

Fig. 2. The three types of protocol: infinite, unbounded and fixed precision. The suffix operation
⇃n on a word w, w⇃n, denotes the prefix sized n of the ω-word w0ω , no matter the size of w.
Mass(m⇃ℓ) denotes the action that triggers the BBE experiment with mass (query word) m⇃ℓ.

eWe will not discuss in this paper the case of fixed precision. The reader will find a full description
in [5].
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4. Complexity Classes

We have characterised several types of oracle and complexity class using physical

examples and, subsequently, axiomatic specifications of their interfaces; see Sec. 7.

Typically, in our later work, we use a particular physical experiment to motivate,

illustrate and prove new results — e.g., the balance scale in the two-sided case and

the broken balance scale in the threshold case. However, most of these results can be

formulated and proven assuming that the computation is carried out with an oracle

O of the form:

O receives a dyadic rational and returns one of a finite number of results;

O may be deterministic or stochastic; O has a cost of consultation. If y is

the unknown value: (1) Two-sided oracles are of the form Oy(z) = left if

z < y and Oy(z) = right if z > y and (2) Threshold oracles are of the

form Oy(z) = yes if z > y.

The determinism or stochasticity of the oracle is given by the notion of precision

considered. The consultation cost is given by the experimental time function of

the chosen experiment. Naturally, each experiment considered has an associated

physical time; we now consider each oracle type in more detail to infer exactly the

required conditions on the time function.

4.1. Two-sided case

In proving lower bounds, the only condition required for the experimental time is

that it is bounded by texp(z, y) ≤ C/|z−y|d, which is exponential in the precision of

the query. This means that for any other class of oracles with exponential cost we can

reach in the same way the lower bounds of P/log⋆,f BPP//log⋆ and BPP//log⋆,g,h

for each type of precision, infinite, unbounded and fixed, respectively. For the upper

bounds, we use the property that we can simulate two-sided oracle queries of size

k with an advice polynomial in k, in polynomial time. In the same way, for any

two-sided oracle such that the cost is increasing as the test value approaches the

unknown value, we can argue that the upper bounds of P/poly , BPP//poly and

BPP//poly are common to all classes of two-sided oracles.

fLet B be a class of sets and F a class of functions. The advice class B/F is the class of sets A
for which there exists B ∈ B and some f ∈ F such that, for every word w, w ∈ A if and only if
〈w, f(|w|)〉 ∈ B. For the prefix advice class B/F⋆ some (prefix) function f ∈ F must exist such
that, for all words w of length less than or equal to n, w ∈ A if and only if 〈w, f(n)〉 ∈ B. The role
of advices in computation theory is fully discussed e.g., in [1], Chapter 5. We use log2 to denote
the class of advice functions such that |f(n)| ∈ O((log(n))2).
gBPP//F⋆ is the class of sets A for which a probabilistic Turing machine M, a prefix function
f ∈ F⋆, and a constant γ < 1

2
exist such that, for every length n and input w with |w| ≤ n, M

rejects 〈w, f(n)〉 with probability at most γ if w ∈ A and accepts 〈w, f(n)〉 with probability at
most γ if w /∈ A.
hNote that in experiments where the lower/upper bounds are P/poly for the infinite precision
case, the unbounded comes together because BPP//poly = P/poly . In the threshold experiments,
however, the unbounded and finite precision cases display identical power.
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4.2. Threshold case

Just as in the previous case, the only condition relevant for the experimental time is

that texp(z, y) ≤ C/(z−y)d, for z > y. In the broken balance experiment the value of

d was set to 1/2 but the same proof holds for any d > 0. This means that using any

exponential cost threshold oracle we reach the lower bounds of P/log⋆, BPP//log⋆

and BPP//log⋆ for the three types of precision. We did not study the upper bounds

without restrictions on the time schedule. However, the proofs made for the two-

sided oracles can be equally stated in this case. To simulate in polynomial time a

threshold oracle query of size k we only need an advice of size polynomial in k,

which is given by an approximation of the corresponding boundary number z such

that texp(z, y) = T (|z|). Thus we get in the same way the upper bounds of P/poly ,

BPP//poly and BPP//poly .

We also consider the additional restriction of an exponential time schedule,

which induces a logarithmic bound on the query sizes, giving us upper bounds

of P/log2⋆, BPP//log2⋆ and BPP//log2⋆. These upper bounds, once more, only

require that the cost function increases as the test value approaches the unknown

value. However, it is possible to refine this bound, with the extra assumption that

approximations to the boundary numbers are computable in polynomial time using

some advice. For the broken balance case, since the experimental time function is

given by texp(z, y) = ((z + y)(z − y))1/2, we can invert this function to get the

boundary numbers, so that the advice consists of the digits of the unknown value y.

