
Analog Computability with Differential Equations

Analog Computability with Differential Equations

By Diogo Poças, B.Sc., M.Sc.

A Thesis Submitted to the Department of Mathematics and Statistics and the

School of Graduate Studies of McMaster University in Partial Fulfilment of the

Requirements for the Degree of

Doctor of Philosophy

McMaster University c© Copyright by Diogo Poças, August 2017

Doctor of Philosophy in Mathematics (2017)

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada

TITLE: Analog Computability with Differential Equations

AUTHOR: Diogo Poças, B.Sc. (Universidade de Lisboa, Portugal), M.Sc. (Uni-

versidade de Lisboa, Portugal)

SUPERVISOR: Jeffery I. Zucker

NUMBER OF PAGES: x, 130

ii

Abstract

In this dissertation we study a pioneering model of analog computation called General Purpose

Analog Computer (GPAC), introduced by Shannon in 1941. The GPAC is capable of manipulating

real-valued data streams. Its power is characterized by the class of differentially algebraic functions,

which includes the solutions of initial value problems for ordinary differential equations.

We address two limitations of this model. The first is its fundamental inability to reason about

functions of more than one independent variable (the ‘time’ variable). In particular, the Shannon

GPAC cannot be used to specify solutions of partial differential equations. The second concerns

the notion of approximability, a desirable property in computation over continuous spaces that is

however absent in the GPAC.

To overcome these limitations, we extend the class of data types by taking channels carrying

information on a general complete metric space X; for example the class of continuous functions of

one real variable. We consider the original modules in Shannon’s construction (constants, adders,

multipliers, integrators) and add two new modules: a differential module which computes spatial

derivatives, u(t) 7→ ∂xu(t); and a continuous limit module which computes limits, u(t) 7→ lim
t→∞

u(t).

We then build networks using X-stream channels and the abovementioned modules. This leads

us to a framework in which the specifications of such analog systems are given by fixed points of

certain operators on continuous data streams, as considered by Tucker and Zucker. We study the

properties of these analog systems and their associated operators. We present a characterization

which generalizes Shannon’s results. We show that some non-differentially algebraic functions such

as the gamma function are generable by our model. Finally, we attempt to relate our model of

computation to the notion of tracking computability as studied by Tucker and Zucker.

iii

Acknowledgements

I would like to express my gratitude to my advisor, Jeff Zucker, for his invaluable dedication and

guidance during the elaboration of this thesis. I also want to thank him for providing a space that

allowed me to grow as a young researcher, and for the great patience and encouragement offered in

the countless times we went through the several stages of this work.

I am also lucky for having Profs. Dmitry Pelinovsky and Bartek Protas on my advisory commit-

tee. They have provided me with insightful advices and feedback. I truly feel that our discussions

were very helpful in improving the quality of this thesis.

I would like to thank my colleagues and all people in the Department of Mathematics and

Statistics, for their support and assistance provided when needed, and for the opportunity to present

some of my results at the AIMS Lab.

Thanks also to my former supervisor at IST, José Félix Costa, for his advice, support and

friendship. I am also grateful to Daniel Graça and Amaury Pouly for their useful suggestions and

appreciations of a portion of this work.

Moving to Canada was certainly a challenging experience at first, and I want to express my

gratitude to all the wonderful people that helped Hamilton feel like a second home. I am lucky to

have met Rita, Ana and Pedro, for immediately making sure I received a warm welcome and for our

quasiweekly lunches.

I would like to thank Amay, Bingying and Chengwei for the adventures together. I am also

grateful to my cheerful housemates Yusuke, Nadeem, Sam, Wesley, Peter, Tyler and Craig for their

friendship and great memories; whether we were going to the Art Crawl or the Portuguese bar,

playing boardgames or throwing barbecues, we were always having the best of times.

iv

I would like to thank MACSA for their activities and for allowing me to grow spiritually in

parallel with my academic life. I am especially glad for all the coffee breaks with Matt Chan.

I am thankful to my oldest friends in Portugal - in Linda-a-Velha, at Batalha, at IST, and the

Cenáculo group, for their true friendship and enthusiasm. I hope our bonds stay steady for years to

come.

Finally, I wish to give my very special thanks to my parents and my family, for their presence,

support, interest and unconditional love.

v

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 History of analog computation . 1

1.2 Analog networks and evolution problems . 2

1.3 Outline of the thesis . 3

2 Linear Evolution Problems 5

2.1 The linear evolution problem . 5

2.2 Fréchet Spaces . 10

2.3 Iterating scheme . 16

2.4 Convergence theorems for the transport equation . 20

2.5 Fourier transform . 26

2.6 Existence, uniqueness and convergence in the Schwarz space 27

2.7 Existence, uniqueness and convergence in the h∞-space 35

2.8 Discussion . 40

3 Semantics of Analog Systems 42

3.1 The Shannon GPAC . 42

3.2 Limitations of the Shannon GPAC . 51

3.3 Data channels in function spaces . 52

vi

3.4 The X -GPAC . 54

3.5 Normal form systems . 60

3.6 Partial differential algebraic equations . 65

3.7 The Multityped GPAC . 71

3.8 Module derivation and channel contraction . 73

3.9 Contracting GPACs and contracting operators . 79

3.10 Discussion . 84

4 The limit GPAC and approximability 86

4.1 Discrete channel types . 87

4.2 The limit operator and the limit GPAC . 87

4.3 Infinite speedup, infinite slowdown . 90

4.4 Pseudonorm effectiveness . 91

4.5 Computability of the Gamma function . 93

4.6 Computability of the Riemann zeta function . 98

4.7 Discussion . 100

5 Tracking computability of GPAC-generable functions 101

5.1 Computable structures and tracking computable functions 101

5.2 Computability of the X -GPAC modules and induced operators 108

5.3 Tracking computability of LGPAC-generable functions 115

5.4 Discussion . 121

6 Conclusion and further work 122

6.1 Composition of functions . 122

6.2 Boundary value problems and eigenvalue problems 123

6.3 A hierarchy of LGPAC-generable functions . 125

6.4 Equivalence with tracking computability . 126

vii

List of Figures

2.1 Sequence of sinusoidal functions with unbounded derivatives. 6

2.2 Analog network for the linear evolution problem. 7

2.3 Two examples of bounding functions. 15

2.4 Compact rectangles. 21

2.5 Holomorphic extension vs fixed point. 24

2.6 Plot of a Gaussian wave. 32

2.7 Example of periodic initial condition. 37

3.1 The four basic Shannon modules. 43

3.2 A GPAC for computing the exponential function. 44

3.3 General diagram for a Shannon GPAC. 45

3.4 Parallel and serial composition of Shannon GPACs. 47

3.5 The integral-matrix module. 48

3.6 Reduction of the integral-matrix module via the Shannon basic modules. 50

3.7 The differential module. 56

3.8 An X -GPAC implementing a transport equation. 58

3.9 An X -GPAC implementing a transport equation. 64

3.10 Cycle of main results. 66

3.11 An X -GPAC for computing time derivatives. 67

3.12 An X -GPAC for computing spatial derivatives. 68

3.13 Feedback loop implementing P` = 0. 68

3.14 Construction of an X -GPAC from a PDAS. 68

viii

3.15 Construction of an X -GPAC from the heat equation. 70

3.16 An X -GPAC that generates solutions to the heat equation. 71

3.17 Some basic modules in an X -GPAC. 72

3.18 Derivation of Shannon scalar multiplier modules. 73

3.19 Initial evaluator modules. 74

3.20 R-stream multiplier modules. 74

3.21 Derivation of an R-stream multiplier module. 75

3.22 A GPAC generating the inverter functional. 75

3.23 Constant streamer modules. 76

3.24 Derivation of constant streamer modules. 76

3.25 Scalar adder and scalar multiplier modules. 77

3.26 Derivation of scalar adder and scalar multiplier modules. 77

3.27 Two GPACs that specify trigonometric functions. 79

3.28 Schematic representation of channel contraction. 80

3.29 Three contraction-free reductions of the same GPAC. 81

3.30 A GPAC comprised of basic modules for the mass-spring-damper system. 83

3.31 Simplified network for the mass-spring-damper system. 83

3.32 Further simplified network for the mass-spring-damper system. 84

4.1 Limit modules. 89

4.2 Two-input limit modules. 89

4.3 Derivation of the two-input continuous limit module. 89

4.4 Infinite speedup and infinite slowdown. 90

4.5 Plot of the gamma function. 93

4.6 Construction of auxiliary functions u1(t) and γ1(t, x). 95

4.7 Construction of auxiliary functions u2(t) and γ2(t, x). 95

4.8 Construction of the gamma function. 97

4.9 Construction of the Riemann zeta function. 99

5.1 Enumeration of the rationals. 103

5.2 A piecewise linear rational function. 103

ix

5.3 A continuous piecewise linear function and its integral. 104

5.4 Tracking function. 107

5.5 Example of refinement encoding. 109

5.6 Approximate fixed points vs approximations of the exact fixed point. 118

6.1 Different GPAC models. 122

6.2 Recursive definition of a hierarchy of GPAC-generable functions. 125

x

Chapter 1

Introduction

1.1 History of analog computation

Analog computation, as conceived by Kelvin [TT80], Bush [Bus31], and Hartree [Har50], is a
form of experimental computation with physical systems called analog devices or analog computers.
Historically, data are represented by measurable physical quantities, including lengths, shaft rotation,
voltage, current, resistance, etc., and the analog devices that process these representations are made
from mechanical, electromechanical or electronic components [Sma93, Hol96, Joh96].

