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tion systems are a model of 
omputation inspired by bio
hemi
al rea
tions involvingrea
tants, inhibitors and produ
ts from a �nite ba
kground set. We de�ne a notion ofmulti-step simulation among rea
tion systems and derive a 
lassi�
ation with respe
tto the amount of resour
es (rea
tants and inhibitors) involved in ea
h rea
tion. Weprove that �simple� rea
tion systems, having at most one rea
tant and one inhibitorper rea
tion, su�
e in order to simulate arbitrary systems. Finally, we show that theequivalen
e relation of mutual simulation indu
es exa
tly �ve linearly ordered 
lassesof rea
tion systems 
hara
terizing well-known sub
lasses of the fun
tions over Booleanlatti
es, su
h as the 
onstant, additive (join-semilatti
e endomorphisms), monotone, andantitone fun
tions.Keywords: Natural 
omputing; rea
tion systems.1. Introdu
tionRea
tion systems, introdu
ed by Ehrenfeu
ht and Rozenberg [4,5℄, are a formalizedabstra
tion of bio
hemi
al pro
esses in whi
h the dynami
s are dis
rete, in bothspa
e and time, and are des
ribed in terms of rea
tions. A rea
tion is modeled as a
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aset of rea
tants, ne
essary for the rea
tion to take pla
e, a set of inhibitors, whosepresen
e blo
ks the rea
tion from o

urring, and a set of produ
ts.Rea
tion systems may be 
onsidered a qualitative model, as opposed to a quan-titative one, as we only fo
us on the presen
e or absen
e of 
hemi
al spe
ies, and noton the pre
ise amounts. In parti
ular, multiple rea
tions having 
ommon rea
tantsdo not interfere; indeed, all rea
tions that are enabled at a 
ertain time step hap-pen simultaneously. Another feature of rea
tion systems whi
h di�erentiates themfrom other biologi
ally inspired 
omputational models is the la
k of permanen
y:the state of the system only 
onsists of the produ
ts of the rea
tions that took pla
ein the last time step, without preserving the entities that were not involved in anyrea
tion.Mathemati
ally, a rea
tion systems de�nes a transition fun
tion (the result fun
-tion) between states, i.e., sets of entities (
hemi
al spe
ies), whi
h 
ompletely de-s
ribes the dynami
s of the system. In many 
ases, the study of the properties ofrea
tion systems involves the 
omparison of the result fun
tions of di�erent systemsor 
lasses of systems. A natural way to understand the modeling power of rea
tionsystems is to 
onsider their behavior when the amount of resour
es (rea
tants andinhibitors per rea
tions) is limited. It was proved [3,7℄ that there exist in�nite properhierar
hies of 
lasses of result fun
tions: by allowing more resour
es, more fun
tionsbe
ome de�nable by rea
tion systems. The idea of studying rea
tion systems witha minimal number of resour
es was also 
arried on in [2℄, where the properties andthe fun
tions de�ned by minimal rea
tion systems were studied.While the analysis of result fun
tions is a dire
t way to 
ompare rea
tion sys-tems, the 
lassi�
ation it provides has a very high granularity. Requiring the equalityof the whole dynami
s 
an be restri
tive for 
ertain appli
ations where we are inter-ested in a higher-level view of the behavior of the systems. As an analogy, 
onsidera simulation between Turing ma
hines: we are often not interested in a step-by-step
orresponden
e of 
on�gurations, and we allow the simulation to be slower than theoriginal ma
hine. In a similar fashion, in this paper we de�ne a notion of simulationin whi
h the simulating system is allowed to use several steps to simulate a singlestep of the other system; auxiliary entities (analogous to an alphabet extension)may also be involved in the simulation.The resulting equivalen
e relation of mutual simulability is 
oarser than equalityof result fun
tions, but still 
aptures the intuitive idea of �having the same behav-ior�. This relation indu
es exa
tly �ve equivalen
e 
lasses of rea
tion systems. Inter-estingly, these 
lasses 
orrespond to well-de�ned properties of the result fun
tionsas fun
tions over �nite Boolean latti
es; indeed, they 
orrespond to the 
onstant,additive (join-semilatti
e endomorphisms), monotone, antitone, and the totality offun
tions. These equivalen
e 
lasses are ordered linearly by the simulation preorder.We also give exa
t lower bounds to the number of steps required to perform thesimulations, and prove that auxiliary entities are, in general, ne
essary if we wantto preserve the �ve equivalen
e 
lasses.
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tion Systems and Their Classi�
ation 443Di�erently from the original paper that introdu
ed the notion of multi-step simu-lation for rea
tion systems [6℄, this extended version provides in many 
ases a better
onstru
tion and proves in all 
ases the minimality of the resulting simulation andthe ne
essity of using additional entities, solving most of the problems originally leftopen. Furthermore, the 
hara
terization of equivalen
e 
lasses in terms of fun
tions,whi
h was barely sket
hed in the original paper, is here expanded and 
ompleted.This paper is stru
tured as follows. In Se
. 2 we re
all the de�nitionsand notation related to rea
tion systems. In Se
. 3 we introdu
e the notionof k-simulation and prove that any rea
tion system 
an be k-simulated by a systemin �normal form� using only one rea
tant and one inhibitor per rea
tion. Then weturn our attention to limited variants of rea
tion systems. In Se
. 4 we 
onsiderrea
tion systems using only inhibitors, 
hara
terizing the antitone fun
tions; weprove that one inhibitor su�
es to simulate them, and that they are weaker thanrea
tion systems using both rea
tants and inhibitors. In Se
. 5 we analyze rea
-tion systems using only rea
tants, 
hara
terizing the monotone fun
tions; we provethat two rea
tants su�
e to simulate them (while single-rea
tant rea
tion systemsare weaker and 
hara
terize the additive fun
tions), and that they are weaker thaninhibitor-only rea
tion systems. In Se
. 6 we �nalize the 
lassi�
ation by provingthat rea
tion systems without rea
tants and inhibitors 
hara
terize the 
onstantfun
tions, and thus are the weakest variant. Se
tion 7 
ontains our 
on
lusions andsuggestion for further resear
h.2. Basi
 NotionsIn this paper we denote sets by upper-
ase letters, rea
tions and atomi
 elements bylower-
ase letters, and rea
tion systems and families of sets by 
alligraphi
 letters.Given a set X , we denote by 2X the power set of X . Re
all that 2X is a Booleanlatti
e with respe
t to set in
lusion, having ∪ and ∩ as join and meet operations.A rea
tion is formally de�ned as follows.De�nition 1. Given a �nite set S (the ba
kground set), a rea
tion over S is atriple of sets a = (Ra, Ia, Pa) ∈ 2S × 2S × 2S. We 
all Ra the set of rea
tants, Iathe set of inhibitors, and Pa the set of produ
ts.Sin
e we will show that one rea
tant and one inhibitor su�
e to simulate anyrea
tion system (see Theorem 11), in this paper we also admit empty rea
tant andinhibitor sets, as in the original de�nition [5℄, in order to investigate the expressivityof the resulting rea
tions and to prove that they are stri
tly weaker than rea
tionsinvolving both kinds of resour
es.De�nition 2. A rea
tion system is a pair A = (S,A) where S is a �nite set and

