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Reaction systems are a model of computation inspired by biochemical reactions involving
reactants, inhibitors and products from a finite background set. We define a notion of
multi-step simulation among reaction systems and derive a classification with respect
to the amount of resources (reactants and inhibitors) involved in each reaction. We
prove that “simple” reaction systems, having at most one reactant and one inhibitor
per reaction, suffice in order to simulate arbitrary systems. Finally, we show that the
equivalence relation of mutual simulation induces exactly five linearly ordered classes
of reaction systems characterizing well-known subclasses of the functions over Boolean
lattices, such as the constant, additive (join-semilattice endomorphisms), monotone, and
antitone functions.

Keywords: Natural computing; reaction systems.

1. Introduction

Reaction systems, introduced by Ehrenfeucht and Rozenberg [4,5], are a formalized
abstraction of biochemical processes in which the dynamics are discrete, in both
space and time, and are described in terms of reactions. A reaction is modeled as a
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set of reactants, necessary for the reaction to take place, a set of inhibitors, whose
presence blocks the reaction from occurring, and a set of products.

Reaction systems may be considered a qualitative model, as opposed to a quan-
titative one, as we only focus on the presence or absence of chemical species, and not
on the precise amounts. In particular, multiple reactions having common reactants
do not interfere; indeed, all reactions that are enabled at a certain time step hap-
pen simultaneously. Another feature of reaction systems which differentiates them
from other biologically inspired computational models is the lack of permanency:
the state of the system only consists of the products of the reactions that took place
in the last time step, without preserving the entities that were not involved in any
reaction.

Mathematically, a reaction systems defines a transition function (the result func-
tion) between states, i.e., sets of entities (chemical species), which completely de-
scribes the dynamics of the system. In many cases, the study of the properties of
reaction systems involves the comparison of the result functions of different systems
or classes of systems. A natural way to understand the modeling power of reaction
systems is to consider their behavior when the amount of resources (reactants and
inhibitors per reactions) is limited. It was proved [3,7] that there exist infinite proper
hierarchies of classes of result functions: by allowing more resources, more functions
become definable by reaction systems. The idea of studying reaction systems with
a minimal number of resources was also carried on in [2], where the properties and
the functions defined by minimal reaction systems were studied.

While the analysis of result functions is a direct way to compare reaction sys-
tems, the classification it provides has a very high granularity. Requiring the equality
of the whole dynamics can be restrictive for certain applications where we are inter-
ested in a higher-level view of the behavior of the systems. As an analogy, consider
a simulation between Turing machines: we are often not interested in a step-by-step
correspondence of configurations, and we allow the simulation to be slower than the
original machine. In a similar fashion, in this paper we define a notion of simulation
in which the simulating system is allowed to use several steps to simulate a single
step of the other system; auxiliary entities (analogous to an alphabet extension)
may also be involved in the simulation.

The resulting equivalence relation of mutual simulability is coarser than equality
of result functions, but still captures the intuitive idea of “having the same behav-
ior”. This relation induces exactly five equivalence classes of reaction systems. Inter-
estingly, these classes correspond to well-defined properties of the result functions
as functions over finite Boolean lattices; indeed, they correspond to the constant,
additive (join-semilattice endomorphisms), monotone, antitone, and the totality of
functions. These equivalence classes are ordered linearly by the simulation preorder.
We also give exact lower bounds to the number of steps required to perform the
simulations, and prove that auxiliary entities are, in general, necessary if we want
to preserve the five equivalence classes.
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Differently from the original paper that introduced the notion of multi-step simu-
lation for reaction systems [6], this extended version provides in many cases a better
construction and proves in all cases the minimality of the resulting simulation and
the necessity of using additional entities, solving most of the problems originally left
open. Furthermore, the characterization of equivalence classes in terms of functions,
which was barely sketched in the original paper, is here expanded and completed.

This paper is structured as follows. In Sec. 2 we recall the definitions
and notation related to reaction systems. In Sec. 3 we introduce the notion
of k-simulation and prove that any reaction system can be k-simulated by a system
in “normal form” using only one reactant and one inhibitor per reaction. Then we
turn our attention to limited variants of reaction systems. In Sec. 4 we consider
reaction systems using only inhibitors, characterizing the antitone functions; we
prove that one inhibitor suffices to simulate them, and that they are weaker than
reaction systems using both reactants and inhibitors. In Sec. 5 we analyze reac-
tion systems using only reactants, characterizing the monotone functions; we prove
that two reactants suffice to simulate them (while single-reactant reaction systems
are weaker and characterize the additive functions), and that they are weaker than
inhibitor-only reaction systems. In Sec. 6 we finalize the classification by proving
that reaction systems without reactants and inhibitors characterize the constant
functions, and thus are the weakest variant. Section 7 contains our conclusions and
suggestion for further research.