A general purpose analog computer (GPAC) was introduced by Shannon [Sha41] as a model of
Bush’s Differential Analyzer [Bus31]. Shannon discovered that a function can be generated by a
GPAC if, and only if, it is differentially algebraic, but his proof was incomplete. A basic study was
made by Pour-El [PE74] who gave some good characterizations of the class of analog computable
functions, focusing on the classical analog systems built from constants, adders, multipliers and
integrators. This yielded a stronger model and a new proof of the Shannon’s equivalence (and some
new gaps, corrected by Lipshitz, Rubel [LR87], Graça and Costa [GC03]). Using this characterization
in terms of algebraic differential equations, Pour-El showed that not all computable functions on the
reals (in the sense of computable analysis) can be obtained with these analog networks. The typical
counterexample is the gamma function

Γ(t) =

∫ ∞
0

xt−1e−xdx

which is not differentiable algebraic and so cannot be generated by a GPAC, as noted by Shannon
himself. However, one could expect that, in a ‘sensible’ model of computability on continuous data,
this function would be computable.

Indeed, the gamma function is effectively computable in the sense of computable analysis, a branch
of constructive mathematics studied by Grzegorczyk [Grz55, Grz57], Lacombe [Lac55a, Lac55b,
Lac55c], Pour-El, Richards [PER79], Weihrauch [Wei00], Tucker, Zucker [TZ07], among others.
These authors have in one way or another tried to answer what is perhaps the fundamental question
for analog computation: which functions are computable? For the case of digital computation, all
empirical evidence corroborates the celebrated Church-Turing Thesis, showing that various models
(such as Turing machines, λ-calculus and recursive functions) are equivalent. This picture is not so
clear for analog computability on continuous spaces, despite the abundance of progress made and
(partial) equivalence results [BCGH06, Ko91, SHT99, Wei00].

Returning to the Shannon GPAC and the (non-)computability of the gamma function, some

1

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

authors have attempted to include approximability in the model (which is an important ingredient
in many models of real computation such as computable analysis); in particular, Graça [Gra04]
redefined the notion of GPAC-computability in order to show that the gamma function can indeed
be considered as GPAC-computable.

There is, however, another limitation with the Shannon GPAC which appears to have been over-
looked by Shannon, Pour-El and others. It lies in the fact that the Shannon GPAC can fundamentally
reason only about real-valued functions of one independent variable t. Ironically, it was stated in
[Sha41] and [PE74] that the generalization to more than one independent variable only requires an
obvious modification, but this is by no means the case. In fact, it is hard to conceive a realistic
physical interpretation for a formalism involving two (or more) independent “time” variables.

To address this problem, and inspired by the assumption that the brain is a type of analog
computer, Rubel defined the Extended Analog Computer (EAC) in [Rub93]. Rubel stressed that
his model is a conceptual computer - the extent to which it can be realized by actual physical,
chemical, or biological devices or systems would remain to be investigated. An implementation of
the EAC (or at least, of some of its components) has been achieved with the work of Mills [Mil08].

The theory of analog computing has also been developed by Moore with some very general
mathematical models [Moo96]. These models, using schemes rather like Kleene’s [Kle55], but with
primitive recursion replaced by integration and others added, define a hierarchy of functions on the
reals, which contains the GPAC generable functions at its lowest level, and non-computable functions
(in the sense of computable analysis) at higher levels. Graça and Costa [GC03] have presented an
improved model of the GPAC, and shown this to be equivalent to the lowest level subclass of Moore’s
functions.

The contributions of Campagnolo [CMC02] and Mycka [MC04] have also presented some fine
results concerning analog complexity classes. Finally, Pouly [Pou15] studied in his PhD thesis the
GPAC (among other models of computation) from the point of view of complexity classes, and he,
Bournez and Graça [BGP16] have defined a type of multidimensional GPAC.

1.2 Analog networks and evolution problems

The main objects of our study are analog networks or analog systems [TZ07, TZ11, JZ13, TZ14],
whose main components are described as follows:

Analog network = data + time + channels + modules.

We model data as elements of a complete metric vector space X , such as a Banach or Fréchet
space. We use a continuous model of time as an interval of the real numbers, either bounded
(T = [0, T], where T denotes the final time) or unbounded (T = [0,+∞)). Each channel carries,
for example, a continuously differentiable stream, represented as a function u : T → X (this space
is denoted by C1(T,X)). Each module M has zero, one or more input channels, and must have a
single output channel; thus it can be specified by a (possibly partially defined) stream function

FM : X k × C1(T,X)` ⇀ C1(T,X); k, ` ∈ N.

Our goal is to develop and extend the existing concepts into spaces of functions of several vari-
ables. As mentioned above, the GPAC can only reason about functions of one variable, and thus
it is limited to initial value problems of ordinary differential equations. We can think of the GPAC
as a particular example of analog network in which data correspond to the space of real numbers,
X = R. Its limitations can be removed by assuming a more general data space X . For example, we
can think of X as the space of continuous real-valued functions on a bounded domain Ω ⊂ Rn, that

2

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

is, X = C(Ω,R). In this way, our channels will now carry X -valued streams of data u : [0, T]→ X ,
which correspond to functions of n+ 1 real variables, under the uncurrying

[0, T]→ (Ω→ R) ' [0, T]× Ω→ R.

Our approach is, to some extent, motivated by the theory of partial differential equations, in
which some fundamental problems (such as the heat equation, wave equation and Schrödinger equa-
tion) can be expressed as time evolution problems in a function space. An important disclaimer
is that our approach is not concerned with applying the GPAC (or other computability models in
general) in order to solve problems in PDEs, but the other way around; we intend to apply results
and techniques from the theory of PDEs into models of computation such as the GPAC.

The idea of using a general metric space X for data is not new and, in fact, it is mentioned in
the original papers [TZ07, TZ11, JZ13, TZ14] as well as in James’ thesis [Jam12]. Their techniques
rely on causality and contractivity properties of the network operators, which are sufficient to prove
existence, uniqueness, continuity and computability of fixed points. The results obtained are indeed
desirable (for any worthwhile model of computation); however, it turns out that their assumptions
(namely, contractivity of the network operators) do not hold in the more general scenario that we
wish to consider.

In informal terms, partial differential equations are just much more complicated than ordinary
differential equations. Even for the most simple case of the transport equation ∂tu = ∂xu, the corre-
sponding network operator is not contracting (in the usual topology); it even fails to be continuous!
Moreover, the typical construction based on an iteration scheme to produce fixed points does not
work in general.

As mentioned above, our study is directed towards functions of several variables and a multidi-
mensional GPAC. As a technical remark, it turns out that some of the properties of the underlying
spaces are no longer present, such as the existence of a norm. Instead of considering Banach spaces,
as was done before in the literature, we look at Fréchet spaces (which come equipped with a family
of pseudonorms). Actually, the notion of Fréchet space was present implicitly in the original papers
of Tucker and Zucker. Our results provide evidence that this more general type of spaces is indeed
the correct framework for our study. Even though working with Fréchet spaces is somewhat more
technically demanding, some of the results in Banach spaces can be adapted into this case.

1.3 Outline of the thesis

We now provide a short summary of each chapter, with emphasis on the main original results.
In Chapter 2, we study linear evolution problems in the theory of analog networks. We explain

how to view the solution of a linear evolution problem as the fixed point of an analog network. After
dealing with the easy case in which data lie in a Banach space and the linear operator is bounded,
we move into the more interesting case in which data lie in a Fréchet space. This turns out to be a
necessary choice for the problem at hand. We then pursue two approaches, both motivated by the
attempt to produce fixed points via iterating sequences. In the first approach, we establish parallels
with the Cauchy-Kowalevski theory, which relies on analyticity assumptions; the main results are
Theorems 7 and 10 which establish convergence of iterates to a fixed point. In the second approach,
we apply the Fourier transform and study the corresponding networks in Fourier space; the main
results are Theorems 12 and 13 which show existence, uniqueness and convergence of the fixed points.

In Chapter 3, we introduce the X -GPAC, a generalization of the classical GPAC for functions
of more than one variable. We take the original modules in Shannon’s construction and add a
differential module which produces spatial (partial) derivatives. We formalize the notion of generable

3

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

functions, originally present in Shannon’s construction, and adapt it to our setting. As a technical
point in defining the semantics of our networks, we use a closedness condition rather than continuity,
and thus a weaker form of well-posedness (which we call quasi-well-posedness). We also consider a
more abstract, multityped GPAC and present various modular operations such as module derivation
and channel contraction. Our main result is Theorem 17, in which we characterize the class of X -
GPAC-generable functions, by defining (and obtaining a correspondence with) the class of solutions
to partial differential algebraic systems of equations.

In Chapter 4, we attempt to incorporate approximability into the GPAC model of computation.
This is achieved by introducing yet another module that produces effective limits. The main moti-
vation of this chapter is to show how some classically non-generable functions, such as the gamma
function and the Riemann zeta function, can be captured with the ‘limit X -GPAC’, or LGPAC. This
is achieved in Theorems 20 and 21, which constitute the main results of the chapter.

In Chapter 5, we connect the model of computation described in this thesis with other well-
known models of computable analysis. In particular, we study the notion of tracking computability
presented in [TZ04]. This construction starts from an enumeration of a countable dense subset of
our underlying set, and defines computable elements as those given by effective Cauchy sequences.
In this way, the notion of computability in continuous spaces can be translated into computability
on the natural numbers by considering tracking functions. We show that all the relevant modules
studied in this thesis induce computable tracking functions. Our main results are Theorems 22 and
23 which prove tracking computability of the induced operator and the semantics operator of an
LGPAC.