A a set of rea
tions over S.A state of a rea
tion system A = (S,A) is any subset of S. The dynami
s of area
tion systems are de�ned as follows.
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aDe�nition 3. Let A = (S,A) be a rea
tion system, a = (Ra, Ia, Pa) ∈ A, and
T ⊆ S. We say that a is enabled by T if and only if Ra ⊆ T and Ia ∩ T = ∅.The result of a on T is de�ned as

resa(T ) =

{

Pa if a is enabled by T

∅ otherwise.The result of A on T is de�ned as resA(T ) =
⋃

a∈A resa(T ).The state sequen
e of a rea
tion system A with initial state T is given by su
-
essive iterations of the result fun
tion:
(

resnA(T )
)

n∈N
=

(

T, resA(T ), res
2
A(T ), . . .

)

.Sin
e the ba
kground set of a rea
tion system is �nite, the state spa
e is also �nite;hen
e, every state sequen
e is ultimately periodi
.3. Simulation Between Rea
tion SystemsIn order to 
ompare rea
tion systems with respe
t to their ability to generate statesequen
es, we de�ne a notion of simulation less restri
tive than equality of resultfun
tions: here, the simulating system may use several steps to simulate a singlestep of the original system. This is 
onsistent with notions of simulation employedfor many 
omputational models (e.g., Turing ma
hines), when we are not interestedin the stri
t 
orresponden
e of every pair of 
on�gurations, but only in the overallbehavior of the two systems.De�nition 4 (k-simulation). Let A = (S,A) and A′ = (S′, A′), with S ⊆ S′, berea
tion systems, and let k ∈ N. We say that A′ k-simulates A if and only if, forall T ⊆ S and all n ∈ N, we have
resnA(T ) = resknA′ (T ) ∩ S.In other words, when 
onsidering the sequen
es of states of A and A′ startingfrom T , the n-th state of A 
oin
ides with the (kn)-th state of A′ with respe
t tothe elements of S (some auxiliary elements of S′ − S may also o

ur). We use thenotion of k-simulation to de�ne a relation on 
lasses of rea
tion system.De�nition 5. Let X and Y be 
lasses of rea
tion systems, and let k ∈ N. We de�nethe binary relation �k as follows: X �k Y if and only if for all A ∈ X there existsa rea
tion system in Y that ℓ-simulates A for some ℓ ≤ k.We say that X � Y if and only if X �k Y for some k ∈ N. We write X ≈k Yif X �k Y and Y �k X, and X ≈ Y for X � Y ∧ Y � X. Finally, the notation

X ≺ Y is shorthand for X � Y ∧ Y 6� X.Noti
e that X ⊆ Y always implies X �1 Y , i.e., the set in
lusion relationis 
oarser than k-simulation, sin
e any rea
tion system is trivially 1-simulated byitself.



July 11, 2014 8:55 WSPC/INSTRUCTION FILE S012905411440005X
Simple Rea
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ation 445A k-simulation and an ℓ-simulation 
an be 
omposed into a (kℓ)-simulation.Lemma 6. X �k Y and Y �ℓ Z implies X �kℓ Z.Proof. For all A = (S,A) ∈ X there exist B = (S′, A′) ∈ Y with S ⊆ S′ and h ≤ ksu
h that

reshnB (T ) ∩ S = resnA(T )for all n ∈ N and T ⊆ S. Furthermore, there exist C = (S′′, A′′) ∈ Z and m ≤ ℓsu
h that
resmn

C (T ) ∩ S′ = resnB(T )for all n ∈ N and T ⊆ S ⊆ S′. By 
ombining the previous statements and interse
t-ing with S, we get
(

resmhn
C (T ) ∩ S′

)

∩ S = resmhn
C (T ) ∩ S = reshnB (T ) ∩ S = resnA(T )for all T ⊆ S and n ∈ N. In other words, the rea
tion system C (mh)-simulates A.Sin
e mh ≤ kℓ, we obtain X �kℓ Z.From this lemma, we immediately get the following result:Proposition 7. The relation � is a preorder. Hen
e, the relation ≈ is an equiva-len
e relation.We 
lassify rea
tion systems a

ording to the maximum amount of rea
tantsand inhibitors appearing in their rea
tions.De�nition 8. For all r, i ∈ N, we denote by RS(r, i) the 
lass of rea
tion systems

A = (S,A) su
h that, for all (R, I, P ) ∈ A, we have |R| ≤ r and |I| ≤ i. Wealso de�ne the 
lasses RS(∞, i) =
⋃

r∈N
RS(r, i), RS(r,∞) =

⋃

i∈N
RS(r, i), and

RS(∞,∞) =
⋃

r,i∈N
RS(r, i).Noti
e that RS(∞,∞) is the 
lass of all rea
tion systems. In this 
lassi�
a-tion the maximum number of produ
ts is not mentioned, be
ause every rea
tionwith p produ
ts 
an be repla
ed by p rea
tions having a single produ
t [1℄.Proposition 9. For ea
h rea
tion system A = (S,A) there exists a rea
tion system

