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Abstract Analog computation is concerned with continuous rather than discrete
spaces. Most of the physical processes arising in nature are modeled by differential
equations, either ordinary (example: spring/mass/damper system) or partial (exam-
ple: heat diffusion). In analog computability, the existence of an effective way to
obtain solutions (either exact or approximate) of these systems is essential.

We develop a framework in which the solutions can be seen as fixed points
of certain operators on continuous data streams, using the framework of Fréchet
spaces. We apply a fixed point construction to retrieve these solutions and present
sufficient conditions on the operators and initial inputs to ensure existence and
uniqueness of these corresponding fixed points.

1 Introduction

Analog computation, as conceived by Kelvin [10], Bush [1], and Hartree [4], is
a form of experimental computation with physical systems called analog devices
or analog computers. Historically, data are represented by measurable physical
quantities, including lengths, shaft rotation, voltage, current, resistance, etc., and
the analog devices that process these representations are made from mechanical or
electromechanical or electronic components [5, 7, 9].

The main objects of our study are analog networks or analog systems, [6, 11–13],
whose main components are described as follows:

Analog network D data C time C channels C modules:

We will model data as elements from a topological vector space A that is
actually a Fréchet space. We will use the nonnegative real numbers as a continuous
model of time T D Œ0; 1/. Each channel carries a continuous stream, represented
as a function u W T ! A (this space is denoted by C.T;A /). Each module M is
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Fig. 1 Analog network (with
two modules and three
channels) for the time
evolution problem
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specified by a stream function

FM W C.T;A /k � A ` ! C.T;A /:

In this way, we can think of analog networks as directed graphs where modules
are nodes and channels are edges (see Fig. 1). We will use analog systems to study
the time evolution problem (also called the Cauchy problem).

Definition 1 (Time evolution problem, [3]) For a given initial condition g 2 A
and an operator L W A ! A , the time evolution problem is given by the system

�
du
dt D Lu; t 2 TI

u.0/ D g:
(1)

We look for a solution u 2 C.T;A /.

To construct an analog system that represents the time evolution problem, we can
simply integrate the differential equation (1) to obtain

u.t/ D g C
Z t

0

Lu.s/ds DW Fg.u/; (2)

where we use the right hand side to define an operator Fg W C.T;A / ! C.T;A /,
which can be computed using an analog network with two modules. Introducing a
feedback to implement the equality, we obtain the analog system of Fig. 1.

We can informally define a specification of the analog network as a tuple of
streams describing the data on all channels which satisfy the equations given by the
modules. We can then observe the equivalence between the notions of (a) solutions
to the time evolution problem of Definition 1; (b) specifications of the analog system
of Fig. 1; and (c) fixed points of the operator Fg of Equation (2). Henceforth we will
focus on the last notion. Our goal is to provide sufficient conditions on Fg that ensure
existence and uniqueness of fixed points, as well as the existence of a constructive
method to obtain fixed points when they exist.

In Sect. 2 we introduce Fréchet spaces, which form the framework for our
problem at hand. In Sect. 3 we assume analyticity of g to prove local existence and
convergence of fixed points (Theorem 2). In Sect. 4 we first extend our results to
global existence and convergence (Theorem 3) and then extend our constructive
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method for different choices of initial input (Theorem 5). Finally, we turn to
uniqueness of fixed points and prove it for certain operators (Theorem 6).

2 Fréchet Spaces

For the remainder of this paper, we use the following notation:

Notation 1 A is the space of infinitely differentiable functions, A D C1.R/.

Notation 2 The operator L W A ! A is given by Lu D ˛@xu, for some ˛ 2 R.

Thus, the operator Fg becomes

Fg.u/.t; x/ D g.x/ C ˛

Z t

0

@xu.s; x/ds: (3)

As we know, A D C1.R/ is not complete under the supremum norm; however,
for each x0 2 R, X 2 R

C and k 2 N, we can define a pseudonorm by

k f kX;x0;k D sup
jx�x0j�X

ˇ̌
ˇ̌@kf

@xk
.x/

ˇ̌
ˇ̌ :

It turns out that the notion of interest is that of Fréchet space, which we now
briefly review (a detailed exposition can be found in [8, Ch. V]).