4

Chapter 2

Linear Evolution Problems

In this chapter we show how to frame linear evolution problems (i.e. time evolution problems
with a linear operator) in the theory of analog networks. The main goal is to present some concepts,
notation and results that will appear consistently in the following chapters. The reason for choosing
linear evolution problems is because they have a simple formulation and a well-known solution given
by an exponential operator, so that the interesting concepts related to analog networks will be clearly
identifiable.

We shall begin by introducing the linear evolution problem and convert it into the framework of
analog networks. We introduce the concept of Fréchet spaces as a necessary tool for studying this
problem in infinite dimensions. We reframe our problem as a fixed point problem and then follow
two different approaches towards solving it. First, we use a Cauchy-Kowalevski approach, in which
contraction inequalities are sought and then used in showing local and global convergence results.
Then, we use a Fourier Transform approach, where contraction inequalities also play a role, but a
different technique involving Fourier Transform approximations is utilised.

We now briefly comment on the original content of this chapter. We present a generalization to
contraction inequalities (which is often used in literature for norm or metric functions; see Definition
2.1.4 and Theorem 2) in terms of pseudonorms in our Lemma 2.4.1. Even though this generalization
seems immediate, we claim that (to the best of our knowledge) this is an original idea. This
technique allows us to obtain original Theorems 7 and 10, which are to some extent covered by
the Cauchy-Kowalevski Theorem; however, our results offer a constructive approach to obtain fixed
points via iteration, which is not provided by that theorem. In the Fourier Transform approach, our
main original results are Theorems 12 and 13; these are constructive versions of results covered by
standard Fourier analysis, but translated to our framework of Fréchet spaces. Hence, they can be
regarded as illustrating the power of contraction inequalities techniques when applied to frequency
spaces.

2.1 The linear evolution problem

The setting for this chapter is as follows. We consider a complete metric vector space, denoted by
(X , d) or simply by X , and unbounded time interval T = [0,∞). We also consider a linear operator
L of type X ⇀ X and denote the domain of L by D(L). The symbol ⇀ is used for partial-valued
functions, meaning that D(L) ⊆ X ; when the function is known to be total, that is, D(L) = X , we
may use → instead. By a stream function we simply mean an element u ∈ C(T,X).

We recall that a Banach space is a complete metric vector space (X , d) in which the metric is

5

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

induced by some norm ‖ · ‖X .

Definition 2.1.1 (Bounded / Unbounded operator). Let X , Y be Banach spaces and let
L : X ⇀ Y be a linear operator. We say that L is bounded if there exists C ∈ R such that, for all
x ∈ D(L), we have ‖Lx‖Y ≤ C‖x‖X ; otherwise, we say that L is unbounded. When L is a bounded
operator, we define the norm of L as the least nonnegative C ∈ R such that ‖Lx‖Y ≤ C‖x‖X for
all x ∈ D(L); this can be given as

‖L‖ = sup
x∈X
x6=0

‖Lx‖Y
‖x‖X

= sup
x∈X
‖x‖=1

‖Lx‖Y .

Example 2.1.2. Let X = C([0, 1]) be the space of continuous functions in the compact interval
[0, 1] with the supremum norm, and let L = ∂x be the first derivative operator, which is a linear
operator with D(L) = C1([0, 1]). Consider the sequence an(x) = 1

n sin(n2x), which converges
uniformly (that is, in the supremum norm) to 0, ‖an‖ = 1

n → 0. Moreover, each an ∈ C1([0, 1]), and
L(an)(x) = a′n(x) = n cos(n2x). Note that ‖a′n‖ = n, meaning that the suprema of a′n grow without
bounds. Thus L is an example of an unbounded operator.

Figure 2.1: Plot of an(x) (left) and a′n(x) (right) for n = 3 (red, bold), n = 5 (green, dashed), n = 10
(blue, dotted).

Even though our definition allows bounded operators to be partially defined, an important result
shows that we may extend bounded operators to the whole space X .

Theorem 1 (Hahn-Banach Theorem, [RS80]). Let L : X ⇀ Y be a bounded operator. Then
there exists a linear operator L̃ : X → Y such that

• L̃ is total, that is, D(L̃) = X ;

• L̃ is an extension of L, that is, for all x ∈ D(L) we have that L̃x = Lx;

• L̃ is bounded, and moreover, ‖L̃‖ = ‖L‖.

Thus, whenever considering bounded operators, we shall assume without loss of generality that
they are total. No similar result holds for unbounded operators, and in fact it turns out that most
unbounded operators of interest are partially defined, such as the derivative operator.

The main problem we wish to study in this chapter can be formulated as follows.

Definition 2.1.3 (Linear evolution problem, [Had52]). Let X be a complete metric vector
space and L : X ⇀ X a linear operator (not necessarily bounded). For a given initial condition

6

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

L
∫u

g

Lu
t

u

Figure 2.2: Analog network (with two modules and three channels) for the linear evolution problem.

g ∈ X , the linear evolution problem (also called time evolution problem) is given by the system{
du
dt = Lu, t ∈ T;
u(0) = g.

(2.1)

A (strong) solution of the time evolution problem is a stream function u ∈ C(T,X) such that
u ∈ C(T, D(L)) ∩ C1(T,X) and u satisfies (2.1).

Sometimes we may be interested in finding a solution only in a bounded interval [0, T], where
T ∈ T. When that happens we may refer to the desired u ∈ C([0, T],X) as a finite time solution.

In this thesis we are interested in the formulation of time evolution problems (either with linear or
nonlinear evolution operators) in the framework of analog networks. To construct an analog system
that reasons about the linear evolution problem, we can simply integrate the differential equation
(2.1) to obtain

u(t) = g +

∫ t

0

Lu(s)ds =: ΦL(g, u)(t), (2.2)

where we use the right hand side to define an operator ΦL : X × C(T,X) ⇀ C(T,X), which can
be computed using an analog network with two modules. Introducing a feedback to implement the
equality, we obtain the analog system of Figure 2.2.

For a given g ∈ X , we can consider the section of ΦL

ΦL,g : C(T,X) ⇀ C(T,X)

(u, t) 7→ g +
∫ t

0
Lu(s)ds.

(2.3)

We can then observe the equivalence between the notions of (a) solutions to the linear evolution
problem of Definition 2.1.3; (b) specifications of the analog system of Figure 2.2; and (c) fixed points
of the operator ΦL,g defined by (2.3). Henceforth we will focus on the last notion. Our goal is to
provide sufficient conditions that ensure existence and uniqueness of fixed points, as well as the
existence of a constructive method to obtain fixed points when they exist.

A relevant result, which can be seen as a starting point for the discussion in this chapter, is
the Banach fixed point theorem (also called the contraction mapping principle), which we state and
prove.

Definition 2.1.4 (Contraction mapping). Let (X , d) be a metric space and F : X → X . We say
that F is a d-contraction mapping (or a contraction mapping with respect to the metric d) if there
exists 0 ≤ λ < 1 such that

d(F (x), F (y)) ≤ λd(x, y) for all x, y ∈ X .

7

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Theorem 2 (Banach fixed point theorem). Let (X , d) be a complete metric space and F : X →
X a d-contraction mapping. Then F has a unique fixed point x∗. Moreover, for all x0 ∈ X the
sequence of iterations xn := Fn(x0) converges to x∗.

Proof. Let 0 ≤ λ < 1 be the constant involved in the definition of contraction mapping. We begin
by showing uniqueness. Let x, y ∈ X be such that F (x) = x and F (y) = y. Then d(x, y) =
d(F (x), F (y)) ≤ λd(x, y). Since d(x, y) ≥ 0 and λ < 1, it follows that d(x, y) = 0, so x = y by
identity of indiscernibles.

Now, for any x0 ∈ X , we show that the sequence xn := Fn(x0) converges to a fixed point of
F . First observe that F is continuous, as d(x, y) < ε/λ implies d(F (x), F (y)) < ε. We also have
that d(xn+1, xn+2) = d(F (xn), F (xn+1)) ≤ λd(xn, xn+1), and thus (by induction) d(xn+1, xn) ≤
λnd(x1, x0). Therefore, for n < m,

d(xm, xn) ≤
m−n−1∑
j=0

d(xn+j+1, xn+j) ≤
m−n−1∑
j=0

λj+nd(x1, x0) ≤ λn − λm

1− λ
d(x1, x0) ≤ λn d(x1, x0)

1− λ
,

so that (xn) is a Cauchy sequence. Since X is complete, it follows that (xn) converges to some limit
x∗. But then x∗ is a fixed point of T , since

F (x∗) = F (lim
n→∞

xn) = lim
n→∞

F (xn) = lim
n→∞

xn+1 = x∗,

where the second equality is justified by continuity of F .

For the remainder of this section we briefly discuss the case where L is a (total) bounded operator
in a Banach space, and for which there are well-known results.

Proposition 2.1.5 (The exponential operator). Let X be a Banach space and L : X → X be a
bounded operator.

1. The series

∞∑
n=0

1

n!
Ln converges in the operator norm to a bounded operator which we denote

by eL; moreover, we have ‖eL‖ ≤ e‖L‖.

2. For g ∈ X , and t ∈ T, define u(t) = etLg so that u ∈ C(T,X); then also u ∈ C1(T,X) and

du

dt
(t) = Lu(t), for all t ∈ T.

Proof. For a proof, see for example [Paz83, Section 1.1].

We can use the contraction mapping principle to prove that ΦL,g has a fixed point. For T ∈ T,
we consider the space C([0, T],X), which is a Banach space with norm

‖u‖C([0,T],X) = sup
0≤t≤T

‖u(t)‖X .

We can then consider the restriction of ΦL,g to C([0, T],X), given by

ΦL,g,T : C([0, T],X) → C([0, T],X)

u(t) 7→ g +
∫ t

0
Lu(s)ds.

(2.4)

8

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Even though ΦL,g,T may not be contracting, we shall see that its nth-iterates ΦnL,g,T will be for
large enough n. Before we introduce the main result, we give a technical lemma.