A′ = (S,A′) over the same ba
kground set having at most one produ
t per rea
tionand su
h that resA(T ) = resA′(T ) for all T ⊆ S.Every fun
tion over �nite power sets is the result fun
tion of a rea
tion systemin RS(∞,∞), that is, with an unbounded number of rea
tants and inhibitors. Asimilar result was proved by Ehrenfeu
ht et al. [2℄.Proposition 10. Let f : 2S → 2S be a fun
tion with |S| = n. Then f = resA forsome A = (S,A) ∈ RS(n, n).
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aProof. Let A = (S,A) ∈ RS(n, n) with the following rea
tions:

(T, S − T, f(T )) for all T ⊆ S.Let T ⊆ S. Then, the only rea
tion enabled by T is a = (T, S − T, f(T )), sin
efor ea
h U 6= T we have either U ( T , or U * T and then (S − U) ∩ T 6= ∅.Hen
e resA(T ) = resa(T ) = f(T ) as required.However, rea
tants and inhibitors 
an be both redu
ed to one with a 2-stepsimulation. This provides a minimal normal form for rea
tion systems 
omputingarbitrary fun
tions.Theorem 11 (Normal form). RS(∞,∞) ≈2 RS(1, 1).Proof. By de�nition we have RS(1, 1) �1 RS(∞,∞), implying the weaker state-mentRS(1, 1) �2 RS(∞,∞). Thus, we only need to proveRS(∞,∞) �2 RS(1, 1).Let A = (S,A) ∈ RS(r, i). Let A′ = (S′, A′) be a rea
tion system having
S′ = S ∪ A, that is, we enlarge the ba
kground set S with an element for ea
hrea
tion in A (whi
h is represented by the rea
tion itself). The set A′ 
ontains, forea
h rea
tion a = (Ra, Ia, Pa) ∈ A, the following rea
tions:

(∅, {x}, {a}) for ea
h x ∈ Ra (1)
({y},∅, {a}) for ea
h y ∈ Ia (2)
(∅, {a}, Pa). (3)Hen
e A′ ∈ RS(1, 1). In order to prove that A′ 2-simulates A, it su�
es to showthat, for all n ∈ N, if n is even, then

resnA′(T ) ∩ S = res
n/2
A (T ) (4)and if n is odd, then

resnA′(T ) ∩ A =
{

a : a is not enabled by res
(n−1)/2
A (T )

}

. (5)By indu
tion on n: if n = 0, then (4) holds by de�nition.If n > 0 is odd, then by indu
tion hypothesis we have
resn−1

A′ (T ) ∩ S = res
(n−1)/2
A (T ).Noti
e that the only rea
tions produ
ing elements of A are those in (1) and (2);furthermore, for every a ∈ A, the element a is produ
ed if and only if there existssome x ∈ Ra su
h that x /∈ resn−1

A′ (T ) or there exists some y ∈ Ia su
h that
y ∈ resn−1

A′ (T ). Thus, by indu
tion hypothesis, the element a ∈ S′ is produ
ed in A′at time n if and only if the rea
tion a ∈ A is not enabled in A at time n−1
2 . As a
onsequen
e, statement (5) holds.If n > 0 is even, then by indu
tion hypothesis we have

resn−1
A′ (T ) ∩ A =

{

a : a is not enabled by res
(n−2)/2
A (T )

}

.
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tion Systems and Their Classi�
ation 447The only rea
tions having elements of S as produ
ts are those in (3): for every su
hrea
tion (∅, {a}, Pa), the set Pa is produ
ed if and only if a /∈ resn−1

A′ (T ). Thus,for every rea
tion a = (Ra, Ia, Pa) ∈ A, the 
orresponding rea
tion (∅, {a}, Pa) isenabled in A′ at time n − 1 if and only if a is enabled in A at time n−2
2 . Hen
e,statement (4) holds, i.e., A′ 2-simulates A.The number of steps required by the simulation 
annot be redu
ed to one; thisgenerally holds whenever we are redu
ing the amount of resour
es of the rea
tionsystem.Proposition 12. RS(r, i) �1 RS(r′, i′) whenever r′ + i′ < r + i.Proof. Let A = (S,A) ∈ RS(r, i) be a rea
tion system with |S| = r + i and asingle rea
tion a = (R, I, P ) with R ∪ I = S, R ∩ I = ∅, and P 6= ∅.Suppose A is 1-simulated by A′ = (S′, A′) ∈ RS(r′, i′) with r′+ i′ < r+ i. Then,there exists b = (R′, I ′, P ′) ∈ A′ with R′ ∩ I ′ = ∅ and P ′ ∩ S 6= ∅, otherwise wewould have

res1A′(R) ∩ S = ∅ 6= P = res1A(R).Sin
e |R′∪ I ′| = r′+ i′ < r+ i = |S|, there exists x ∈ S− (R′∪ I ′). If x ∈ R then R′enables b but not a:
res1A′(R′) ∩ S ⊇ resb(R

′) ∩ S = P ′ ∩ S 6= ∅ = res1A(R
′),while if x ∈ S −R = I then R′ ∪ {x} inhibits a but not b:

res1A′(R′ ∪ {x}) ∩ S ⊇ resb(R
′ ∪ {x}) ∩ S = P ′ ∩ S 6= ∅ = res1A(R

′ ∪ {x}).In both 
ases the value of res1A′ restri
ted to S di�ers from res1A in at least onepoint, 
ontradi
ting the fa
t that A′ 1-simulates A.Furthermore, in
reasing the size of the ba
kground set by adding auxiliary en-tities is generally ne
essary.Proposition 13. There exist rea
tion systems A = (S,A) with |S| ≥ 3 that 
annotbe k-simulated (for any k ∈ N) by rea
tion systems A′ = (S,A′) ∈ RS(1, 1), i.e.,having the same ba
kground set.Proof. Let S be a �nite set with |S| = n ≥ 3, and let T1, T2, . . . , T2n be anenumeration of 2S . Let f : 2S → 2S be de�ned as
f(Ti) =