Definition 2 (Fréchet space [8]) A Fréchet space is a topological vector space
X whose topology is induced by a countable family of pseudonorms fk � k˛g˛2A.
Moreover,

• the family fk � k˛g˛2A separates points, that is,

u D 0 if and only if kuk˛ D 0 for all ˛I

• X is complete with respect to fk � k˛g˛2A, that is, for every sequence .xn/ which is
Cauchy with respect to each pseudonorm k � k˛ , there exists x 2 X such that .xn/

converges to x with respect to each pseudonorm k � k˛ .

Example 1 The space A D C1.R/ of infinitely differentiable functions in R is a
Fréchet space with the countable family of pseudonorms given by

k f kN;k D sup
�N�x�N

ˇ̌
ˇ̌@kf

@xk
.x/

ˇ̌
ˇ̌ ; (4)

for N; k 2 N.
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Example 2 The space C.T;A / of continuous streams is also a Fréchet space, with
the countable family of pseudonorms given by

kukM;N;k D sup
0�t�M

sup
�N�x�N

ˇ̌̌
ˇ@ku

@xk
.t; x/

ˇ̌̌
ˇ ; (5)

for M; N; k 2 N.

We can see that the family of pseudonorms in Example 2 is closely related
to the family in Example 1. In fact, this illustrates a useful property of Fréchet
spaces; in general, the space of continuous streams over a Fréchet space is itself a
Fréchet space. In other words, Fréchet spaces work well with the operation of taking
continuous streams.

Proposition 1 (New Fréchet spaces from old) If A is a Fréchet space with a
countable family of pseudonorms fk � k˛g˛2A, then so is C.T;A / with the countable
family of pseudonorms fk � kM;˛gM2N;˛2A, where

kukM;˛ D sup
0�t�M

ku.t/k˛:

Even though Fréchet spaces, as they stand, are not necessarily normed spaces, we
can define a metric from the pseudonorms, under which these spaces are complete.

Proposition 2 Given a Fréchet space, we can define a complete metric from the
family of pseudonorms which induces the same topology.

For a proof, see [8, Ch. V], in particular Theorem V.5.
The usefulness of complete metric spaces is evident due to the following.

Theorem 1 (Banach fixed point theorem) Given a complete metric space .X; d/,
suppose that T W X ! X is a contracting operator in the sense that there exists
0 � � < 1 with

d.T.x/; T.y// � �d.x; y/ for all x; y 2 X:

Then T has a unique fixed point x�. Moreover, for all x0 2 X the sequence of
iterations xn WD Tn.x0/ converges to x�.

3 Local Convergence Theorem

Consider the space C.T;A /. Take any (arbitrary but fixed) x0 2 R, X 2 R
C, T 2 T.

Then, for any k 2 N, we have a pseudonorm

kukT;X;x0;k D sup
0�t�T

jx�x0j�X

ˇ̌
ˇ̌@ku

@xk
.t; x/

ˇ̌
ˇ̌ : (6)



Fixed Point Techniques in Analog Systems 705

Fig. 2 Compact rectangles
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Observe that we are taking suprema on compact rectangles of the form Œ0; T� �
Œx0 � X; x0 C X� (see Fig. 2). The reason for taking suprema on compact rectangles
will be made clear shortly with Theorem 2 (local convergence theorem). We also
observe that, for each compact rectangle X0 D Œ0; T��Œx0 �X; x0 CX�, we can define
the space of compact continuous streams C.Œ0; T�; C1.x0 �X; x0 CX//. Clearly, any
function in C.T;A / can be mapped to a function in C.Œ0; T�; C1.x0 � X; x0 C X//

via the restriction u 7! u�X0 . Moreover, C.Œ0; T�; C1.x0 � X; x0 C X// can be seen
to be a Fréchet space with the family of pseudonorms k � kT;X;x0;k given by (6). Note
that x0, X and T are fixed and the indexing is on k 2 N.

Finally, observe that the operator Fg W C.T;A / ! C.T;A / has a restriction
Fg�X0 to the space C.Œ0; T�; C1.x0 � X; x0 C X//.

Our next step is to prove contraction inequalities, which play an important role
in fixed point techniques.