Lemma 2.1.6 (Contraction inequalities in a Banach space). Let X be a Banach space and
L : X → X be a bounded operator with norm C. Then for any g ∈ X , T ∈ T, n ∈ N and
u, v ∈ C([0, T],X), we have

d(ΦnL,g,T (u),ΦnL,g,T (v)) ≤ (CT)n

n!
d(u, v). (2.5)

Proof. By induction on n.
Base step with n = 0: trivial, the inequality just becomes d(u, v) ≤ d(u, v).
Induction step: Assume (2.5) holds for some n and all T ∈ T. Then

d(Φn+1
L,g,T (u),Φn+1

L,g,T (v)) = ‖Φn+1
L,g,T (u)− Φn+1

L,g,T (v)‖C([0,T],X) (2.6a)

= sup
0≤t≤T

∥∥∥(Φn+1
L,g,T (u)− Φn+1

L,g,T (v))
∥∥∥ (2.6b)

= sup
0≤t≤T

∥∥∥∥∫ t

0

L(ΦnL,g,T (u))− L(ΦnL,g,T (v))ds

∥∥∥∥ (2.6c)

≤ sup
0≤t≤T

∫ t

0

∥∥L(ΦnL,g,T (u)− ΦnL,g,T (v))
∥∥ ds (2.6d)

≤ sup
0≤t≤T

∫ t

0

C‖ΦnL,g,T (u)− ΦnL,g,T (v)‖ds (2.6e)

≤ sup
0≤t≤T

∫ t

0

C
(Cs)n

n!
d(u, v)ds (2.6f)

= sup
0≤t≤T

(Ct)n+1

(n+ 1)!
d(u, v) =

(CT)n+1

n!
d(u, v), (2.6g)

where (2.6c) is justified by writing Φn+1
L,g,T (u) = ΦL,g,T (ΦnL,g,T (u)) and applying equation (2.4), (2.6d)

by majorizing the integral and by linearity of L, (2.6e) by boundedness of L, (2.6f) by converting to
distance and using the induction hypothesis and (2.6g) by simply computing the integral. We thus
obtain the desired result.

Theorem 3 (Solution to the linear evolution problem with a bounded operator). Let X
be a Banach space and L : X → X be a bounded operator. Then for any g ∈ X the operator ΦL,g
given by Equation (2.3) has a unique fixed point; moreover, this fixed point is given by ug(t) = etLg.

Proof. This is an immediate consequence of the results shown in [Paz83]; however, we shall present
a different proof that invokes the Banach fixed point theorem (Theorem 2). Let C be the norm of
L. For T ∈ T, consider the space C([0, T],X) as before. From Lemma 2.1.6 we see that, for all
n sufficiently large (namely for n such that (CT)n < n!), the nth-iterate ΦnL,g,T is a d-contraction
mapping. Thus, by the contraction mapping principle (Theorem 2), it follows that ΦnL,g,T has a

unique fixed point, which we denote by un. By the same principle we can assume that Φn+1
L,g,T and

Φ
n(n+1)
L,g,T have unique fixed points un+1 and un(n+1). Now observe that

Φ
n(n+1)
L,g,T (un) = ΦnL,g,T ◦ . . . ◦ ΦnL,g,T︸ ︷︷ ︸

n+1 times

(un) = un;

9

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

by uniqueness of fixed points we conclude that un = un(n+1); similarly we conclude that un+1 =
un(n+1) and thus un = un+1. Now

un = un+1 = Φn+1
L,g,T (un+1) = ΦL,g,T (ΦnL,g,T (un+1)) = ΦL,g,T (ΦnL,g,T (un)) = ΦL,g,T (un),

so un is also a fixed point of ΦL,g,T . Since any fixed point of ΦL,g,T must also be a fixed point of its
nth-iterate ΦnL,g,T it follows that this is the (finite time) unique fixed point of ΦL,g,T and so we can
denote it by ug,T .

Next we study the change in T ∈ T. Observe that, if ug,T is a fixed point of ΦL,g,T and T ′ ≤ T ,
then the restriction of ug,T to [0, T ′] must be a fixed point of ΦL,g,T ′ (this is immediate from equation
(2.4)). Again by uniqueness, it follows that such restriction must be the fixed point ug,T ′ . Thus
we can define the family {ug,T }T∈T of finite time fixed points, where each ug,T is defined in [0, T]
and is the restriction of ug,T ′ for all T ′ ≥ T . If we take the limit, we obtain ug ∈ C(T,X) given by
ug(t) = ug,T (t) for any T ≥ t.

The restriction of the stream ug to [0, T] is the unique fixed point of ΦL,g,T for all T ∈ T, and it
is immediate from equation (2.4) that for any function u,

u is a fixed point of ΦL,g if and only if
for all T ∈ T, the restriction u �[0,T] is a fixed point of ΦL,g,T ;

thus we conclude that ug is the unique fixed point of ΦL,g.
Finally, from Proposition 2.1.5 we see that t 7→ etLg defines a solution to the linear evolution

problem (2.1) and thus it must be a fixed point of ΦL,g. Therefore it follows that ug(t) = etLg,
which concludes the proof.

2.2 Fréchet Spaces

For the rest of the chapter we will focus on those linear operators which are not bounded: either
they are unbounded, or they operate on a space X which is not a Banach space. An important
family of examples consists of differential operators (such as L = ∂x with corange C([0, 1]), seen in
Example 2.1.2). In this section we begin by attempting to define a natural space X for our class of
streams C(T,X), which will lead us into the study of Fréchet spaces.

Some of the properties that we desire of our space X are that it must be a complete metric space
and it must contain only infinitely differentiable functions, since the operators we wish to consider
involve taking derivatives. We will see that the space of infinitely differentiable functions will serve
as a good candidate for our investigation. This space does not have a norm, however there exist
families of pseudonorms which induce a complete metric on it. In this way we are led to the concept
of Fréchet space, to which we now turn. We refer the reader to [RS80, Chapter V], where a detailed
exposition of Fréchet spaces can be found.

Definition 2.2.1 (Pseudonorm). Let X be a vector space. A pseudonorm (sometimes called
seminorm) is a function ‖ · ‖ : X → R which is:

• positive semidefinite, that is, ‖0‖ = 0 and for all x ∈ X\{0} we have ‖x‖ ≥ 0;

• scalable, that is, for all scalars c and x ∈ X we have ‖cx‖ = |c|‖x‖;

• subadditive, that is, for all x, y ∈ X we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Recall that a norm is a pseudonorm which is also:

10

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

• positive definite, that is, ‖0‖ = 0 and for all x ∈ X\{0} we have ‖x‖ > 0 (this condition
replaces positive semidefiniteness).

Example 2.2.2. Consider the space C(R) of all continuous functions of type R→ R. Then, we can
define a family of pseudonorms ‖ · ‖n (indexed by n ∈ N) given by

‖f‖n = sup
−n≤x≤n

|f(x)|. (2.7)

Observe that, although no pseudonorm is a norm (that is, for each n there exists f ∈ C(R) such
that f 6= 0 but ‖f‖n = 0), we have that ‖f‖n = 0 for all n implies f = 0.

Example 2.2.3. Consider the space C∞([0, 1]) of all functions of type [0, 1]→ R which are infinitely
differentiable. For each k ∈ N we can define a pseudonorm given by

‖f‖k = sup
x∈[0,1]

∣∣∣f (k)(x)
∣∣∣ . (2.8)

As in the previous example, we also have that f = 0 iff ‖f‖n = 0 for all n ∈ N.

Example 2.2.4. Consider the space C∞(R) of infinitely differentiable real functions. For each
k, n ∈ N we can define a pseudonorm ‖ · ‖n,k given by

‖f‖n,k = sup
−n≤x≤n

∣∣∣f (k)(x)
∣∣∣ . (2.9)

As in the two previous examples, we have that f = 0 iff ‖f‖n,k = 0 for all k, n ∈ N.

The previous examples motivate us to establish the following notion.

Definition 2.2.5 (Point separability). Let {‖ · ‖α}α∈A be a family of pseudonorms in a vector
space X . We say that the family separates points if

‖x‖α = 0 for all α ∈ A implies x = 0.

In order to be able to define a Fréchet space, we need to recall the notions of topology induced
by a family of pseudonorms and completeness with respect to a family of pseudonorms.

Definition 2.2.6 (Induced topology). Let {‖ · ‖α}α∈A be a family of pseudonorms in a vector
space X . The topology induced by {‖ · ‖α}α∈A is the topology generated by basic sets of the form
NA0,ε,x, for A0 a finite subset of A, ε > 0, x ∈ X , where

NA0,ε,x = {y ∈ X : ‖x− y‖α < ε, α ∈ A0}.

Definition 2.2.7 (Complete space). Let {‖·‖α}α∈A be a family of pseudonorms in a vector space
X . We say that X is complete with respect to {‖ · ‖α}α∈A if, for all sequences (xn) such that (xn)
is Cauchy with respect to each pseudonorm ‖ · ‖α, there exists x ∈ X such that (xn) converges to x
with respect to each pseudonorm ‖ · ‖α.

Definition 2.2.8 (Fréchet space). A Fréchet space is a topological vector space X with a family
of pseudonorms {‖ · ‖α}α∈A with the following properties:

• A is countable;

• {‖ · ‖α}α∈A separates points;

11

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

• the topology on X is induced by {‖ · ‖α}α∈A;

• X is complete with respect to {‖ · ‖α}α∈A.

Example 2.2.9. Examples 2.2.2, 2.2.3 and 2.2.4 are Fréchet spaces with their correspondent families
of pseudonorms and induced topologies.