{

Ti+1 if i < 2n

T2n if i = 2n .By Proposition 10 we have f = resA for some A = (S,A) ∈ RS(n, n). We provethat no A′ = (S,A′) k-simulates A for any k > 1. Suppose otherwise; then A′generates the state sequen
e
(T1, res

1
A′(T1), res

2
A′(T1), . . . , res

k
A′(T1) = T2).
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aNoti
e that T2 
an be either part of a 
y
le in A′, or outside any 
y
le. In the�rst 
ase, the state T2 appears in�nitely often in the state sequen
e starting at T1,in
luding at positions that are multiple of k and 
orrespond to the state sequen
eofA starting at T1, while it should only appear on
e. In the se
ond 
ase, in parti
ularwe have resA′(T1) 6= T2, and resA′(T1) is also outside any 
y
le (as it would imply T2in a 
y
le). Hen
e, resA′(T1) will never appear again; but we have resA′(T1) = Tifor some i > 1, and a k-simulation requires resk(i−1)

A′ (T1) = resi−1
A (T1) = Ti. Hen
e,

A′ does not k-simulate A for any k > 1.Now we identify a subset of enumerations of 2S that are not the result fun
tionsof any A′ = (S,A′) ∈ RS(1, 1), thus proving that some of the rea
tion systems Ades
ribed above 
annot be 1-simulated either. Let x, y, z ∈ S be distin
t elements,and �x f({x}) = S, f({x, y}) = ∅, and f(∅) = ∅ (i.e., T2n = ∅). Suppose A′

1-simulates A with f = resA. Sin
e S is the image of some state, for ea
h w ∈ Sthere exists a rea
tion (R, I, P ) ∈ A′ with w ∈ P . Sin
e f(∅) = ∅, we musthave R 6= ∅. Sin
e f({x}) = S, one of these rea
tions has R = {x}. But this requires
I = {y}, sin
e f({x, y}) = ∅. Hen
e, for ea
h w ∈ S we have a rea
tion ({x}, {y}, P )with w ∈ P . As a 
onsequen
e resA′({x, z}) = S; but f({x, z}) 6= S sin
e S 6= T2nhas only one preimage.4. Rea
tantless Rea
tion SystemsHaving established a minimum amount of resour
es needed to simulate generalrea
tion systems, we are interested in analyzing the behavior of weaker systems.Let us begin by 
onsidering rea
tion systems without rea
tants and using onlyinhibitors. These 
an be simulated in 3 steps with only one inhibitor.Lemma 14. RS(0,∞) ≈3 RS(0, 1).Proof. Trivially, RS(0, 1) �3 RS(0,∞) holds.Let A = (S,A) ∈ RS(0,∞), and let A′ = (S′, A′) ∈ RS(0, 1) with ba
kgroundset S′ = S ∪ S̄ ∪ 2S , where S̄ = {x̄ : x ∈ S} is disjoint from S ∪ 2S. For ea
h x ∈ S,
A′ 
ontains the rea
tion

(∅, {x}, {x̄}) (6)and, for ea
h a = (∅, Ia, Pa) ∈ A, the rea
tions
(∅, {x̄}, {Ia}) for ea
h x ∈ Ia (7)
(∅, {Ia}, Pa). (8)We prove, by indu
tion on n, that for all T ⊆ S we have

resnA′(T ) ∩ S = res
n/3
A (T ) if n = 3m; (9)

x̄ ∈ resnA′(T ) ⇐⇒ x /∈ res
(n−1)/3
A (T ) if n = 3m+ 1; (10)

Ia ∈ resnA′(T ) ∩ 2S ⇐⇒ Ia ∩ res
(n−2)/3
A (T ) 6= ∅ if n = 3m+ 2. (11)
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tion Systems and Their Classi�
ation 449For n = 0, we have res0A′(T ) ∩ S = T = res0A(T ).If n > 0 is a multiple of 3, then by indu
tion hypothesis

Ia ∈ resn−1
A′ (T ) ∩ 2S ⇐⇒ Ia ∩ res

(n−3)/3
A (T ) 6= ∅.Noti
e that, if X ∈ resn−1

A′ (T ) ∩ 2S, then ne
essarily X = Ia for some a ∈ A, as theonly rea
tions produ
ing elements of 2S have the form (7). For ea
h rea
tion a ∈ Awe have a 
orresponding rea
tion a′ of type (8), and a is inhibited at time n−3
3 in Aif and only if a′ is inhibited at time n− 1 in A′: statement (9) follows.If n > 0 with n = 3m+ 1, by indu
tion hypothesis we have

resn−1
A′ (T ) ∩ S = res

(n−1)/3
A (T ).We have x̄ ∈ resnA′(T ) if and only if the rea
tion (∅, {x}, {x̄}) was enabled at time

n− 1, that is x /∈ resn−1
A′ (T ) ∩ S = res

(n−1)/3
A (T ) as required.Finally, if n > 0 with n = 3m+ 2, by indu
tion hypothesis

x̄ ∈ resn−1
A′ (T ) ⇐⇒ x /∈ res

(n−2)/3
A (T ).Let a ∈ A. We have Ia ∈ resnA′(T )∩ 2S if and only if at least one of the rea
tions ofthe form (7) was enabled at time n − 1. This means that there exists x ∈ Ia su
hthat x̄ /∈ resn−1