Lemma 1 (Contraction inequalities) Consider the Fréchet space C.T;A / with
pseudonorms k�kT;X;x0;k given by (6). Let g 2 C1.R/ and Fg W C.T;A / ! C.T;A /

be given by (3). Then, for any u; v 2 C.T;A /, any pseudonorm k � kT;X;x0;k and any
m 2 N, we have the following bound:

kFm
g .u/ � Fm

g .v/kT;X;x0;k � .j˛jT/m

mŠ
ku � vkT;X;x0;kCm: (7)

Proof By induction on m. ut
Let us see how we can use these bounds in a proof.

Theorem 2 (Local Fréchet space convergence theorem) Consider the Fréchet
space C.T;A / with pseudonorms k � kT;X;x0;k given by (6). Take an initial input
u0 2 C.T;A / and initial condition g 2 C1.R/. Assume also that u0 D 0 and g is
analytic at x0 with some radius of convergence1 R. Let Fg W C.T;A / ! C.T;A /

be given by (3). Then, for any T; X 2 R
C such that j˛jT CX < R, the sequence .um/

1Or equivalently, that g has a holomorphic extension on a disk of the complex plane with center x0

and radius R; see Remark 1.
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given by um D Fm
g .u0/ converges in the rectangle X

0 D Œ0; T� � Œx0 � X; x0 C X� to
a fixed point of Fg�X0 .

Proof To ease the exposition we introduce the pseudonorms on g given by

kgkX;x0;k D sup
jx�x0j�X

ˇ̌
ˇ̌@kg

@xk
.x/

ˇ̌
ˇ̌ ; for x0 2 R; X 2 R

C; k 2 N: (8)

Since g is analytic at x0 with radius of convergence R, there is a sequence of real
coefficients .aj/ such that, for all x 2 .x0 � R; x0 C R/,

g.x/ D
1X

jD0

aj.x � x0/
j:

It also follows that lim supn!1 n
pjanj � 1

R (see Footnote 1). Moreover, we have
the following bound, for any X < R:

kgkX;x0;k D
ˇ̌
ˇ̌̌
ˇ sup
jx�x0j<X

1X
jD0

. j C k/Š

jŠ
ajCk.x � x0/

j

ˇ̌
ˇ̌̌
ˇ �

1X
jD0

. j C k/Š

jŠ
jajCkjXj: (9)

Let T; X 2 R
C such that j˛jT C X < R. We show that .um/ is a Cauchy sequence

with respect to the pseudonorm k � kT;X;x0;k. First observe that

1X
mD0

kumC1 � umkT;X;x0;k D
1X

mD0

kFm
g .g/ � Fm

g .0/kT;X;x0;k

1�
1X

mD0

j˛jm Tm

mŠ
kgkX;x0;kCm

2�
1X

mD0

1X
jD0

j˛jmTmXjjakCmCjj .k C m C j/Š

mŠjŠ

3D
1X

sD0

sX
mD0

j˛jmTmXs�mjakCsj .k C s/Š

mŠ.s � m/Š

4D
1X

sD0

.j˛jT C X/sjakCsj .k C s/Š

sŠ
;

where (1) is justified by the Contraction Inequalities (Lemma 1), (2) by equation (9),
(3) by rearranging the sum and adding over diagonals s D m C j and (4) by taking
the binomial expansion of .j˛jT C X/s.
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By the root test, the above series is convergent, since

lim sup
s!1

s

r
.j˛jT C X/sjakCsj .k C s/Š

sŠ
D .j˛jT C X/ � lim sup

n!1
n

p
janj � 1 <

R

R
D 1:

Since the series is convergent, it follows that, for i < j,

kuj�uikT;X;x0;k �
j�1X
mDi

kumC1�umkT;X;x0;k �
1X

mDi

kumC1�umkT;X;x0;k �!
i!1 0:

Hence .um/ is a Cauchy sequence with respect to the pseudonorm k � kT;X;x0;k.
Since this holds for all k 2 N and C.Œ0; T�; C1.x0 � X; x0 C X// is complete, it
follows that .um/ has a limit in X

0. Now, using continuity of Fg�X0 , we conclude that
this limit must be a fixed point of Fg�X0 . ut
Remark 1 The reader should distinguish between the following two concepts:

• the existence of a holomorphic function, defined in a disk of the complex plane
C, which coincides with g at the real axis fy D 0g;

• the convergence of the construction um D Fm
g .0/ to a fixed point u, defined in a

rectangle of T � R, which coincides with g at initial time ft D 0g.