Using this, we obtain the upper bounds of P/log⋆, BPP//log⋆ and BPP//log⋆. We

now observe that the same reasoning can be made for the two-sided oracles, and

so using two-sided oracles with exponential time cost, under the assumption that

there is a procedure to compute in polynomial time the boundary numbers given

some advice, we reach the upper bounds of P/log⋆, BPP//log⋆ and BPP//log⋆.

4.3. Most general assumptions

That the lower and upper bounds of the analogue-digital machine — and, conse-

quently, of many analogue models of computation with input and output processes

— are quite general can be seen by listing and analysing the assumptions in the

proofs. Here is a list of all assumptions on the computational cost in the proof of

lower bounds:

• Experimental time, i.e. inherent physical time, texp is bounded by C/|z − y|d for

some constants C and d, where z is an approximation of the unknown value y.

• Experimental time texp increases as |z − y| decreases.
• Experimental time texp is differentiable and t′exp fits between C/|z − y|d and

D/|z − y|d for some constants C, D and d.
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Assumptions on the computational cost in the proof of upper bounds are:

• Experimental time texp increases as |z − y| decreases.
• There is a procedure to simulate in polynomial time queries of size k using O(k)

bits of advice.

• There is a procedure to compute in polynomial time the first k bits of numbers zk
that satisfy equations such as texp(zk, 1/2) = T (k) (so-called boundary numbers)

or texp(zk, 1/2) = k (so-called section numbers) using O(k) bits of advice.

The assumptions allow us to prove that certain interface axioms are satisfied

from which we can establish the computational power of systems [11]. They are

satisfied by many common choices of experimental time functions, such as: functions

of the form texp(z) = C/|z − a|d, and texp(z) = (z + a)b/|z − a|d.
We now observe that the bounds for the two-sided and threshold oracles are

essentially the same. In fact, we can state that the power of Turing machines,

when coupled with either the two-sided or threshold oracles, is boosted to a class

between P/log⋆ (BPP//log⋆ using non-infinite precision) and P/poly. The class

is exactly P/log⋆ (BPP//log⋆ using non-infinite precision) if we further assume

that the time schedule is exponential. This bound is weaker than other bounds

presented in literature: for example, [26] studied an analogue model that boosted

the computational power (using polynomial resources) to P/poly . There is a reason

for the difference in the classes obtained: in the neural networks, it is possible to

extract a polynomial amount of information (that is, the bits of the real weights in

the network) in polynomial time; however, in our model, since the experimental time

functions are exponential, it seems that we can only extract a logarithmic amount

of information in polynomial time. There is evidence that exponential cost is the

cause for the upper bounds of logarithmic advice. However, in all of the physical

experiments that we considered the experimental time function was seen to increase

exponentially as the test value approaches the unknown value.

5. Analogue-Digital Church-Turing Thesis

We are led to question and make a first conjecture that this is common to all phys-

ical experiments: For all reasonable physical theories T , for all reasonable physical

measurements based upon T , the T -time for the physical experiment is at least

exponential in the size of precision.

By exponential we generally mean a law of time of the form texp(n) = 2kn for

some value of k different from 0 and n given by the number of zeros of precision in

|z − a|, where a is the unknown to be measured and z the dyadic rational approx-

imation to a. All experiments of measurement in nature have then an exponential

cost — we conjecture. Note that by measurement we mean the same as in the ana-

logue models of computation found in the literature: asymptotic measurement with

unbounded precision or fixed precision but arbitrary large number of experiments.

That is, in polynomial time with computable schedule, it is only possible to extract
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a logarithmic amount of information from a physical experiment of measurement,

i.e. the class of sets decided in polynomial time by analogue-digital machines using

oracles arising from physical experiments is contained in BPP//log⋆. We are led to

make a conjecture about the computational capabilities of analogue systems.

Analogue-digital Church-Turing Thesis. No possible abstract analogue-

digital device can have more computational capabilities in polynomial time

than BPP//log⋆.

The complexity class BPP originates with coupling a Turing machine to an in-

dependent fair coin toss oracle. According to our current understanding of physics,

such devices are constructible using radioactive decay (with a little wastage). How-

ever from our point of view here, we need to understand the uncertainty arising

from a measurement process with errors. Given such an error prone experiment, we

can try to get a better answer by averaging the same experimental setup over a

large number of trials. We assume that each time such a measurement is set up in

what we perceive to be an identical fashion, that the probabilities of the outcomes

are the same, and that the result of each repeat of the experiment is independent

from that of the other repetitions of the experiment. This means that we can model

the outcomes of the repeated experiments using our coin toss oracle, giving a result

involving BPP.