2. Basic Notions

In this paper we denote sets by upper-case letters, reactions and atomic elements by

lower-case letters, and reaction systems and families of sets by calligraphic letters.

Given a set X, we denote by 2% the power set of X. Recall that 2% is a Boolean

lattice with respect to set inclusion, having U and N as join and meet operations.
A reaction is formally defined as follows.

Definition 1. Given o finite set S (the background set), a reaction over S is a
triple of sets a = (Rq, I, P,) € 2° x 25 x 25, We call R, the set of reactants, I,
the set of inhibitors, and P, the set of products.

Since we will show that one reactant and one inhibitor suffice to simulate any
reaction system (see Theorem 11), in this paper we also admit empty reactant and
inhibitor sets, as in the original definition [5], in order to investigate the expressivity
of the resulting reactions and to prove that they are strictly weaker than reactions
involving both kinds of resources.

Definition 2. A reaction system is a pair A = (S, A) where S is a finite sel and
A a set of reactions over S.

A state of a reaction system A = (S, A) is any subset of S. The dynamics of a
reaction systems are defined as follows.
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Definition 3. Let A = (S, A) be a reaction system, a = (Ry, 1, P,) € A, and
T C S. We say that a is enabled by T if and only if R, CT and I, NT = @.
The result of a on T is defined as

resq(T) =

P, ifa is enabled by T
& otherwise.

The result of A on T is defined as resa(T) = |, 4 resa(T).

The state sequence of a reaction system A with initial state T is given by suc-
cessive iterations of the result function:

(res’jl(T))neN = (T,resa(T),res(T),...).

Since the background set of a reaction system is finite, the state space is also finite;
hence, every state sequence is ultimately periodic.

3. Simulation Between Reaction Systems

In order to compare reaction systems with respect to their ability to generate state
sequences, we define a notion of simulation less restrictive than equality of result
functions: here, the simulating system may use several steps to simulate a single
step of the original system. This is consistent with notions of simulation employed
for many computational models (e.g., Turing machines), when we are not interested
in the strict correspondence of every pair of configurations, but only in the overall
behavior of the two systems.

Definition 4 (k-simulation). Let A = (S, A) and A" = (5, A"), with S C S’, be
reaction systems, and let k € N. We say that A" k-simulates A if and only if, for
all T C S and all n € N, we have

resy (T) = res™ (T) N S.

In other words, when considering the sequences of states of A and A’ starting
from T, the n-th state of A coincides with the (kn)-th state of A" with respect to
the elements of S (some auxiliary elements of S’ — S may also occur). We use the
notion of k-simulation to define a relation on classes of reaction system.

Definition 5. Let X andY be classes of reaction systems, and let k € N. We define
the binary relation <i as follows: X =<y Y if and only if for all A € X there exists
a reaction system in 'Y that {-simulates A for some { < k.

We say that X <Y if and only if X <x Y for some k € N. We write X ~ Y
f X Y andY 23 X, and X = Y for X X Y AY < X. Finally, the notation
X <Y is shorthand for X < Y ANY A X.

Notice that X C Y always implies X =7 Y, i.e., the set inclusion relation
is coarser than k-simulation, since any reaction system is trivially 1-simulated by
itself.
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A k-simulation and an ¢-simulation can be composed into a (k¢)-simulation.
Lemma 6. X <, Y and Y <Xy Z implies X <yy Z.
Proof. Forall A= (5, A) € X thereexist B= (5", A") €Y with S CS"and h <k
such that
resp(T) N S = res”y (T)

for all n € N and T' C S. Furthermore, there exist C = (S”,A”) € Z and m < ¢
such that

resg™ (T) N S" = resi(T)

foralln € Nand T C S C S’. By combining the previous statements and intersect-
ing with S, we get

(resg™™(T) N S') NS =resg"™(T) N S = resy"(T) N S = res’y (T)
for all T'C S and n € N. In other words, the reaction system C (mh)-simulates A.
Since mh < k¢, we obtain X =<y, Z. O
From this lemma, we immediately get the following result:

Proposition 7. The relation < is a preorder. Hence, the relation ~ is an equiva-
lence relation.

We classify reaction systems according to the maximum amount of reactants
and inhibitors appearing in their reactions.

Definition 8. For all r,i € N, we denote by RS(r,i) the class of reaction systems
A = (S, A) such that, for all (R,I,P) € A, we have |R| < r and |I| < i. We
also define the classes RS(00,1) = |J, ey RS(r,1), RS(r,00) = ;e RS(r, ), and
RS(c0,0) =Y RS(r,1).

ieN
r,i€N
Notice that RS(oo,00) is the class of all reaction systems. In this classifica-

tion the maximum number of products is not mentioned, because every reaction
with p products can be replaced by p reactions having a single product [1].