As seen from Theorem 2, the existence of a holomorphic extension implies
convergence to a fixed point. Both these functions (the holomorphic extension
and the fixed point) can be depicted by planar diagrams, and both can be seen as
extensions of g (see Fig. 3). However, these functions, and the domains which they
inhabit, are substantially different.

x x

y t

· · · · · ·
x0 −R x0 x0+R

R

x0 −X x0 x0+X

T

C T×R

g(x+ iy)
u(t,x)

Fig. 3 On the left: a function g.x C iy/ of type C ! C, defined in a disk, that coincides with g
at fy D 0; x0 � R < x < x0 C Rg. On the right: a fixed point u.t; x/ of type T � R ! R, defined
in a rectangle, that coincides with g at ft D 0; x0 � X < x < x0 C Xg. The rectangle and disk
dimensions follow the relation j˛jT C X < R
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4 Global Convergence Theorems

As an immediate corollary of Theorem 2, we have:

Theorem 3 (First global Fréchet space convergence theorem) Consider the
Fréchet space C.T;A / with pseudonorms k � kT;X;x0;k given by (6). Take an initial
input u0 2 C.T;A / and initial condition g 2 C1.R/. Assume also that u0 D 0

and g is entire (i.e. has a holomorphic extension to the complex plane). Let
Fg W C.T;A / ! C.T;A / be given by (3). Then the sequence .um/ given by
um D Fm

g .u0/ converges to a fixed point of F.

Proof Since g is entire, it is analytic at any x0 with any radius of convergence R.
Thus, by Theorem 2, the sequence um converges to a fixed point on any compact
rectangle Œ0; T� � Œx0 � X; x0 C X�. Therefore, we have convergence of um for any
pseudonorm k � kT;X;x0;k, so that we have convergence in C.T;A /. ut

The next step is to generalize Theorem 3 to a larger class of initial functions u0

(other that u0 D 0). We do that proof in two steps: first assume g D 0 to establish
sufficient conditions on u0; then consider the more general case g 2 C1.R/.

Definition 3 We say that a function u 2 C.T;A / is uniformly entire if u.t; x/ DP1
jD0 aj.t/xj for some sequence of functions .aj/ 2 C.R/ such that

lim j

r
sup

0�t�T
jaj.t/j D 0 for all T 2 T:

The motivation for this terminology is that, for such a function u, the section
x 7! u.t; x/ is entire for all t, and the convergence j

pjaj.t/j ! 0 is uniform in t.

Theorem 4 Consider the Fréchet space C.T;A / with the family of pseudonorms
k � kT;X;x0;k given by (6). Let also u0 2 C.T;A / be an initial input, and g 2 C1.R/

be an initial condition. We assume in addition that u0 is uniformly entire and g D 0.
Let F0 W C.T;A / ! C.T;A / be given by

F0.u/.t; x/ D ˛

Z t

0

@xu.s; x/ds: (10)

Then the sequence .um/ given by um D Fm
0 .u0/ converges to 0.

Proof To ease the exposition we introduce the pseudonorms on aj given by

kajkT D sup
0�t�T

jaj.t/j, for T 2 T: (11)
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We show that
X

m

kumkT;X;0;k is a convergent series for any pseudonorm k�kT;X;x0;k

with x0 D 0. We have that (see proof of Theorem 2)

1X
mD0

kumkT;X;0;k D
1X

mD0

kFm
0 .u0/ � Fm

0 .0/kT;X;0;k

�
1X

mD0

j˛jmTm

mŠ
ku0kT;X;0;kCm

D
1X

mD0

j˛jmTm

mŠ
sup

0�t�T
jxj�X

ˇ̌
ˇ̌̌
ˇ

1X
jD0

.j C k C m/Š

jŠ
ajCkCm.t/xj

ˇ̌
ˇ̌̌
ˇ

�
1X

mD0

1X
jD0

j˛jmTmXj .j C k C m/Š

mŠjŠ
kajCkCmkT

D
1X

sD0

sX
mD0

j˛jmTmXs�m .k C s/Š

mŠ.m � s/Š
kakCskT

D
1X

sD0

.j˛jT C X/s .k C s/Š

sŠ
kakCskT :