Example 2.2.10 (Schwarz space). Consider the Schwarz space, denoted by S(R), of rapidly
decreasing functions, that is, infinitely differentiable real functions f for which

‖f‖a,b = sup
x∈R
|xaf (b)(x)| <∞, (2.10)

for all a, b ∈ N. Then (‖ ·‖a,b) is a countable family of pseudonorms whose induced topology in S(R)
turns it into a Fréchet space.

Example 2.2.11. The space C(T, C∞(R)) of continuous streams over C∞(R) is also a Fréchet
space, with the countable family of pseudonorms given by

‖u‖T,n,k = sup
0≤t≤T

sup
−n≤x≤n

∣∣∣∣∂ku∂xk
(t, x)

∣∣∣∣ , (2.11)

for T, n, k ∈ N.

We can see that the family of pseudonorms in Example 2.2.11 is closely related to the family
in Example 2.2.4. In fact, this illustrates a useful property of Fréchet spaces; in general, the space
of continuous streams over a Fréchet space is itself a Fréchet space. In other words, Fréchet spaces
work well with the operation of taking continuous streams.

Proposition 2.2.12 (New Fréchet spaces from old). If X is a Fréchet space with a countable
family of pseudonorms {‖ · ‖α}α∈A, then so is C(T,X) with the countable family of pseudonorms
{‖ · ‖T,α}T∈N,α∈A, where

‖u‖T,α = sup
0≤t≤T

‖u(t)‖α.

The next step is to use the family of pseudonorms to devise a metric on the Fréchet space. First
observe that, if the Fréchet space is described by a finite family of pseudonorms {‖ · ‖1, . . . , ‖ · ‖n},
then we can easily devise a metric by adding all pseudonorms:

d(x, y) =

n∑
i=1

‖x− y‖i.

However, when we have a countably infinite family of pseudonorms, we cannot, in general, use
a summation over all pseudonorms, since we need a convergent series. To overcome this obstacle
we use two techniques: enforce a bound on each term on the summation and introduce a summable
family of weights.

Proposition 2.2.13 (Metric from family of pseudonorms). Let X be a Fréchet space and
{‖ · ‖α}α∈A a corresponding family of pseudonorms. Let γ : R≥0 → [0, 1] be a continuous function
which is also positive definite, increasing and subadditive, that is,

• γ(0) = 0 and for all t ∈ R+ we have 0 < γ(t) ≤ 1;

• for all t1, t2 ∈ R+
0 such that t1 ≤ t2 we have γ(t1) ≤ γ(t2);

12

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

• for all t1, t2 ∈ R+
0 we have γ(t1 + t2) ≤ γ(t1) + γ(t2).

Let {wα}α∈A be a summable family of positive weights, that is,
∑
α∈A

wα <∞. Then we can define a

metric on X by

d(x, y) =
∑
α∈A

wαγ(‖x− y‖α). (2.12)

Moreover, this metric induces the same topology over X and X is complete under it.

Proof. We begin by showing that d defines a metric:
Finiteness: for any x, y ∈ X we have

d(x, y) =
∑
α∈A

wαγ(‖x− y‖α) ≤
∑
α∈A

wα <∞,

where we have used boundedness of γ and summability of the family of weights.
Positive definiteness: for any x, y ∈ X , if x = y then x− y = 0 and so

d(x, y) =
∑
α∈A

wαγ(‖0‖α) =
∑
α∈A

0 = 0,

where the second equality is justified by positive semidefiniteness of the pseudonorms and positive
definiteness of γ. Moreover, if x 6= y then there is α ∈ A such that ‖x − y‖α > 0 (by positive
semidefiniteness of the pseudonorms and point separability of the family of pseudonorms) and thus

d(x, y) =
∑
α∈A

wαγ(‖x− y‖α) ≥ wαγ(‖x− y‖α) > 0,

where the last step is justified by positivity of the weights and positive definiteness of γ.
Symmetry: for any x, y ∈ X we have

d(x, y) =
∑
α∈A

wαγ(‖x− y‖α) =
∑
α∈A

wαγ(‖y − x‖α) = d(y, x),

where the second step is justified by symmetry of the pseudonorms.
Triangle inequality: for any x, y, z ∈ X we have

d(x, z) =
∑
α∈A

wαγ(‖x− z‖α) (2.13a)

≤
∑
α∈A

wαγ(‖x− y‖α + ‖y − z‖α) (2.13b)

≤
∑
α∈A

wα(γ(‖x− y‖α) + γ(‖y − z‖α)) (2.13c)

= d(x, y) + d(y, z), (2.13d)

where (2.13b) is justified by subadditivity of the pseudonorms and (2.13c) is justified by subadditivity
of γ.

The next step is to show equivalence between the topology generated by the pseudonorms (de-
noted by Tρ) and the topology induced by the metric (denoted by Td).
Tρ ⊆ Td: Let A0 be a finite subset of A, ε > 0 and x ∈ X . Let N = NA0,ε,x be a basic open set

13

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

in Tρ and y ∈ N ; in this way, ‖x − y‖α < ε for α ∈ A0. Let δ = max
α∈A0

‖x − y‖α, so that δ < ε, and

let w = min
α∈A0

wα. Now take B = Bwγ(ε−δ)(y), that is, the ball centered at y with radius wγ(ε− δ).
Clearly y ∈ B. To show that B ⊆ N , take z ∈ B, so that d(y, z) < wγ(ε− δ). In particular, for all

α ∈ A0, we have wαγ(‖y− z‖α) ≤ d(y, z) < wγ(ε− δ), so that γ(‖y− z‖α) <
w

wα
γ(ε− δ) ≤ γ(ε− δ)

and thus ‖y − z‖α < ε− δ by monotonicity of γ. Finally, we conclude that, for all α ∈ A0, we have
by subadditivity of the pseudonorms that ‖x − z‖α ≤ ‖x − y‖α + ‖y − z‖α < δ + ε − δ = ε, which
implies that z ∈ N .
Td ⊆ Tρ: Let B = Bε(x) be a basic open set in Td and y ∈ B, so that d(x, y) < ε. Let

δ = d(x, y), let A0 be a sufficiently large, yet finite, subset of A such that
∑

α∈A\A0

wα <
ε− δ

2
and

let w =
∑
α∈A0

wα. Let also β ∈ R+ be such that γ(β) ≤ ε− δ
2w

, which is possible by continuity of γ.

Now take N = NA0,β,y. Clearly y ∈ N . To show that N ⊆ B, take z ∈ N , so that ‖y − z‖α < β for

all α ∈ A0 and thus γ(‖y − z‖α) <
ε− δ
2w

by monotonicity of γ. Therefore

d(y, z) =
∑
α∈A

wαγ(‖y − z‖α) =
∑
α∈A0

wαγ(‖y − z‖α) +
∑

α∈A\A0

wαγ(‖y − z‖α) (2.14a)

<
∑
α∈A0

wα
w

ε− δ
2

+
∑

α∈A\A0

wα (2.14b)

≤ ε− δ
2

+
ε− δ

2
= ε− δ, (2.14c)

where (2.14b) is justified by boundedness of γ and the above paragraph, and (2.14c) is justified by
the above paragraph. Finally, we conclude by triangle inequality that d(x, z) ≤ d(x, y) + d(y, z) <
δ + ε− δ = ε, which implies that z ∈ B.

The only step that remains is showing that X is complete under the metric d. Let (xn) be a
Cauchy sequence with respect to the metric d. That (xn) is also a Cauchy sequence with respect to
each pseudonorm ‖ · ‖α follows from the inequalities 0 ≤ wαγ(‖x− y‖α) ≤ d(x, y) and monotonicity
and positive definiteness of γ. Since X is complete with respect to {‖ · ‖α}α∈A, it follows that there
exists x ∈ X such that (xn) converges to x in each pseudonorm ‖ · ‖α. Then (xn) converges to x in
the topology induced by the family of pseudonorms, which means it converges with respect to the
metric d since it induces the same topology.

Common choices for the function γ are γ1(t) = t
1+t and γ2(t) = min(t, 1).

14

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Figure 2.3: Plot of γ1(t) = t
1+t (left) and γ2(t) = min(t, 1) (right).

Example 2.2.14. Recall the space of infinitely differentiable functions f : [0, 1]→ R mentioned in
Example 2.2.3. This space is complete under the metric

d(f, g) =

∞∑
k=0

2−k
‖f − g‖k

1 + ‖f − g‖k
. (2.15)

In later chapters we shall use a specific choice of metric induced by the pseudonorms in which
A = N+, wn = 2−n and γ(t) = min(t, 1). It will be useful to have a result relating bounds on the
pseudonorms with bounds on the metric, as we now state and prove.

Proposition 2.2.15 (Bounds on the pseudonorms vs bounds on the metric). Let X be a
Fréchet space with pseudonorms ‖ · ‖n, n ∈ N+. Let d be the metric on X given by

d(x, y) =

∞∑
n=1

2−n min(‖x− y‖n, 1). (2.16)

1. Let 0 < ε < 1 and M ∈ N. Then, for any δ ≤ ε2−M and x, y ∈ X , one has

if d(x, y) < δ, then ‖x− y‖n < ε for n = 1, . . . ,M .

2. Let 0 < ε < 1. Then for any δ ≤ ε/2 and M ∈ N such that 2−M ≤ ε/2 and x, y ∈ X , one has

if ‖x− y‖n < δ for n = 1, . . . ,M , then d(x, y) < ε.

Proof. To prove the first claim, take ε,M, δ as in the assumptions and x, y ∈ X with d(x, y) < δ.