Proposition 9. For each reaction system A = (S, A) there exists a reaction system
A" = (S, A") over the same background set having at most one product per reaction
and such that res(T) = resa (T) for all T C S.

Every function over finite power sets is the result function of a reaction system
in RS(00,00), that is, with an unbounded number of reactants and inhibitors. A
similar result was proved by Ehrenfeucht et al. [2].

Proposition 10. Let f: 29 — 29 be a function with |S| = n. Then f = resy for
some A= (S, A) € RS(n,n).
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Proof. Let A= (S5, A) € RS(n,n) with the following reactions:
(1,5 T, f(T)) forall T C S.

Let T C S. Then, the only reaction enabled by T is a = (7,5 — T, f(T)), since
for each U # T we have either U C T, or U ¢ T and then (S —U)NT # @.
Hence res4(T) = res,(T") = f(T) as required. |

However, reactants and inhibitors can be both reduced to one with a 2-step
simulation. This provides a minimal normal form for reaction systems computing
arbitrary functions.

Theorem 11 (Normal form). RS(co,00) ~2 RS(1,1).

Proof. By definition we have RS(1,1) =1 RS(00, 00), implying the weaker state-
ment RS(1,1) <3 RS (00, 00). Thus, we only need to prove RS (0o, 00) <2 RS(1,1).

Let A = (S,A) € RS(r,i). Let A’ = (S’,A") be a reaction system having
S’ = S U A, that is, we enlarge the background set S with an element for each
reaction in A (which is represented by the reaction itself). The set A’ contains, for
each reaction a = (Rg, I, P,) € A, the following reactions:

(,{z},{a}) for each z € R, (1)
({y}, 2,{a}) for each y € I, (2)
(2,{a}, Fa). (3)

Hence A’ € RS(1,1). In order to prove that A’ 2-simulates A, it suffices to show
that, for all n € N, if n is even, then

res’y (T) N S = res/*(T) (4)
and if n is odd, then
res’y, (T) N A = {a: a is not enabled by resff_l)/Q(T)}. (5)

By induction on n: if n = 0, then (4) holds by definition.
If n > 0 is odd, then by induction hypothesis we have

res’, ((T)NS = l"esff_l)/2 (T).

Notice that the only reactions producing elements of A are those in (1) and (2);
furthermore, for every a € A, the element a is produced if and only if there exists
some © € R, such that = ¢ res’y,"(T) or there exists some y € I, such that
y € resZ‘,_l(T). Thus, by induction hypothesis, the element a € S’ is produced in A’
at time n if and only if the reaction a € A is not enabled in A at time % As a
consequence, statement (5) holds.

If n > 0 is even, then by induction hypothesis we have

res’, '(T) N A = {a: a is not enabled by 1"(3552_2)/2 (T)}.



Simple Reaction Systems and Their Classification 447

The only reactions having elements of S as products are those in (3): for every such
reaction (@, {a}, P,), the set P, is produced if and only if a ¢ res”; (7). Thus,
for every reaction a = (R, I,, P,) € A, the corresponding reaction (&, {a}, P,) is
enabled in A’ at time n — 1 if and only if a is enabled in A at time "T_Q Hence,
statement (4) holds, i.e., A’ 2-simulates A. m|

The number of steps required by the simulation cannot be reduced to one; this
generally holds whenever we are reducing the amount of resources of the reaction
system.

Proposition 12. RS(r,i) A1 RS(r',i') whenever ' + i’ < r + 1.

Proof. Let A = (S, A) € RS(r,i) be a reaction system with |[S| = r + ¢ and a
single reaction a = (R, I, P) with RUI =S, RNI =g, and P # &.

Suppose A is 1-simulated by A" = (S, A’) € RS(r',4') with v’ +i’ < r+1i. Then,
there exists b = (R, I',P’) € A’ with R'NI' = @ and P' NS # &, otherwise we
would have

resy, (R)NS =2 # P =resy(R).
Since |[R'UI'| = v+’ <r+1i=|5], there exists x € S— (R'UI"). If x € R then R’
enables b but not a:
resy, (R) NS Dresy(R)NS =P NS #a=resy(R),
while if z € S — R = I then R’ U {z} inhibits a but not b:
resy, (R'U{z}) NS Dresy(R' U{x})NS =P NS +#a=resy (R U{z}).

In both cases the value of resiv restricted to S differs from res}4 in at least one
point, contradicting the fact that A’ 1-simulates A. O

Furthermore, increasing the size of the background set by adding auxiliary en-
tities is generally necessary.

Proposition 13. There exist reaction systems A = (S, A) with |S| > 3 that cannot

be k-simulated (for any k € N) by reaction systems A’ = (S, A’) € RS(1,1), i.e.,
having the same background set.