A′ (T ) and x ∈ res
(n−2)/3
A (T ). Equivalently, Ia ∩ res

(n−2)/3
A (T ) 6= ∅.This proves (11).The statement of the proposition immediately follows from (9).The result fun
tions of rea
tion systems using only inhibitors 
oin
ide with thefun
tions f : 2S → 2S for whi
h X ⊆ Y implies f(X) ⊇ f(Y ), i.e., the antitonefun
tions.Proposition 15. A fun
tion f : 2S → 2S with |S| = i is antitone if and onlyif f = resA for some A ∈ RS(0, i).Proof. Let A = (S,A) ∈ RS(0, i), and let T1 ⊆ T2 ⊆ S. Sin
e the rea
tionsof A have no reagents, every a ∈ A that is enabled by T2 is also enabled by T1,hen
e resa(T2) ⊆ resa(T1). As a 
onsequen
e, the fun
tion resA is antitone:

resA(T2) =
⋃

a∈A

resa(T2) ⊆
⋃

a∈A

resa(T1) = resA(T1).Conversely, let f : 2S → 2S with |S| = i be antitone. Then, by Proposition 10, wehave f = resA for some A = (S,A) ∈ RS(i, i). Let A′ = (S,A′) ∈ RS(0, i) be therea
tion system obtained by erasing all rea
tants from the rea
tions of A whi
h 
ana
tually be enabled, i.e.,
A′ = {(∅, I, P ) : (R, I, P ) ∈ A for some R ⊆ S with R ∩ I = ∅}.Then resA′ = resA. Indeed, for all T ⊆ S we have resA(T ) ⊆ resA′(T ), sin
erea
tion (∅, I, P ) ∈ A is enabled by T whenever (R, I, P ) ∈ A′ with R ∩ I = ∅is. In order to show the 
onverse in
lusion resA′(T ) ⊆ resA(T ), let x ∈ resA′(T ).
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aThen x ∈ P for some (∅, I, P ) ∈ A′ with I ∩T = ∅, and we have a = (R, I, P ) ∈ Afor some R ⊆ S with R∩I = ∅. Sin
e a is enabled by S−I, we have x ∈ resA(S−I),and, sin
e T ⊆ S − I and resA is antitone, we have resA(S − I) ⊆ resA(T ), i.e.,
x ∈ resA(T ) as required.This result also implies that the 3-simulation above is minimal.Proposition 16. RS(0,∞) �k RS(0, 1) for k < 3.Proof. By Proposition 12 we have RS(0,∞) �1 RS(0, 1).Let A = (S,A) ∈ RS(0,∞) with S 6= ∅ and (∅, S, S) as its only rea
tion.Suppose A′ ∈ RS(0, 1) 2-simulates A. Then res2A′(∅) ∩ S = resA(∅) = S. ByProposition 15, resA′ is antitone, hen
e res2A′ is monotone. Thus res2A′(∅) ∩ S is asubset of res2A′(S) ∩ S, that is, res2A′(S) ∩ S = S 6= ∅ = resA(S), a 
ontradi
tion.Sin
e an arbitrary fun
tion 
an be neither monotone nor antitone, rea
tion sys-tems using only inhibitors are weaker than general ones.Lemma 17. RS(0,∞) ≺ RS(1, 1).Proof. Let A = (S,A) ∈ RS(1, 1) be a rea
tion system with |S| ≥ 2 and
({x}, {y}, {x, y}) as its only rea
tion. Suppose that A′ ∈ RS(0,∞) k-simulates A.If k is even, then reskA′ is monotone, whi
h is a 
ontradi
tion sin
e

resA({x}) = reskA′({x}) ∩ S ⊆ reskA′({x, y}) ∩ S = resA({x, y}) = ∅.On the other hand, if k is odd, then reskA′ is antitone, and we obtain
resA(∅) = reskA′(∅) ∩ S ⊇ reskA′({x}) ∩ S = resA({x}) = {x, y},another 
ontradi
tion.The key results on rea
tion systems without rea
tants 
an be summarized asfollows.Theorem 18. RS(0, 1) ≈ RS(0,∞) ≺ RS(1, 1).5. Inhibitorless Rea
tion SystemAnother way of limiting rea
tion systems is by avoiding inhibitors. Rea
tion systemsusing only rea
tants 
an always be simulated by using two rea
tants per rea
tions.Lemma 19. RS(r, 0) �⌈log

2
r⌉ RS(2, 0

) for all r ≥ 2.Proof. Given A = (S,A) ∈ RS(r, 0), we de�ne a rea
tion system A′ = (S′, A′) in
RS(2, 0) that ⌈log2 r⌉-simulates A.
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R = {r1, r2, r3, r4, r5, r6}

{r1, r2, r3, r4} {r5, r6}

{r1, r2} {r3, r4} {r5, r6}

X2

X1Fig. 1. A possible sequen
e X1,X2 of 
overings of the set R = {r1, . . . , r6}. Noti
e that X1 and X2
ontain the same set {r5, r6}. The entities asso
iated with R in S′ are then r1, . . . , r6 from R,together with {r1, r2}1, {r3, r4}1, {r5, r6}1 from X1, and {r1, r2, r3, r4}2, {r5, r6}2 from X2.First of all, we need a way to des
ribe a set by a 
olle
tion of its subsets ofbounded 
ardinality. A k-
overing of a �nite set Y is a family X = {X1, . . . , Xm}of subsets of Y su
h that ⋃

X = Y and, for all Xi ∈ X , we have |Xi| ≤ k.Observe that, if |Y | = n, there exists a k-
overing of Y with at most ⌈n
k ⌉ elements.Furthermore, if X = {X1, . . . , Xm} is a k-
overing of Y , then a 2k-
overing of Ywith ⌈m