Since d(x, y) =

∞∑
n=1

2−n min(‖x− y‖n, 1) it follows that, for all n ∈ N, we have that

2−n min(‖x− y‖n, 1) < δ, that is, min(‖x− y‖n, 1) < δ2n.

By using the bound on δ and considering only the values of n between 1 and M , we see that
min(‖x − y‖n, 1) < δ2n < ε2−M2n ≤ ε. Since ε < 1 this further implies that ‖x − y‖n < ε for
n = 1, . . . ,M , as we wanted to prove.

To prove the second claim, take ε, δ,M as in the assumptions and x, y ∈ X with ‖x − y‖n < δ
for n = 1, . . . ,M . By splitting the sum in (2.16) we get

d(x, y) =

∞∑
n=1

2−n min(‖x− y‖n, 1)

15

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

=

M∑
n=1

2−n min(‖x− y‖n, 1) +

∞∑
n=M+1

2−n min(‖x− y‖n, 1)

≤
M∑
n=1

2−n‖x− y‖n +

∞∑
n=M+1

2−n

<

M∑
n=1

2−nδ + 2−M

< δ + 2−M < ε/2 + ε/2 = ε,

as we wanted to prove.

2.3 Iterating scheme

For the rest of this chapter we shall assume that X (and thus, also C(T,X)) always denotes a
Fréchet space. We recall that, given a linear operator L and an initial condition g defining (2.1), we
can consider the operator ΦL,g : C(T,X)→ C(T,X) given by

ΦL,g(u)(t) = g +

∫ t

0

Lu(s)ds. (2.17)

We know that solutions to (2.1) correspond to fixed points of ΦL,g. One important advantage of
choosing a linear operator L is made obvious in the following result.

Lemma 2.3.1. Consider the problem (2.1), where g is in the intersection
⋂
n∈N

D(Ln). Then the

sequence uk obtained by iterating ΦL,g (defined in (2.17)) with u0(t) = g is given by

uk(t) = g + L(g)t+ . . .+ Lk(g)
tk

k!
(2.18)

Proof. By induction.
Base step: When k = 0, we have

u0(t) = g =

0∑
i=0

Li(g)
ti

i!
.

Induction step: Assume (2.18) holds for k. Then

uk+1(t) = ΦL,g(uk)(t) (2.19a)

= g +

∫ t

t0

L(uk)(s)ds (2.19b)

= g +

∫ t

t0

L

(
k∑
i=0

Li(g)
si

i!

)
ds (2.19c)

= g +

∫ t

t0

k∑
i=0

L(Li(g))
si

i!
ds (2.19d)

16

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

= g +

k∑
i=0

∫ t

t0

Li+1(g)
si

i!
ds (2.19e)

= g +

k∑
i=0

Li+1(g)
ti+1

(i+ 1)!
=

k+1∑
i=0

Li(g)
ti

i!
, (2.19f)

where (2.19c) is justified by induction hypothesis and (2.19d) by linearity of L. We obtain the
desired result.

We want to find suitable conditions under which the sequence un defined iteratively by un+1 =
ΦL,g(un) (with some initial input u0) is convergent. The most simple case is that of nilpotent
streams.

Definition 2.3.2 (Nilpotency). We say that a stream g ∈ X is L-nilpotent if there is some k ∈ N
such that Lkg = 0.

Theorem 4 (Existence of fixed points for nilpotent initial condition). Suppose L is a linear
differential operator. Consider the problem (2.1), where g is infinitely differentiable. Suppose also
that g is nilpotent, and in particular let k ∈ N be such that Lk+1g = 0. Then (2.1) has (at least)
one solution given by

u(t) = uk(t) =

k∑
i=0

Li(g)
ti

i!
. (2.20)

Proof. Observe that

ΦL,g(uk)(t) = uk+1(t)
1
=

k+1∑
i=0

Li(g)
ti

i!

2
=

k∑
i=0

Li(g)
ti

i!

3
= uk(t),

where (1) and (3) are justified by Lemma 2.3.1 and (2) by nilpotency of g. Hence uk is a fixed point
of ΦL,g, and thus it is a solution to (2.1).

Example 2.3.3. Consider X = C∞(R), L = ∂x and g(x) = x2 + 2x.

Then

L(g)(x) = 2x+ 2; L2(g)(x) = 2; L3(g) = 0.

We conclude, using Theorem 4, that (2.1) has a solution given by u = x2 + 2x+ (2x+ 2)t+ t2 =
(x+ t)2 + 2(x+ t). This solution could also be achieved by iteration on ΦL,g. �

Example 2.3.4. Consider X = C∞(R2), L = ∆ = ∂2
x + ∂2

y (the Laplacian operator) and g(x, y) =
x4 + xy2 + y3.

Then

L(g)(x, y) = 12x3 + 2x+ 6y; L2(g)(x, y) = 72x; L3(g) = 0.

We conclude, using Theorem 4, that (2.1) has a solution given by u = x4 + xy2 + y3 + (12x3 +
2x+ 6y)t+ 36xt2. This solution could also be achieved by iteration on ΦL,g. �

17

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Definition 2.3.5 (Absolute convergence). Let (ak) be a sequence in X . We say that the series
∞∑
k0

ak is absolutely convergent if for all α ∈ A,

∞∑
k0

‖ak‖α is a convergent series.

Proposition 2.3.6. Any absolutely convergent series

∞∑
k0

ak is convergent.

Theorem 5 (Existence of fixed points for absolutely convergent power series). Let X
be a Fréchet space, and suppose L : X → X is total and continuous. Consider the problem (2.1),

where g ∈ X . Suppose also that there exists some T ∈ T such that the power series
∑
k

akt
k, with

ak = Lk(g)
k! and t ∈ [0, T], is absolutely convergent. Then the sequence (un) in C([0, T],X) obtained

by iterating ΦL,g,T , given by (2.4), with u0(t) = g, converges in C([0, T],X) to a finite time solution
of (2.1).

Proof. This result probably exists already in some standard textbook; however, we were not able to

find a suitable reference, so we just prove it here. We know from Lemma 2.3.1 that un =

n∑
k=0

akt
k.

Since the power series is absolutely convergent, we know that un converges to u :=
∑
k

akt
k. We

shall show that du
dt and Lu are well-defined, coincide, and are given by

du

dt
= Lu =

∞∑
k=0

(k + 1)ak+1t
k.

The series converges: we prove that
∑

(k + 1)ak+1t
k is absolutely convergent, by comparing∑

(k + 1)‖ak+1‖αtk vs
∑
‖ak‖αtk.

It is clear that lim sup k
√

(k + 1)‖ak+1‖α = lim sup k
√
‖ak‖α, so that both power series must have

the same radius of convergence. Thus,
∑

(k + 1)ak+1t
k is absolutely convergent for any t ∈ [0, T].

L(u) is well-defined: simply observe that

L(u) = L

(∞∑
k=0

akt
k

)
= L

(
lim
K→∞

K∑
k=0

akt
k

)
= lim
K→∞

L

(
K∑
k=0

akt
k

)

= lim
K→∞

K∑
k=0

L(ak)tk =

∞∑
k=0

(k + 1)ak+1t
k,

where we have used continuity of L, linearity of L and definition of ak. Since the power series is
convergent, we conclude that L(u) is well-defined and coincides with the power series.

du
dt is well-defined: let t ∈ [0, T] and consider s ∈ [0, T] converging to t, s→ t. We now look at

the expression

u(s)− u(t)

s− t
=

∑
aks

k −
∑
akt

k

s− t
=

∞∑
k=0

ak
sk − tk

s− t
=

∞∑
k=1

ak(sk−1 + sk−2t+ . . .+ tk−1). (2.21)

18

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

The summation term can be bounded, for any α ∈ A, by

‖ak(sk−1 + sk−2t+ . . .+ tk−1)‖α ≤ ‖ak‖α(T k−1 + T k−1 + . . .+ T k−1) = k‖ak‖αT k−1.

Since the power series
∑
k‖ak‖αtk−1 is convergent for t ∈ [0, T], we conclude that the last series

in (2.21) is absolutely convergent. Since the above bound does not depend on t or s, the series is
also uniformly convergent. Thus we may compute

du

dt
(t) = lim

s→t

u(s)− u(t)

s− t
(2.22a)

= lim
s→t

∞∑
k=1

ak(sk−1 + sk−2t+ . . .+ tk−1) (2.22b)

=

∞∑
k=1

lim
s→t

ak(sk−1 + sk−2t+ . . .+ tk−1) (2.22c)

=

∞∑
k=1

akkt
k−1 =

∞∑
k=0

(k + 1)ak+1t
k, (2.22d)

where (2.22b) is justified by equation (2.21) and (2.22c) by uniform convergence of the series. We
conclude that du

dt and Lu are both equal to the desired series.
Finally, since u(0) = a0 = g, the initial condition is also satisfied, and thus u is a finite time

solution of (2.1).

Remark 2.3.7. We introduce here a small discussion on how Theorem 5 generalises the result on
Theorem 3 for Banach spaces. Any Banach space can be seen as a Fréchet space and, in Banach
spaces, boundedness is equivalent to continuity (this is a standard result seen, for example, in
[Rud91]). Moreover any bounded operator can be extended to a total, bounded operator by the
Hahn-Banach Theorem (Theorem 1), and therefore the operator L considered in the statement of
Theorem 3 can also be used in Theorem 5.

At a first glance, it seems then that the condition that L be continuous is too strong for the type
of operators that we are considering. In particular, we are interested in differential operators such
as L = ∂x or L = ∂xx, and the discussion at the start of this chapter (and Example 2.1.2) may lead
us to argue that these operators are discontinuous. However, since we are working in a different
space X (which is a Fréchet space), it turns out that differential operators become continuous! We
illustrate this with the following example.