6. Under What Conditions can we Boost BPP//log⋆?

We have studied analogue-digital machines operating in polynomial time with time

schedules in Ω(2k/2) to comply with the intrinsic physical time of the experiment,

obtaining the lower and upper bounds of P/log⋆ in the case of infinite precision. Now

we will study the dependence of computational capabilities on the time schedule as-

sumptions. We consider three classes of time schedule: time-constructible functions,

computable increasing total functions and increasing total functions. In the latter

case, the computational power of the analogue-digital machine rises once more to

P/poly .

We will work with the BBEmachine of Sec. 3. We will remove all incomputability

and uncertainty that may be present in the setup by taking the unknown mass a

to be exactly 1/2 and considering only infinite precision protocols.

Definition 2. Let f be an increasing total function. We denote by AP(f) the class

of sets decidable in polynomial time by an analogue-digital machine using the phys-

ical oracle with time schedule f , infinite precision and unknown a = 1/2. If F is a

class of increasing total functions then let AP(F) =
⋃

f∈F AP(f).

Let IN denote the class of all increasing total functions, CI denote the

class of all computable, increasing total functions and TC denote the class of

all time constructible functions. It is obvious that TC ⊂ CI ⊂ IN and thus
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AP(TC) ⊆ AP(CI) ⊆ AP(IN). We now give alternative descriptions of these

classes in terms of non-uniform complexity classes.

Proposition 3. AP(IN) = P/poly.

Proof: First we assume that A ∈ P/poly. Polynomial advice Turing machines are

polynomial time equivalent to tally oracle Turing machines (see [1]), i.e. P/poly =
⋃

S tally P(S). Therefore we may assume that A is decidable in polynomial time

by a Turing machine M with some tally set S as oracle. We consider an analogue-

digital machine operating with infinite precision, unknown 1/2 and time schedule

T (k) =

{

2k + 1 if 0k ∈ S

2k if 0k /∈ S
.

If a sequence of dyadic rational numbers zk exists, such that |zk| = k and 2k <

Texp(zk, 1/2) < 2k + 1, then we can decide whether 0k ∈ S by querying the oracle

with zk. Since the previous inequalities imply that

1

2
+

1

(2k + 1)2 + 1
< zk <

1

2
+

1

(2k)2 + 1
,

for large enough k, the difference between the lower and upper bounds on zk is

greater than 2 × 2−k. Thus, for large enough k, the dyadic rational (notation ⇃

is explained in the caption of Fig. 2) zk = (12 + 1
(2k)2+1 )⇃k is such that 2k <

texp(zk, 1/2) < 2k + 1. (We can assume without loss of generality that 0k /∈ S for

the small values of k.) For an input word x of size n, the analogue-digital machine

M′ simulates M for that input and, when reaching a query state, the machine M′

counts the number of 0s, let us say k, in the query tape. For small values of k the

machine moves to the state no. For large values of k the machine performs the

protocol call MassIP (zk) of Fig. 2, where zk = (12 +
1

(2k)2+1 )⇃k. If the answer is yes,

then texp(zk, 1/2)) < T (k), T (k) = 2k+ 1 and 0k ∈ S; in this case the machine M′

enters the state yes. Otherwise T (k) < texp(zk, 1/2), T (k) = 2k and 0k /∈ S; in this

case the machine enters the state no (both states being considered regular states).

It is obvious that the machine decides the same set A in polynomial time since the

simulation of M runs in polynomial time and all calls to the oracle S are simulated

by the experiment in polynomial time. It follows that A ∈ AP(IN).

Conversely, let A ∈ AP(IN). Then A is decidable by an analogue-digital ma-

chine M in polynomial time with unknown mass 1/2 and infinite precision. Thus

there is a polynomial p(n) that bounds the maximum size of any possible query in

the computation for an input word of size n. Consider the advice function f such

that

f(n) = z1⇃1#z2⇃2# · · ·#zp(n)⇃p(n) ,

where zi is the boundary number such that texp(zi, 1/2) = T (i). Then f ∈ poly and

it can be used to simulate any oracle query of size less than or equal to p(n). Thus,

we can devise a machine deciding A in polynomial time using f as advice. Simply
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simulate M for the same input and replace oracle calls with a comparison between

the query word and the appropriate zi⇃i. It follows that A ∈ P/poly . �

Proposition 4. AP(CI) = P/poly ∩ REC, where REC is the class of recursive

sets.

Proof: Let A ∈ P/poly ∩REC. Since P/poly = ∪S tallyP (S), we may assume that

A is decidable in polynomial time by a Turing machine using as advice some tally

set S. Since A is recursive, we can also assume that S is recursive. Now consider

once more the time schedule T such that

T (k) =

{

2k + 1 if 0k ∈ S

2k if 0k 6∈ S
.

We can repeat the same reasoning as we did in Proposition 3 and conclude that A is

decidable in polynomial time by an analogue-digital machine using the oracle with

unknown 1/2, infinite precision and time schedule T . Moreover, since S is recursive

we conclude that T is a total computable function. Thus A ∈ AP(CI).