2 ⌉ elements 
an be de�ned as X ′ = {X1 ∪X2, X3 ∪X4, . . . , Xm−1 ∪Xm}.Let (R,∅, P ) ∈ A with R 6= ∅ and let X1 be a 2-
overing of R with |X1| ≤ ⌈r/2⌉;given Xi with i < ℓ = ⌈log2 r⌉−1, let Xi+1 with |Xi+1| ≤ ⌈r/2i+1⌉ be a 2i+1-
overingof R su
h that, for ea
h Q ∈ Xi+1, there exist M,N ∈ Xi with M ∪N = Q. Then A′
ontains the following rea
tions, where the elements of a 
overing Xi are subs
riptedby i:
(Q,∅, {Q1}) if Q ∈ X1 (12)
({Mi, Ni},∅, {Qi+1}) if M,N ∈ Xi, Q = M ∪N ∈ Xi+1, 1 ≤ i < ℓ (13)
({Mℓ, Nℓ},∅, P ) if R = M ∪N and M,N ∈ Xℓ . (14)The set A′ 
ontains rea
tions (12)�(14) for ea
h a ∈ A having at least one rea
tant,and furthermore it 
ontains, un
hanged, all the rea
tions of A with no rea
tants.Noti
e that ea
h rea
tion in A′ has at most two rea
tants, i.e., A′ ∈ RS(2, 0).An example of a sequen
e of k-
overings for a set of rea
tants is given in Fig. 1.Noti
e how they 
an be visualized as the di�erent levels of a binary tree, where the
hildren of a node are a ⌈

k
2

⌉-
overing of the parent.Let a = (R,∅, P ) ∈ A with R 6= ∅, T ⊆ S, let A′
a ⊆ A′ be the set of rea
tionsof type (12)�(14) simulating a, and let X1, . . . ,Xℓ the 
overings for a des
ribedabove. By 
onstru
tion, A′

a �preserves� the rea
tants of a in subs
ripted sets, in thefollowing sense:
R ⊆ T ⇐⇒ R ⊆

⋃

{M ∈ Xt : Mt ∈ restA′

a

(T )} for 1 ≤ t ≤ ℓ. (15)In parti
ular, at step ℓ, the two sets Mℓ, Nℓ of rea
tion (14) belong to resℓA′

a

(T ) ifand only if R ⊆ T , and at the next step we have res
⌈log

2
r⌉

A′

a

(T ) = resa(T ).
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aWe also have resa(T ) = res

⌈log
2
r⌉

A′

a

(T ), with A′
a = {a}, for rea
tions with norea
tants. Sin
e all the rea
tions involve no inhibitors, we have

resA(T ) =
⋃

a∈A

resa(T ) =
⋃

a∈A

res
⌈log

2
r⌉

A′

a

(T ) ⊆ res
⌈log

2
r⌉

A′ (T ) ∩ S.Now let x ∈ res
⌈log

2
r⌉

A′ (T ) ∩ S. Then, x is either a produ
t of a rea
tion (∅,∅, P )belonging to both A and A′, or of a rea
tion of type (14). In the �rst 
ase, itimmediately follows that x ∈ resA(T ).In the se
ond 
ase, the rea
tion of type (14) simulates a rea
tion a ∈ A havingrea
tants R = M ∪ N with Mℓ, Nℓ ∈ resℓA′(T ). The two sets Mℓ, Nℓ are, in turn,produ
ts of rea
tions of type (12) or (13) belonging to A′
a; hen
e,Mℓ, Nℓ ∈ resℓA′

a

(T ).By (15) we have R ⊆ T , hen
e x ∈ resa(T ) ⊆ resA(T ).This proves that the rea
tion system A′ ⌈log2 r⌉-simulates A.The result fun
tions of this sub
lass of rea
tion system are exa
tly the monotonefun
tions.Proposition 20. A fun
tion f : 2S → 2S with |S| = r is monotone if and onlyif f = resA for some A ∈ RS(r, 0).Proof. Let A = (S,A) ∈ RS(r, 0), and let T1 ⊆ T2 ⊆ S. Sin
e the rea
tionsof A have no inhibitors, every a ∈ A that is enabled by T1 is also enabled by T2,hen
e resa(T1) ⊆ resa(T2). As a 
onsequen
e, the fun
tion resA is monotone:
resA(T1) =

⋃

a∈A

resa(T1) ⊆
⋃

a∈A

resa(T2) = resA(T2).Conversely, let f : 2S → 2S with |S| = r be monotone. Then, by Proposition 10,we have f = resA for some A = (S,A) ∈ RS(r, r). Let A′ = (S,A′) ∈ RS(r, 0) bethe rea
tion system obtained by erasing all inhibitors from the rea
tions of A whi
h
an a
tually be enabled, i.e.,
A′ = {(R,∅, P ) : (R, I, P ) ∈ A for some I ⊆ S with R ∩ I = ∅}.Then resA′ = resA. Indeed, for all T ⊆ S we have resA(T ) ⊆ resA′(T ), sin
erea
tion (R,∅, P ) ∈ A′ is enabled by T whenever (R, I, P ) ∈ A is. In order toshow the 
onverse in
lusion resA′(T ) ⊆ resA(T ), let x ∈ resA′(T ). Then x ∈ P forsome (R,∅, P ) ∈ A′ with R ⊆ T , and there exists a = (R, I, P ) ∈ A for some I ⊆ Swith R ∩ I = ∅. Sin
e a is enabled by R, we have x ∈ resA(R) and, sin
e resA ismonotone, we have resA(R) ⊆ resA(T ), i.e., x ∈ resA(T ) as required.Another property of rea
tion systems using r rea
tants per rea
tion and noinhibitors is that every entity generated in n steps is also generated by a state withat most rn entities.Lemma 21. Let A = (S,A) ∈ RS(r, 0). Then, for all T ⊆ S and n ∈ N, if

x ∈ resnA(T ) then there exists T ′ ⊆ T with |T ′| ≤ rn su
h that x ∈ resnA(T
′).
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ation 453Proof. By indu
tion on n. If n = 0, then resnA(T ) = T , hen
e x ∈ resnA(T )means x ∈ T ; by letting T ′ = {x} we have T ′ ⊆ T , |T ′| = 1 ≤ rn, and x ∈ resnA(T

′).Now suppose n > 0. If x ∈ resnA(T ), then x is the produ
t of some rea
tion
a = (R,∅, P ) ∈ A with |R| ≤ r and x ∈ P , and furthermore we have R ⊆ resn−1