Example 2.3.8. Consider X = C∞(R) with pseudonorms defined in Example 2.2.4 and L = ∂x.
We show that L : X → X is a continuous operator. Let (am) be a sequence in X converging to 0.
Then, for any n, k ∈ N, we have that

sup
−n≤x≤n

|a(k)
m (x)| −→

m→∞
0.

In particular, for any compact interval [−n, n], not only does am (as a function) converge uni-
formly to zero, but so do all of its derivatives (as functions of type R→ R). Therefore, we conclude
that ∂xam (and also any of its derivatives) must converge uniformly to zero in compact intervals,
which proves that ∂xam → 0 in the Fréchet space X . We thus conclude that L = ∂x is continuous.

Example 2.3.9. Consider X = C∞(R2), L = ∆ = ∂2
x + ∂2

y and g(x, y) = exy + e2y. Observe that
L is a continuous operator on X . We have that

19

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

L(g)(x, y) = exy + 4e2y; L2(g)(x, y) = exy + 16e2y;

and, in general,
Lk(g)(x, y) = exy + 4ke2y.

For all x and y, we have convergence of the power series on t ∈ T,

∞∑
k=0

exy + 4ke2y

k!
tk = exy

∞∑
k=0

tk

k!
+ e2y

∞∑
k=0

4ktk

k!
= yexet + e2ye4t.

Hence, using Theorem 5, we conclude that uk converges to a solution of (2.1), given by u(t, x, y) =
yex+t + e2y+4t.

2.4 Convergence theorems for the transport equation

Theorem 5 of the previous section gives us a criterion of classes of operators and initial conditions
for which existence of fixed points can be ensured. However, determining directly whether the power
series described in its statement is convergent can be a challenging task. In this section we shall focus
on the one-dimensional transport equation; we aim to identify certain classes of operators and initial
conditions for which convergence occurs. The properties of interest in the following theorems will
rely upon analyticity of the initial condition g or the initial input u0. This will suggest a parallelism
with the Cauchy-Kowalevski theorems, which are local existence and uniqueness results for analytic
PDEs (a relatively modern reference is [CH53]).

Theorem 6 (Cauchy-Kowalevski Theorem, [Cau42, Kow75]). Consider the time evolution
problem {

∂kt u = F (x, t, ∂jt ∂
α
x u), t ∈ T, x ∈ R, j < k, α+ j ≤ k;

∂jt u(0, x) = gj(x), 0 ≤ j < k.
(2.23)

Suppose that F and gj are real analytic near the origin. Then (2.23) has a unique real analytic
solution near the origin.

For the next sections, we will be working with linear evolution problems that satisfy the conditions
on the Cauchy-Kowalevski Theorem. Since (local) existence and uniqueness of solutions are already
given by that theorem, we shall study convergence of the iterating scheme presented in Section 2.3
to the known solution. In particular, we set X = C∞(R), so that C(T,X) = C(T, C∞(R)), and
L = α∂x for some α ∈ R; let us then drop the subscript L and write our iterating operator as

Φg(u)(t, x) = g(x) + α

∫ t

0

∂xu(s, x)ds. (2.24)

Take any (arbitrary but fixed) X ∈ R+, T ∈ T. Then, for any k ∈ N, we have a pseudonorm

‖u‖T,X,k = sup
0≤t≤T
|x|≤X

∣∣∣∣∂ku∂xk
(t, x)

∣∣∣∣ . (2.25)

Observe that we are taking suprema on compact rectangles of the form [0, T]×[−X,X] (see Figure
2.4). The reason for taking suprema on compact rectangles will be made clear shortly in Theorem 7
(local convergence theorem). We also observe that, for each compact rectangle X = [0, T]× [−X,X],
we can define the space of compact continuous streams C([0, T], C∞(−X,X)). Clearly, any function

20

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

x

t

T

−X 0 X

‖ · ‖T,X,k

Figure 2.4: Compact rectangles.

in C(T, C∞(R)) can be mapped to a function in C([0, T], C∞(−X,X)) via the restriction u 7→ u �X.
Moreover, C([0, T], C∞(−X,X)) can be seen to be a Fréchet space with the family of pseudonorms
‖ · ‖T,X,k given by (2.25). Note that X and T are fixed and the indexing is on k ∈ N.

Finally, observe that the operator Φg : C(T, C∞(R))→ C(T, C∞(R)) has a restriction Φg �X to
the space C([0, T], C∞(−X,X)).

Our next step is to prove contraction inequalities, which play an important role in fixed point
techniques.

Lemma 2.4.1 (Contraction inequalities). Consider the Fréchet space C(T, C∞(R)) with pseudo-
norms ‖ · ‖T,X,k given by (2.25). Let g ∈ C∞(R) and Φg : C(T, C∞(R)) → C(T, C∞(R)) be given
by (2.24). Then, for any u, v ∈ C(T, C∞(R)), any pseudonorm ‖ · ‖T,X,k and any m ∈ N, we have
the following bound:

‖Φmg (u)− Φmg (v)‖T,X,k ≤
(|α|T)m

m!
‖u− v‖T,X,k+m. (2.26)

Proof. By induction on m.
Base step with m = 0: trivial.
Induction step: Assume (2.26) holds for any choice of pseudonorm ‖·‖T,X,k and some m. Then

‖Φm+1
g (u)− Φm+1

g (v)‖T,X,k = sup
0≤t≤T

sup
|x|≤X

∣∣∣∣ ∂k∂xk (Φm+1
g (u)− Φm+1

g (v))(t, x)

∣∣∣∣ (2.27a)

= sup
0≤t≤T

sup
|x|≤X

∣∣∣∣ ∂k∂xk
(
α

∫ t

0

∂x(Φmg (u)− Φmg (v))(s, x)ds

)∣∣∣∣ (2.27b)

= sup
0≤t≤T

sup
|x|≤X

∣∣∣∣α ∫ t

0

∂k+1

∂xk+1
(Φmg (u)− Φmg (v))(s, x)ds

∣∣∣∣ (2.27c)

≤ sup
0≤t≤T

sup
|x|≤X

∣∣∣∣α ∫ t

0

‖Φmg (u)− Φmg (v)‖s,X,k+1ds

∣∣∣∣ (2.27d)

≤ sup
0≤t≤T

sup
|x|≤X

∣∣∣∣α ∫ t

0

(|α|s)m

m!
‖u− v‖s,X,k+m+1ds

∣∣∣∣ (2.27e)

≤ sup
0≤t≤T

∣∣∣∣α ∫ t

0

(|α|s)m

m!
‖u− v‖T,X,k+m+1ds

∣∣∣∣ (2.27f)

21

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

= sup
0≤t≤T

∣∣∣∣α |α|mtm+1

(m+ 1)!

∣∣∣∣ ‖u− v‖T,X,k+m+1 (2.27g)

=
(|α|T)m+1

(m+ 1)!
‖u− v‖T,X,k+m+1, (2.27h)

(2.27i)

where (2.27b) is justified by writing Φm+1
g (u) = Φg(Φ

m
g (u)) and applying equation (2.24), (2.27c)

by the Leibniz rule, (2.27d) by majorizing the integral and equation (2.25), (2.27e) by induction
hypothesis and (2.27f) by noticing the independence on x and majorizing the pseudonorm. We thus
obtain the desired result.

Let us see how we can use these bounds in a proof.

Theorem 7 (Local Fréchet space convergence theorem). Let C(T, C∞(R)) be the Fréchet
space with pseudonorms ‖ · ‖T,X,k given by (2.25). Take an initial input u0 ∈ C(T, C∞(R)) and
initial condition g ∈ C∞(R). Assume also that u0 = 0 and g is analytic at 0 with some radius
of convergence1 R. Let Φg : C(T, C∞(R)) → C(T, C∞(R)) be given by (2.24). Then, for any
T,X ∈ R+ such that |α|T + X < R, the sequence (um) given by um = Φmg (u0) converges in the
rectangle X′ = [0, T]× [−X,X] to a fixed point of Φg �X.

Proof. To facilitate the exposition we introduce the pseudonorms on g given by

‖g‖X,k = sup
|x|≤X

∣∣∣∣∂kg∂xk
(x)

∣∣∣∣ , for X ∈ R+, k ∈ N. (2.28)

Since g is analytic at 0 with radius of convergence R, there is a sequence of real coefficients (aj)
such that, for all x ∈ (−R,R),

g(x) =

∞∑
j=0

ajx
j .

It also follows that lim supn→∞
n
√
|an| ≤ 1

R (see Footnote 1). Moreover, we have the following
bound, for any X < R:

‖g‖X,k =

∣∣∣∣∣∣ sup
|x|<X

∞∑
j=0

(j + k)!

j!
aj+kx

j

∣∣∣∣∣∣ ≤
∞∑
j=0

(j + k)!

j!
|aj+k|Xj . (2.29)

Let T,X ∈ R+ such that |α|T +X < R. We show that (um) is a Cauchy sequence with respect
to the pseudonorm ‖ · ‖T,X,k. First observe that

∞∑
m=0

‖um+1 − um‖T,X,k =

∞∑
m=0

‖Φmg (g)− Φmg (0)‖T,X,k (2.30a)

≤
∞∑
m=0

|α|mT
m

m!
‖g‖X,k+m (2.30b)

≤
∞∑
m=0

∞∑
j=0

|α|mTmXj |ak+m+j |
(k +m+ j)!

m!j!
(2.30c)

1Or equivalently, that g has a holomorphic extension on a disk of the complex plane with center 0 and radius R;
see Remark 2.4.2.