Proof. Let S be a finite set with |[S| = n > 3, and let T1,T5,...,Ton be an
enumeration of 2%. Let f: 25 — 25 be defined as

T ifi <27
fry=4"
Ton ifi=2".

By Proposition 10 we have f = res4 for some A = (S, A) € RS(n,n). We prove
that no A" = (5, A4’) k-simulates A for any k > 1. Suppose otherwise; then A’
generates the state sequence

(Ty,vesly, (T1),res’, (Th), . . ., resh, (T1) = Ty).
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Notice that T can be either part of a cycle in A’, or outside any cycle. In the
first case, the state Ts appears infinitely often in the state sequence starting at 77,
including at positions that are multiple of k and correspond to the state sequence
of A starting at 77, while it should only appear once. In the second case, in particular
we have res 4/ (T1) # Ta, and res 4/ (71) is also outside any cycle (as it would imply T5
in a cycle). Hence, res 4 (T7) will never appear again; but we have res 4 (71) = T;
for some ¢ > 1, and a k-simulation requires resil(,i_l)(Tl) =res’y '(T1) = T;. Hence,
A’ does not k-simulate A for any k > 1.

Now we identify a subset of enumerations of 2° that are not the result functions
of any A" = (S, A") € RS(1,1), thus proving that some of the reaction systems A
described above cannot be 1-simulated either. Let x,y, z € S be distinct elements,
and fix f({z}) = 5, f{z,y}) = @, and f(@) = & (i.e., Ton = &). Suppose A’
1-simulates A with f = res4. Since S is the image of some state, for each w € §
there exists a reaction (R,I,P) € A’ with w € P. Since f(g) = @, we must
have R # @. Since f({x}) = S, one of these reactions has R = {z}. But this requires
I = {y}, since f({z,y}) = @. Hence, for each w € S we have a reaction ({z}, {y}, P)
with w € P. As a consequence resa ({z,z}) = S; but f({z,z}) # S since S # Ton
has only one preimage. O

4. Reactantless Reaction Systems

Having established a minimum amount of resources needed to simulate general
reaction systems, we are interested in analyzing the behavior of weaker systems.
Let us begin by considering reaction systems without reactants and using only
inhibitors. These can be simulated in 3 steps with only one inhibitor.

Lemma 14. RS(0,00) ~3 RS(0,1).

Proof. Trivially, RS(0,1) <3 RS(0, 00) holds.

Let A= (5,A) € RS(0,00), and let A’ = (5, A") € RS(0,1) with background
set S’ = SUSU2% where S = {7 : x € S} is disjoint from S U2°. For each = € S,
A’ contains the reaction

(@, {z}, {z}) (6)

and, for each a = (9, I, P,) € A, the reactions

(9,{z},{1.}) for each x € I, (7
(@, {1a}, Pa)- (8)

We prove, by induction on n, that for all T C S we have
resy, (T)NS = 1"657;1/3 (1) if n =3m; 9)
zeresy (T) < x ¢ res%_l)/g(T) ifn=3m+1; (10)

I, €res’y (T)N2°% = I,N res%_Q)/g(T) # o ifn=3m+2. (11)
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For n = 0, we have res, (') NS = T = res (T).
If n > 0 is a multiple of 3, then by induction hypothesis

I, eres’ H(T)N2° = I, ﬂres(” D3(T) £ .

Notice that, if X € reszl(T) N 29, then necessarily X = I, for some a € A, as the
only reactions producing elements of 2° have the form (7). For each reaction a € A
we have a corresponding reaction a’ of type (8), and a is inhibited at time ”T_3 in A
if and only if @’ is inhibited at time n — 1 in A’: statement (9) follows.

If n > 0 with n = 3m + 1, by induction hypothesis we have

res”, (T)N S = Jresj‘I V3T,
We have z € res’y, (T') if and only if the reaction (@, {z}, {Z}) was enabled at time
n—1, that is = ¢ res’y, (T) N S = res%fl)/B(T) as required.
Finally, if n > 0 with n = 3m + 2, by induction hypothesis
z eres’, {(T) <= = ¢ res); (n=2)/3(y,

Let a € A. We have I, € res, (T) N 2% if and only if at least one of the reactions of
the form (7) was enabled at time n — 1. This means that there exists x € I, such
that = ¢ res’y, () and z € res%ﬂ)/?’(T). Equivalently, I, N res%fQ)/B(T) £ .
This proves (11).

The statement of the proposition immediately follows from (9). |

The result functions of reaction systems using only inhibitors coincide with the
functions f: 29 — 29 for which X C Y implies f(X) 2 f(Y), i.e., the antitone
functions.

Proposition 15. A function f: 25 — 2% with |S| = i is antitone if and only
if [ =resa for some A€ RS(0,1).