A (T ).By applying |R| times the indu
tion hypothesis, we know that for ea
h y ∈ R thereexists T ′
y ⊆ T with |T ′

y| ≤ rn−1 su
h that y ∈ resn−1
A (T ′

y). Let T ′ =
⋃

y∈R T ′
y ⊆ T ;sin
e the fun
tion resA is monotone (Proposition 20), we have y ∈ resn−1

A (T ′)for all y ∈ R, that is, R ⊆ resn−1
A (T ′). Hen
e a is enabled by resn−1

A (T ′), giving
x ∈ P ⊆ resnA(T

′). Sin
e |T ′| ≤
∑

y∈R |T ′
y| ≤ r × rn−1, the thesis follows.Lemma 21 implies that the ⌈log2 r⌉-simulation we employed when redu
ing thenumber of rea
tants to 2, whi
h is the only k-simulation in this paper where kdepends on the size of the simulated rea
tion system, 
annot be improved.Proposition 22. RS(r, 0) �k RS(2, 0) for every k < ⌈log2 r⌉.Proof. Let A = (S,A) with |S| = r and (S,∅, S) as its only rea
tion. Then

A ∈ RS(r, 0), and
resA(T ) =

{

S if T = S

∅ if T ( S .Suppose A′ ∈ RS(2, 0) k-simulates A for some k < ⌈log2 r⌉, and let x ∈ resA(S).Then x ∈ reskA′(S) ∩ S, and in parti
ular x ∈ reskA′(S). By Lemma 21, there existsa T ′ ⊆ S su
h that x ∈ reskA′(T ′) and |T ′| ≤ 2k. Sin
e k is integer, k < ⌈log2 r⌉implies k < log2 r, hen
e |T ′| ≤ 2k < 2log2 r = r = |S|, that is, T ′ ( S. However,sin
e x ∈ S, we have x ∈ reskA′(T ′) ∩ S = resA(T
′) = ∅, a 
ontradi
tion.When only one rea
tant per rea
tion is used, we 
hara
terize the subset of themonotone fun
tions 
onsisting of all the additive ones, i.e., the endomorphisms ofthe join-semilatti
e (2S ,∪). A fun
tion f : 2S → 2S is an endomorphism if and onlyif f(X ∪ Y ) = f(X) ∪ f(Y ) for all X,Y ⊆ S.Proposition 23. A fun
tion f : 2S → 2S is a join-semilatti
e endomorphism ifand only if f = resA for some A ∈ RS(1, 0).Proof. Let A = (S,A) ∈ RS(1, 0), and let T1, T2 ⊆ S. Sin
e the rea
tions of Ahave no inhibitors, a rea
tion enabled by T ⊆ S is also enabled by all its supersets;hen
e resA(T1)∪ resA(T2) ⊆ resA(T1 ∪ T2). Conversely, let x ∈ resA(T1 ∪ T2); then,there exists (R,∅, P ) ∈ A with x ∈ P and R ⊆ T1 ∪ T2. Sin
e |R| ≤ 1, we haveeither R ⊆ T1 or R ⊆ T2. Hen
e x ∈ resA(T1) or x ∈ resA(T2); therefore weobtain resA(T1 ∪ T2) ⊆ resA(T1) ∪ resA(T2).Now let f : 2S → 2S , with |S| = r, be a join-semilatti
e endomorphism. Then f ismonotone, and by Proposition 20 we have f = resA for some A = (S,A) ∈ RS(r, 0).
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aLet A′ = (S,A′) ∈ RS(1, 0) be the rea
tion system obtained from A by deletingthe rea
tions having more that one rea
tant, i.e.,

A′ = {(R,∅, P ) : (R,∅, P ) ∈ A and |R| ≤ 1}.Then resA′ = resA. Indeed, let T ⊆ S; sin
e resA is a homomorphism, we have
resA(T ) = resA

(

∅ ∪
⋃

y∈T

{y}
)

= resA(∅) ∪
⋃

y∈T

resA({y}).Only rea
tions with at most one rea
tant (those in A′) are enabled by {y}, hen
ewe have
resA(T ) = resA′(∅) ∪

⋃

y∈T

resA′({y}) = resA′

(

∅ ∪
⋃

y∈T

{y}
)

= resA′(T )sin
e resA′ is a homomorphism, as proved above.Even when iterated, join-semilatti
e endomorphisms do not 
hara
terize allmonotone fun
tions; hen
e, one rea
tant is weaker than two.Lemma 24. RS(1, 0) ≺ RS(2, 0).Proof. The iterated 
omposition of a join-semilatti
e endomorphism is also a join-semilatti
e endomorphism:
fk(T1 ∪ T2) = fk−1(f(T1) ∪ f(T2)) = · · · = fk(T1) ∪ fk(T2).Let S = {x, y} and g : 2S → 2S be de�ned by g(S) = S and g(T ) = ∅ for T 6= S.Noti
e that g is monotone but not a join-semilatti
e endomorphism. Then, forevery S′ ⊇ S, every join-semilatti
e endomorphism f : 2S

′

→ 2S
′ , and every k ∈ N,if fk(T ) ∩ S = g(T ) for all T ⊆ S, we have

g(S) = fk({x} ∪ {y}) ∩ S =
(

fk({x}) ∩ S
)

∪
(

fk({y}) ∩ S
)

= g({x}) ∪ g({y}) = ∅.However, g(S) = S, a 
ontradi
tion.Perhaps surprisingly, a single inhibitor simulates arbitrarily many rea
tants.Lemma 25. RS(∞, 0) �2 RS(0, 1).Proof. Let A = (S,A) ∈ RS(∞, 0). Let A′ = (S′, A′) ∈ RS(0, 1) with S′ = S ∪ 2Sand having, for ea
h rea
tion a = (Ra,∅, Pa) ∈ A, the following set of rea
tions:
(∅, {x}, {Ra}) for ea
h x ∈ Ra (16)
(∅, {Ra}, Pa). (17)Let T ⊆ S. We prove, by indu
tion on n, that

resnA′(T ) ∩ S = res
n/2
A (T ) if n is even (18)