Let A ∈ AP(CI). Since AP(CI) ⊆ AP(IN), we conclude, by Proposition 3, that

A ∈ P/poly . We will show that A ∈ REC. Consider an analogue-digital machine M
with unknown 1/2 and time schedule T that decides A in polynomial time, where

T is a computable, increasing total function. Then, for any k, we can compute the

boundary numbers zk⇃k, where zk is the number such that texp(zk, 1/2) = T (k) (see

Definition 1). To decide A, the Turing machine just has to simulate M on the same

input and, whenever in a query state, compute the appropriate zi⇃i and compare

this value with the query word. It follows that A ∈ REC, and so we conclude that

A ∈ P/poly ∩REC. �

Proposition 5. AP(TC) = P.

Proof: If A ∈ P , then it is trivially decidable by an analogue-digital machine in

polynomial time that does not make any oracle consultation.

If A ∈ AP(TC), then A is decidable by an analogue-digital machine M in poly-

nomial time using the oracle with unknown 1/2 and time-constructible schedule T .

We show how to simulate any oracle query of size k in polynomial time. The Turing

machine computes first T (k), then computes the boundary number zk⇃k from the

equation texp(zk, 1/2) = T (k) (e.g., using the equality zk = 1/2+1/(T (k)2−1) from

Definition 1 or another equivalent equation, as discussed in Sec. 4.3), and compares

this value with the query word z of size k. Since M runs in polynomial time, there

is a polynomial p such that T (k) ≤ p(n). Since T is time-constructible, T (k) can be

computed in polynomial time O(p(n)). The boundary number approximation zk⇃k
and the comparison z =?zk⇃k can then be done in polynomial time. Since each or-

acle query can be simulated in polynomial time, together with the analogue-digital

machine M, we conclude that A ∈ P . �
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7. Conclusion

We think that our Turing machine with physical oracle model captures (i) the

computational scope and limits of computation by analogue-digital systems; (ii) the

relationship between measurement and computation, intrinsic to processing real

numbers; and (iii) the scope and limits of what can be measured (such as in [8]).

7.1. Idealisation

Reactions towards a gedankenexperiment, such as measuring mass (as in Sec. 3),

can express dissatisfaction at the fact that such idealised devices cannot be built

perfectly. Unfortunately, there seems to be a diffuse philosophical bias that consid-

ers the Turing machine to be an object of a kind different from theoretical models

of experiments. Clearly, both the abstract physical experiment and the Turing ma-

chine are idealised for use in forms of gedankenexperiments. To implement a Turing

machine the engineer would need either unbounded space and an unlimited physi-

cal support structure, or unbounded precision in some finite space to code for the

contents of the tape. However, just as the experiment can be set up to some degree

of precision, in the same way the Turing machine can be implemented up to some

degree accuracy. Both objects, the Turing machine and the measurement device,

are of the same ideal nature and, hence, we argue that the models allow us to study

the power of adding real numbers to computing devices and the limits of what can

be measured.

Type of Oracle Infinite Unbounded Finite

lower bound P/log⋆ BPP//log⋆ BPP//log⋆
Two-sided upper bound P/poly P/poly P/poly

upper bound (w/ exponential T ) −− −− −−

lower bound P/log⋆ BPP//log⋆ BPP//log⋆
Threshold upper bound −− −− −−

upper bound (w/ exponential T ) P/log⋆ BPP//log⋆ BPP//log⋆

Fig. 3. Results from investigations of several two-sided and threshold experiments.

7.2. Comparison

In [5] we introduced methods to study the computational power of threshold sys-

tems such as the neurone or the photoelectric cell, for which quantities can only

be measured either from below or from above. We showed that Turing machines

equipped with threshold oracles in polynomial time have a computational power

below BPP//log⋆, no matter whether the precision is infinite, unbounded or fixed.

We expect that analogue-digital systems in general cannot transcend such com-

putational power and that this computational power is to analogue-digital systems

as the Church-Turing Thesis is to human computation. Our result weakens the

claims for other models of physical systems (see, e.g., P/poly in [23,24]). In Fig. 3,

we summarise the power of two-sided and threshold oracles in polynomial time.
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Using the methods of threshold oracles it is, however, possible to prove the same

upper bounds for the two-sided case, assuming exponential schedule. We don’t know

if other upper bounds can be established without assumptions on the time schedule.

7.3. Some next steps

These arguments and results are work in progress. We have investigated the core

ideas and found many diverting questions and intriguing theorems. Immediate next

steps are to tackle the third, most subtle, form of experiment that measures quanti-

ties that vanish ([6]); to analyse the role of time and, in particular, that of precision

in timing; and to nail down axiomatic specifications of broad classes of experiments.

This done we expect that the above case for BPP//log⋆ will be stronger and easier

to understand.
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