Proof. Let A = (S5, 4) € RS(0,i), and let T3 C T, C S. Since the reactions
of A have no reagents, every a € A that is enabled by 75 is also enabled by T,
hence res, (T2) C res,(71). As a consequence, the function res4 is antitone:

res4(T2) = U resq (7o) C U resq(Th) = resa(Th).
a€A acA

Conversely, let f: 25 — 2% with |S| = 4 be antitone. Then, by Proposition 10, we
have f = res for some A = (S, A) € RS(4,4). Let A" = (S, A") € RS(0,) be the
reaction system obtained by erasing all reactants from the reactions of A which can
actually be enabled, i.e.,

A'={(2,I,P): (R,I,P) € A for some RC S with RN I = @}.

Then ress = resyq. Indeed, for all T C S we have ress(T) C resa(T), since
reaction (&,I, P) € A is enabled by T whenever (R,I,P) € A’ with RNI = &
is. In order to show the converse inclusion resa/ (T') C resa(T), let @ € resa/ (T).
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Then x € P for some (&,I,P) € A’ with INT = &, and we have a = (R,I,P) € A
for some R C S with RNJI = &. Since a is enabled by S—1I, we have x € res4(S—1),
and, since T' C S — I and resy is antitone, we have res (S — I) C resa(T), i.e.,
x € resa(T) as required. |

This result also implies that the 3-simulation above is minimal.

Proposition 16. RS(0,0) A; RS(0,1) for k < 3.

Proof. By Proposition 12 we have RS(0, 00) A1 RS(0,1).

Let A = (S,A) € RS(0,00) with S # @ and (2,5,S) as its only reaction.
Suppose A’ € RS(0,1) 2-simulates A. Then res?, (@) NS = resa(@) = S. By
Proposition 15, res 4 is antitone, hence res%, is monotone. Thus res%, (@) N S is a
subset of res%,(S) NS, that is, res}, (S) NS = S # @ = resa(S), a contradiction.

O

Since an arbitrary function can be neither monotone nor antitone, reaction sys-
tems using only inhibitors are weaker than general ones.
Lemma 17. RS(0,00) < RS(1,1).
Proof. Let A = (S,A) € RS(1,1) be a reaction system with |S| > 2 and

({z},{y}, {z,y}) as its only reaction. Suppose that A" € RS(0,00) k-simulates A.
If k£ is even, then resfﬁv is monotone, which is a contradiction since

res4({z}) = res®, ({}) N S Cres’y, ({z,y}) N S = resa({z,y}) = @.
On the other hand, if k is odd, then resﬁv is antitone, and we obtain
res (@) = resh, (@) NS Dresh, ({z}) NS =ress({2}) = {z, v},
another contradiction. O
The key results on reaction systems without reactants can be summarized as
follows.

Theorem 18. RS(0,1) = RS(0,00) < RS(1,1).

5. Inhibitorless Reaction System

Another way of limiting reaction systems is by avoiding inhibitors. Reaction systems
using only reactants can always be simulated by using two reactants per reactions.

Lemma 19. RS(r,0) =Zf10g, ] RS(2, 0) for all r > 2.

Proof. Given A = (S, A) € RS(r,0), we define a reaction system A’ = (S, A') in
RS(2,0) that [log, r]-simulates A.
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R ={ri,ro,r3,74,75,76}

T T

) {701/»1"2»737\7”4} {T57T6} Xy
Arire} {rara) {rs,re} o
. <t

Fig. 1. A possible sequence X1, X2 of coverings of the set R = {r1,...,rs}. Notice that X1 and X»
contain the same set {rs,r¢}. The entities associated with R in S’ are then 71,...,76 from R,
together with {r1,72}1,{rs,ra}1,{rs,r6}1 from X1, and {r1,7r2,r3,74}2,{rs,76}2 from Xs.

First of all, we need a way to describe a set by a collection of its subsets of
bounded cardinality. A k-covering of a finite set YV is a family X = {X1,..., X;n}
of subsets of Y such that |JX = Y and, for all X; € X, we have |X;| < k.
Observe that, if [Y| = n, there exists a k-covering of Y with at most [ ] elements.
Furthermore, if X = {X3,...,X,,} is a k-covering of Y, then a 2k-covering of YV’
with [%] elements can be defined as &' = {X; U Xo, X3U Xy, ..., X1 U Xy}

Let (R, @, P) € A with R # @ and let X} be a 2-covering of R with || < [r/2];
given X; with i < £ = [logy 7] —1, let X;11 with |X; 1] < [r/2771] be a 2¢+1-covering
of R such that, for each Q € X1, there exist M, N € X; with MUN = Q. Then A’
contains the following reactions, where the elements of a covering X; are subscripted
by i:

(Q,2,{Q1}) if Qe (12)
({Mi,NZ‘},Q,{QZ‘Jrl}) ifM,NEXi,Q:MUNEXi+1, 1<i</ (13)
({M@,N@},@,P) ifR=MUN and M,N € X,. (14)

The set A’ contains reactions (12)—(14) for each a € A having at least one reactant,
and furthermore it contains, unchanged, all the reactions of A with no reactants.
Notice that each reaction in A’ has at most two reactants, i.e., A" € RS(2,0).