Ra ∈ resnA′(T ) ⇐⇒ Ra * res
(n−1)/2
A (T ) if n is odd. (19)
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ation 455For n = 0 we have res0A′(T ) ∩ S = T = res0A(T ).For even n > 0 we have, by indu
tion hypothesis,

Ra ∈ resn−1
A′ (T ) ⇐⇒ Ra * res

(n−2)/2
A (T ).Noti
e that the only rea
tions in A′ with produ
ts in S have the form (17), andthey are enabled at time n− 1 if and only if Ra ⊆ res

(n−2)/2
A (T ), i.e., if and only ifrea
tion a is enabled in A at time n−2

2 . Condition (18) follows.For odd n > 0, by indu
tion hypothesis we have
resn−1

A′ (T ) ∩ S = res
(n−1)/2
A (T ) .The only rea
tions of A′ having produ
ts in 2S have the form (16). The element Rais produ
ed if and only if there exists x ∈ Ra with x /∈ resn−1

A′ (T ) ∩ S, i.e., if andonly if rea
tion a is not enabled in A at time n−1
2 , as in (19).The statement of the lemma follows from (18).On the other hand, rea
tants alone 
annot simulate even a single inhibitor.Lemma 26. RS(2, 0) ≺ RS(0, 1).Proof. By Lemma 25 we have RS(2, 0) �2 RS(0, 1).Let A = (S,A) ∈ RS(0, 1) be de�ned by S = {x} and (∅, {x}, {x}) as the onlyrea
tion. By Proposition 15, the fun
tion resA is antitone; furthermore, it is notmonotone, as it is not a 
onstant fun
tion. By Proposition 20, for any A′ ∈ RS(2, 0)the fun
tion reskA′ is monotone for all k ∈ N. Therefore, A′ 
annot k-simulate A.The following theorem summarizes the key results on rea
tant-only rea
tionsystems.Theorem 27. RS(1, 0) ≺ RS(2, 0) ≈ RS(∞, 0) ≺ RS(0, 1).6. Classi�
ation of Rea
tion SystemsOnly one 
lass of rea
tion systems is missing: those whi
h do not use rea
tants norinhibitors. They 
hara
terize the 
onstant fun
tions.Proposition 28. A fun
tion f : 2S → 2S is 
onstant if and only if f = resA forsome A ∈ RS(0, 0).Proof. Let A = (S,A) ∈ RS(0, 0). Then, every rea
tion a ∈ A has theform (∅,∅, Pa), and is always enabled, sin
e ∅ ⊆ T and ∅∩T = ∅ for ea
h T ⊆ S.Hen
e

resA(T ) =
⋃

a∈A

Pa for ea
h T ⊆ Si.e., resA is a 
onstant fun
tion.
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aConversely, let f : 2S → 2S be a 
onstant fun
tion. Let A = (S,A) ∈ RS(0, 0) bethe rea
tion system having (∅,∅, f(∅)) as its only rea
tion. Then, for ea
h T ⊆ S,we have resA(T ) = f(∅) = f(T ) as required.Clearly, this variant of rea
tion systems is weaker than all the others.Lemma 29. RS(0, 0) ≺ RS(1, 0).Proof. Let A = (S,A) ∈ RS(1, 0) be a rea
tion system having ({x},∅, {x}) as itsonly rea
tion, and suppose A′ ∈ RS(0, 0) k-simulates A. Then reskA′ is a 
onstantfun
tion, and we have a 
ontradi
tion:

∅ = resA(∅) = reskA′(∅) ∩ S = reskA′({x}) ∩ S = resA({x}) = {x}.The 
lassi�
ation of rea
tion systems with respe
t to the number of rea
tantsand inhibitors 
an thus be summarized as follows.Theorem 30. The relation � is a total preorder on the set of 
lasses of rea
tionsystems of the form RS(r, i). The 
lasses are 
omparable a

ording to the followingdiagram for all r1 ≥ 1, r2 ≥ 2 and i ≥ 1:
RS(0, 0) ≺ RS(1, 0) ≺ RS(2, 0) ≺ RS(0, 1) ≺ RS(1, 1)

≈ ≈ ≈

RS(r2, 0) ≺ RS(0, i) ≺ RS(r1, i)

≈ ≈ ≈

RS(∞, 0) ≺ RS(0,∞) ≺ RS(∞,∞) .In parti
ular, the relation ≈ indu
es exa
tly �ve equivalen
e 
lasses.7. Con
lusionsIn this paper a new notion of multi-step simulation between rea
tion systems,
alled k-simulation, has been de�ned. This de�nition allows a rea
tion system to useboth additional time and additional entities to simulate another system. We haveproved that the 
lass of rea
tion systems with only one rea
tant and one inhibitoris su�
ient to simulate any other rea
tion system using only two time steps perstep of the original system.We have investigated rea
tion systems without rea
tants, i.e., having only in-hibitors, and we have proved that they 
hara
terize exa
tly the antitone fun
tionsbetween Boolean latti
es and that every system of that kind 
an be simulated by asystem having rea
tions with only one inhibitor. The situation when only rea
tantsare present is not symmetri
al. In fa
t, these systems represent every monotonefun
tion between Boolean latti
es, and to simulate them it is ne
essary to use tworea
tants. The 
ase of rea
tion systems having rea
tions with only one rea
tant
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ation 457and zero inhibitors is stri
tly weaker, as they 
hara
terize only additive fun
tions.Finally, rea
tion systems without both rea
tants and inhibitors are the weakest onesand 
hara
terize the 
onstant fun
tions.All the proposed 
onstru
tions are provably optimal in time, i.e., the number oftime steps employed to simulate a step of the original system is minimal. Further-more, all 
onstru
tions require a number of additional entities and rea
tions that ispolynomial with respe
t to the sum of the 
ardinalities of the ba
kground and therea
tion sets of the original system.Summarizing, ea
h rea
tion system belongs to one of �ve 
lasses, linearly orderedby the relation of k-simulability and 
hara
terizing well-known 
lasses of fun
tionsbetween Boolean latti
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