By the root test, the above series is convergent, since

s

r
.j˛jT C X/s

.k C s/Š

sŠ
�!
s!1 j˛jT C X

and s
pkakCskT �!

s!1 0 by assumption. Therefore
P kumkT;X;0;k is convergent, so that

kumkT;X;0;k �!
m!1 0 and thus um converges to 0, as we wanted to prove. ut

We now combine Theorems 3 and 4 to prove our most general result.

Theorem 5 (Second global Fréchet space convergence theorem) Consider the
Fréchet space C.T;A / with pseudonorms k � kT;X;x0;k given by (6). Take an initial
input u0 2 C.T;A / and initial condition g 2 C1.R/. Assume also that u is
uniformly entire and that g is entire. Let Fg W C.T;A / ! C.T;A / be given by (3).
Then the sequence .um/ given by um D Fm.u0/ converges to a fixed point of F.

Proof Let Fg; F0 W C.T;A / ! C.T;A / be given by (3), (10). We observe that, for
any u; v 2 C0;1.X/ we have

Fg.u C v/ D g C ˛

Z t

0

.u C v/xds D g C ˛

Z t

0

uxds C ˛

Z t

0

vxds D Fg.u/ C F0.v/:
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We can then infer that u1 D Fg.u0/ D Fg.0 C u0/ D Fg.0/ C F0.u0/. Also,
u2 D Fg.u1/ D Fg.Fg.0/ C F0.u0// D F2

g.0/ C F2
0.u0/, and, in general,

um D Fm
g .0/ C Fm

0 .u0/:

By Theorem 3, .Fm
g .0// converges to a fixed point of Fg. By Theorem 4, .Fm

0 .u0//

converges to 0. Therefore, .um/ and .Fm
g .0// have the same limit. In particular, .um/

converges to a fixed point of Fg. ut
A nice consequence of the proof is that it allows us to also establish uniqueness

in a certain class of functions.

Theorem 6 (Uniqueness of uniformly entire fixed points) Consider the Fréchet
space C.T;A / with pseudonorms k � kT;X;x0;k given by (6). Take an initial condition
g 2 C1.R/ and assume also that g is entire. Let Fg W C.T;A / ! C.T;A / be
given by (3). Then there is at most one uniformly entire fixed point of Fg.

Proof Let u be any uniformly entire fixed point of Fg. By the proof of Theorem 5,
we know that u D Fm

g .u/ D Fm
g .0/ C Fm

0 .u/. Since .Fm
0 .u0// converges to 0, we

get that .Fm
g .0// converges to u. Thus any uniformly entire fixed point of Fg must

coincide with the limit of .Fm
g .0//. ut

5 Conclusion and Further Research

In this paper we have seen how to study solutions to differential equations as outputs
of analog networks, and how to obtain them using fixed point techniques. The
example we have considered (L D ˛@x) is a well-known problem whose solution
can be obtained analytically by taking a Fourier transform. However, the method
presented in this paper provides a different perspective which is suitable for analog
computability and the study of analog systems as in [6, 11–13], where Fréchet
spaces clearly provide a natural framework.

We intend to investigate this approach (fixed points in Fréchet spaces) in more
general settings. In fact, as a next step one can look at a more general operator
L W A ! A using higher-order derivatives, for example with bounds of the form

kLukT;X;x0;k � Ck@`
xukT;X;x0;k � CkukT;X;x0;kC`: (12)

We observe that analyticity of the initial condition g is not enough to ensure
existence of solutions. A counterexample is given by the heat equation ut D uxx

with initial condition g.x/ D 1
1�x . Even though g is analytic near zero, the solution

fails to be analytic at a neighborhood of the origin (see [2]). Thus, the general case
may require different tools such as explicit bounds on the pseudonorms of g.

We also plan to investigate properties of the fixed points, such as computability,
continuity and stability, as functions of the parameters and initial conditions.
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