An example of a sequence of k-coverings for a set of reactants is given in Fig. 1.
Notice how they can be visualized as the different levels of a binary tree, where the
children of a node are a [%]—covering of the parent.

Let a = (R,o,P) € Awith R# @, T C S, let A/, C A’ be the set of reactions
of type (12)—(14) simulating a, and let Xy,..., X, the coverings for a described
above. By construction, A/, “preserves” the reactants of a in subscripted sets, in the

following sense:
RCT <= RC|J{M e X : M eresly (T)} for1<t<{. (15)

In particular, at step ¢, the two sets M, N, of reaction (14) belong to res, (T) if
and only if R C T, and at the next step we have res||’%2"(T') = res, (7).
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We also have res,(T) = Jresg?g2 "I(T), with A’ = {a}, for reactions with no
reactants. Since all the reactions involve no inhibitors, we have
resa(T) = | reso(T) = | resly®2 ™1(T) Cresl® " I(T) n 8.
acA acA

Now let x € resl?g2 "I(T) N S. Then, z is either a product of a reaction (@, @, P)
belonging to both A and A’, or of a reaction of type (14). In the first case, it
immediately follows that = € res (7).

In the second case, the reaction of type (14) simulates a reaction a € A having
reactants R = M U N with My, N, € res’y, (T). The two sets My, N, are, in turn,
products of reactions of type (12) or (13) belonging to Al; hence, M, N, € res, (T).
By (15) we have R C T, hence x € res,(T) C res4(T). ’

This proves that the reaction system A’ [log, r|-simulates A. O

The result functions of this subclass of reaction system are exactly the monotone
functions.

Proposition 20. A function f: 2° — 2% with |S| = r is monotone if and only
if [ =resa for some A€ RS(r,0).

Proof. Let A = (S5,A4) € RS(r,0), and let T} C T, C S. Since the reactions
of A have no inhibitors, every a € A that is enabled by T} is also enabled by T,
hence res,(71) C res,(7). As a consequence, the function res4 is monotone:

resa(Th) = U res,(Th) C U resq(T2) = res4(13).
a€A a€A
Conversely, let f: 2% — 2% with |S| = 7 be monotone. Then, by Proposition 10,
we have [ = res4 for some A = (S, A) € RS(r,r). Let A" = (5, A4") € RS(r,0) be
the reaction system obtained by erasing all inhibitors from the reactions of A which
can actually be enabled, i.e.,

A'={(R,2,P):(R,I,P) € Afor some I C S with RNI = o}

Then resq = ress. Indeed, for all T C S we have resa(T) C resa/(T), since
reaction (R,d,P) € A’ is enabled by T whenever (R,I,P) € A is. In order to
show the converse inclusion res 4/ (T') C resa(T), let « € resa/(T). Then z € P for
some (R, 2, P) € A’ with R C T, and there exists a = (R, I, P) € Aforsome I C S
with RN I = @. Since a is enabled by R, we have z € res4(R) and, since res4 is
monotone, we have res 4(R) C resa(T), i.e., v € resa(T') as required. |

Another property of reaction systems using r reactants per reaction and no
inhibitors is that every entity generated in n steps is also generated by a state with
at most 7" entities.

Lemma 21. Let A = (S,A) € RS(r,0). Then, for all T C S and n € N, if
x € res’y(T) then there exists T C T with |T'| < r™ such that x € res’y(T").
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Proof. By induction on n. If n = 0, then res’y(T) = T, hence x € resy(T)
means = € T’; by letting 7" = {«} we have " C T, |T'| =1 < ™, and = € res’y(T").
Now suppose n > 0. If z € res’y(T), then z is the product of some reaction
a=(R,2,P) € Awith |R| < randz € P, and furthermore we have R C res’y ' (7).
By applying | R| times the induction hypothesis, we know that for each y € R there
exists T € T with |T,| < "~! such that y € res’jfl(T;). Let 7" = U,cr Ty C T3
since the function ress is monotone (Proposition 20), we have y € res’y ' (1”)
for all y € R, that is, R C res”y '(T"). Hence a is enabled by res’, ' ("), giving
x € P Cres(T'). Since |T'| < 3z |T,| <7 x "', the thesis follows. O
Lemma 21 implies that the [log, 7]-simulation we employed when reducing the
number of reactants to 2, which is the only k-simulation in this paper where k
depends on the size of the simulated reaction system, cannot be improved.

Proposition 22. RS(r,0) Ax RS(2,0) for every k < [logyr].

Proof. Let A = (S, A) with |S| = r and (S,9,S) as its only reaction. Then
A € RS(r,0), and

S ifTr==5

resall) = {@ 7T ¢S

Suppose A" € RS(2,0) k-simulates A for some k < [log, 7], and let & € res4(S).
Then z € res’, (S) N S, and in particular z € res¥, (9). By Lemma 21, there exists
a T’ C S such that = € resh, (T”) and |T’| < 2*. Since k is integer, k < [log, r]
implies k& < log, r, hence |T’| < 2F < 2827 = y = |§|, that is, T' C S. However,
since z € S, we have z € res®, (T') NS = res4(T") = @, a contradiction. O

When only one reactant per reaction is used, we characterize the subset of the
monotone functions consisting of all the additive ones, i.e., the endomorphisms of
the join-semilattice (2°,U). A function f: 25 — 29 is an endomorphism if and only
if f(XUY)=f(X)Uf(Y)foral XY CS.

Proposition 23. A function f: 25 — 25 is a join-semilattice endomorphism if
and only if f =resq for some A € RS(1,0).

Proof. Let A = (S,4) € RS(1,0), and let T1,7> C S. Since the reactions of A
have no inhibitors, a reaction enabled by T' C S is also enabled by all its supersets;
hence res4(T1) Uresa(T2) C resa(T1 UTy). Conversely, let € res4(T7 UT3); then,
there exists (R, &, P) € A with € P and R C Ty U Ts. Since |R| < 1, we have
either R C Ty or R C Ty. Hence z € resy(Th) or © € resyq(Th); therefore we
obtain res4(Th U T3) C resa(T1) Uresa(T3).

Now let f: 2° — 29 with |S| = r, be a join-semilattice endomorphism. Then f is
monotone, and by Proposition 20 we have f = res4 for some A = (S, A) € RS(r,0).
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Let A" = (5, 4") € RS(1,0) be the reaction system obtained {rom A by deleting
the reactions having more that one reactant, i.e.,

A'={(R,2,P):(R,2,P) € Aand |R| <1}.
Then res 4 = resy4. Indeed, let T C S; since res4 is a homomorphism, we have
resa(T) = ress (@u U{y}) = resa(2) U | resa({y})-
yeT yeT

Only reactions with at most one reactant (those in A’) are enabled by {y}, hence
we have

resA(T) = resa (@) U U resa ({y}) =resa (@ U U {y}) =resa (T)

yeT yeT

since res 4 is a homomorphism, as proved above. O
Even when iterated, join-semilattice endomorphisms do not characterize all

monotone functions; hence, one reactant is weaker than two.

Lemma 24. RS(1,0) < RS(2,0).

Proof. The iterated composition of a join-semilattice endomorphism is also a join-
semilattice endomorphism:

AT UT) = U (T U (D) = - = fH(T) U fH(T2).

Let S = {z,y} and g: 2% — 29 be defined by g(S) = S and g(T) = @ for T # S.
Notice that ¢ is monotone but not a join-semilattice endomorphism. Then, for
every S’ D S, every join-semilattice endomorphism f: 25" 25 and every k € N,
if f¥(T)NS = g(T) for all T C S, we have

9(8) = fF{zy u{yhHn s = (fFHahH nS) U (FFHy}) NS) = g({z}) Lg({y}) = 2.

However, g(S) = S, a contradiction.

Perhaps surprisingly, a single inhibitor simulates arbitrarily many reactants.
Lemma 25. RS(c0,0) =5 RS(0,1).
Proof. Let A = (9, A4) € RS(c0,0). Let A’ = (5, A’") € RS(0,1) with §' = SU2°
and having, for each reaction a = (R, @, P,) € A, the following set of reactions:
(@, {z},{R.}) for each z € R, (16)
(@, {Ra}, Pa)- (17)
Let T'C S. We prove, by induction on n, that
resi, (T)NS = IQSZ/Q (1) if n is even (18)
Ry, €res’y (T) <= R, ¢ resff_l)/Q(T) if n is odd. (19)
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For n = 0 we have res’, (T)N S =T = res% (T).
For even n > 0 we have, by induction hypothesis,

R, € res’ {(T) < R, ¢ resy 2/*(T).

Notice that the only reactions in A’ with products in S have the form (17), and
they are enabled at time n — 1 if and only if R, C 1"(3552_2)/2 (1), i.e., if and only if
—2

reaction a is enabled in A at time “7=. Condition (18) follows.

For odd n > 0, by induction hypothesis we have
res’, {(T)N S = resfffl)m(T) .

The only reactions of A’ having products in 2° have the form (16). The element R,
is produced if and only if there exists x € R, with = ¢ res’y,'(T) N S, i.e., if and
n—1

only if reaction a is not enabled in A at time "5=, as in (19).

The statement of the lemma follows from (18). |

On the other hand, reactants alone cannot simulate even a single inhibitor.

Lemma 26. RS(2,0) < RS(0,1).

Proof. By Lemma 25 we have RS(2,0) <2 RS(0,1).

Let A = (S, A) € RS(0,1) be defined by S = {z} and (&, {z}, {z}) as the only
reaction. By Proposition 15, the function resy4 is antitone; furthermore, it is not
monotone, as it is not a constant function. By Proposition 20, for any A’ € RS(2,0)
the function resﬁ‘, is monotone for all k& € N. Therefore, A’ cannot k-simulate A.

O

The following theorem summarizes the key results on reactant-only reaction
systems.

Theorem 27. RS(1,0) < RS(2,0) =~ RS(0,0) < RS(0,1).

6. Classification of Reaction Systems

Only one class of reaction systems is missing: those which do not use reactants nor
inhibitors. They characterize the constant functions.

Proposition 28. A function f: 25 — 25 is constant if and only if f = resy for
some A € RS(0,0).

Proof. Let A = (S,A) € RS(0,0). Then, every reaction a € A has the
form (@, @, P,), and is always enabled, since @ C T and @NT = & for each T' C S.
Hence

resa(T) = U P, foreach T C S
acA

i.e., res4 is a constant function.
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Conversely, let f: 2% — 29 be a constant function. Let A = (S, A) € RS(0,0) be
the reaction system having (&, &, f(@)) as its only reaction. Then, for each ' C S,
we have res4(T') = f(@) = f(T) as required. m|

Clearly, this variant of reaction systems is weaker than all the others.

Lemma 29. RS(0,0) < RS(1,0).

Proof. Let A = (S, A4) € RS(1,0) be a reaction system having ({z}, @, {z}) as its
only reaction, and suppose A’ € RS(0,0) k-simulates A. Then resfﬁv is a constant
function, and we have a contradiction:

@ =resyg(@) = resk, (@) NS = resh, ({z}) NS =ress({z}) = {z}. |

The classification of reaction systems with respect to the number of reactants
and inhibitors can thus be summarized as follows.

Theorem 30. The relation < is a total preorder on the set of classes of reaction
systems of the form RS(r,i). The classes are comparable according to the following
diagram for all T > 1,10 > 2 and i > 1:

RS(0,0) < RS(1,0) < RS(2,0) < RS(0,1) < RS(1,1)
X X X
RS(re,0) < RS(0,i) < RS(r1,1)
X X X
RS(00,0) < RS(0,00) < RS(00,00).

In particular, the relation =~ induces exactly five equivalence classes.

7. Conclusions

In this paper a new notion of multi-step simulation between reaction systems,
called k-simulation, has been defined. This definition allows a reaction system to use
both additional time and additional entities to simulate another system. We have
proved that the class of reaction systems with only one reactant and one inhibitor
is sufficient to simulate any other reaction system using only two time steps per
step of the original system.

We have investigated reaction systems without reactants, i.e., having only in-
hibitors, and we have proved that they characterize exactly the antitone functions
between Boolean lattices and that every system of that kind can be simulated by a
system having reactions with only one inhibitor. The situation when only reactants
are present is not symmetrical. In fact, these systems represent every monotone
function between Boolean lattices, and to simulate them it is necessary to use two
reactants. The case of reaction systems having reactions with only one reactant
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and zero inhibitors is strictly weaker, as they characterize only additive functions.
Finally, reaction systems without both reactants and inhibitors are the weakest ones
and characterize the constant functions.

All the proposed constructions are provably optimal in time, i.e., the number of
time steps employed to simulate a step of the original system is minimal. Further-
more, all constructions require a number of additional entities and reactions that is
polynomial with respect to the sum of the cardinalities of the background and the
reaction sets of the original system.

Summarizing, each reaction system belongs to one of five classes, linearly ordered
by the relation of k-simulability and characterizing well-known classes of functions
between Boolean lattices.

Since auxiliary entities are sometimes necessary when reducing the amount of
resources in each reaction, it would be interesting to establish which equivalence
classes are induced by a stronger form of k-simulation with auxiliary entities only
appearing in the intermediate steps, i.e., satisfying res” (T) = res}(T).

While the characterization of the classes of functions corresponding to the five
equivalence classes described in this paper is completed, it would be interesting to
characterize the functions defined by other classes of reaction systems. Conversely,
it would be interesting to start with a class of functions and investigate if it corre-
sponds to some restriction on the resources used by reaction systems.
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