22

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

=

∞∑
s=0

s∑
m=0

|α|mTmXs−m|ak+s|
(k + s)!

m!(s−m)!
(2.30d)

=

∞∑
s=0

(|α|T +X)s|ak+s|
(k + s)!

s!
, (2.30e)

where (2.30b) is justified by the Contraction Inequalities (Lemma 2.4.1), (2.30c) by equation (2.29),
(2.30d) by rearranging the sum and adding over diagonals s = m + j and (2.30e) by taking the
binomial expansion of (|α|T +X)s.

By the root test, the above series is convergent, since

lim sup
s→∞

s

√
(|α|T +X)s|ak+s|

(k + s)!

s!
= (|α|T +X) · lim sup

n→∞

n
√
|an| · 1 <

R

R
= 1.

Since the series is convergent, it follows that, for i < j,

‖uj − ui‖T,X,k ≤
j−1∑
m=i

‖um+1 − um‖T,X,k ≤
∞∑
m=i

‖um+1 − um‖T,X,k −→
i→∞

0.

Hence (um) is a Cauchy sequence with respect to the pseudonorm ‖ · ‖T,X,k. Since this holds for
all k ∈ N and C([0, T], C∞(−X,X)) is complete, it follows that (um) has a limit in X. Now, using
continuity of Φg �X, we conclude that this limit must be a fixed point of Φg �X.

Remark 2.4.2. The reader should distinguish between the following two concepts:

• the existence of a holomorphic function, defined in a disk of the complex plane C, which
coincides with g at the real axis {y = 0};

• the convergence of the construction um = Φmg (0) to a fixed point u, defined in a rectangle of
T× R, which coincides with g at initial time {t = 0}.

As seen from Theorem 7, the existence of a holomorphic extension implies convergence to a fixed
point. Both these functions (the holomorphic extension and the fixed point) can be depicted by
planar diagrams, and both can be seen as extensions of g (see Figure 2.5). However, these functions,
and the domains in which they live, are substantially different.

As an immediate corollary of Theorem 7, we have:

Theorem 8 (First global Fréchet space convergence theorem). Consider the Fréchet space
C(T, C∞(R)) with pseudonorms ‖ · ‖T,X,k given by (2.25). Take an initial input u0 ∈ C(T,X) and
initial condition g ∈ C∞(R). Assume also that u0 = 0 and g is entire (i.e. has a holomorphic
extension to the complex plane). Let Φg : C(T, C∞(R)) → C(T, C∞(R)) be given by (2.24). Then
the sequence (um) given by um = Φmg (u0) converges to a fixed point of Φg.

Proof. Since g is entire, it is analytic at 0 with any radius of convergence R. Thus, by Theorem 7, the
sequence um converges to a fixed point on any compact rectangle [0, T]×[−X,X]. Therefore, we have
convergence of um for any pseudonorm ‖ · ‖T,X,k, so that we have convergence in C(T, C∞(R)).

The next step is to generalize Theorem 8 to a larger class of initial functions u0 (other that
u0 = 0). We do that proof in two steps: assume g = 0 to establish sufficient conditions on u0; then
consider the more general case g ∈ C∞(R).

23

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

x x

y t

· · · ·−R 0 R

R

−X 0 X

T

C T× R

g(x+ iy) u(t, x)

Figure 2.5: On the left: a function g(x + iy) of type C ⇀ C, defined in a disk, that coincides with
g at {y = 0,−R < x < R}. On the right: a fixed point u(t, x) of type T × R ⇀ R, defined in a
rectangle, that coincides with g at {t = 0,−X ≤ x ≤ X}. The rectangle and disk dimensions follow
the relation |α|T +X < R.

Definition 2.4.3 (Uniform entirety). We say that a function u ∈ C(T, C∞(R)) is uniformly
entire if u(t, x) =

∑∞
j=0 aj(t)x

j for some sequence of functions (aj) ∈ C(R) such that

lim

(
sup

0≤t≤T
|aj(t)|

)1/j

= 0 for all T ∈ T.

The motivation for the above terminology is that, for such a function u, the section x 7→ u(t, x)
is entire for all t, and the convergence j

√
|aj(t)| → 0 is uniform in t.

Theorem 9 (Global Fréchet space convergence to zero). Let C(T, C∞(R)) be the Fréchet
space with the family of pseudonorms ‖ · ‖T,X,k given by (2.25). Let also u0 ∈ C(T, C∞(R)) be an
initial input, and g ∈ C∞(R) be an initial condition. We assume in addition that u0 is uniformly
entire and g = 0. Let Φ0 : C(T, C∞(R))→ C(T, C∞(R)) be given by

Φ0(u)(t, x) = α

∫ t

0

∂xu(s, x)ds. (2.31)

Then the sequence (um) given by um = Φm0 (u0) converges to 0.

Proof. To facilitate the exposition we introduce the pseudonorms on aj given by

‖aj‖T = sup
0≤t≤T

|aj(t)|, for T ∈ T. (2.32)

We show that
∑
m

‖um‖T,X,k is a convergent series for any pseudonorm ‖ · ‖T,X,k. We have that

(see proof of Theorem 7)

∞∑
m=0

‖um‖T,X,k =

∞∑
m=0

‖Φm0 (u0)− Φm0 (0)‖T,X,k (2.33a)

≤
∞∑
m=0

|α|mTm

m!
‖u0‖T,X,k+m (2.33b)

24

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

=

∞∑
m=0

|α|mTm

m!
sup

0≤t≤T
|x|≤X

∣∣∣∣∣∣
∞∑
j=0

(j + k +m)!

j!
aj+k+m(t)xj

∣∣∣∣∣∣ (2.33c)

≤
∞∑
m=0

∞∑
j=0

|α|mTmXj (j + k +m)!

m!j!
‖aj+k+m‖T (2.33d)

=

∞∑
s=0

s∑
m=0

|α|mTmXs−m (k + s)!

m!(s−m)!
‖ak+s‖T (2.33e)

=

∞∑
s=0

(|α|T +X)s
(k + s)!

s!
‖ak+s‖T . (2.33f)

By the root test, the above series is convergent, since(
(|α|T +X)s

(k + s)!

s!

)1/s

−→
s→∞

|α|T +X

and s
√
‖ak+s‖T −→

s→∞
0 by assumption. Since

∑
‖um‖T,X,k is convergent, we then have that

‖um‖T,X,k −→
m→∞

0 and thus um converges to 0, as we wanted to prove.

We now combine Theorems 8 and 9 to prove our most general result.

Theorem 10 (Second global Fréchet space convergence theorem). Consider the Fréchet
space C(T, C∞(R)) with pseudonorms ‖ · ‖T,X,k given by (2.25). Let u0 ∈ C(T, C∞(R)) be an initial
input and g ∈ C∞(R) be an initial condition. Assume also that u0 is uniformly entire and that g is
entire. Let Φg : C(T, C∞(R))→ C(T, C∞(R)) be given by (2.24). Then the sequence (um) given by
um = Φmg (u0) converges to a fixed point of Φg.

Proof. Let Φg,Φ0 : C(T, C∞(R)) → C(T, C∞(R)) be given by (2.24), (2.31). We observe that, for
any u, v ∈ C0,∞(X) we have

Φg(u+ v) = g + α

∫ t

0

(u+ v)xds = g + α

∫ t

0

uxds+ α

∫ t

0

vxds = Φg(u) + Φ0(v).

We can then infer that u1 = Φg(u0) = Φg(0 + u0) = Φg(0) + Φ0(u0). Also, u2 = Φg(u1) =
Φg(Φg(0) + Φ0(u0)) = Φ2

g(0) + Φ2
0(u0), and, in general,

um = Φmg (0) + Φm0 (u0).

By Theorem 8, (Φmg (0)) converges to a fixed point of Φg. By Theorem 9, (Φm0 (u0)) converges to
0. Therefore, (um) and (Φmg (0)) have the same limit. In particular, (um) converges to a fixed point
of Φg.

A nice consequence of the proof is that it allows us to also establish uniqueness in a certain class
of functions.

Corollary 2.4.4 (Uniqueness of uniformly entire fixed points). Consider the Fréchet space
C(T,X) with pseudonorms ‖ · ‖T,X,k given by (2.25). Take an initial condition g ∈ C∞(R) and
assume also that g is entire. Let Φg : C(T,X)→ C(T,X) be given by (2.24). Then there is at most
one uniformly entire fixed point of Φg.

25

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Proof. Let u be any uniformly entire fixed point of Φg. By the proof of Theorem 10, we know that
u = Φmg (u) = Φmg (0) + Φm0 (u). Since (Φm0 (u)) converges to 0, we get that (Φmg (0)) converges to u.
Thus any uniformly entire fixed point of Φg must coincide with the limit of (Φmg (0)).

2.5 Fourier transform

In this section we shall introduce the Fourier transform, which will lead to a different fixed point
approach for obtaining specifications of the analog system. For the moment we focus on presenting
a rigorous definition of the Fourier transform, including its domain and co-domain.

As usually, we work on a space X of functions defined over some spatial domain Ω. We have to
consider the cases where Ω is bounded or unbounded separately. For the unbounded case, we shall
only treat Ω = R, whereas for the bounded case we shall treat Ω = [0, 2π], that is, we present the
analysis for only one spatial dimension. The higher dimension cases like Ω = Rn or Ω = [0, 2π]n will
be omitted for the sake of brevity, but most of the results generalize with additional technical effort.

Unbounded domain: Consider the case where X is a certain class of functions of type R→ C.
For each such function f = f(x), the Fourier transform, when defined, will be given by the equation

(Ff) (ξ) = f̂(ξ) =
1√
2π

∫
R
e−ixξf(x)dx. (2.34)

Observe that we typically represent f as a function of argument x and f̂ as a function of argument
ξ; other choices for the Fourier transform are possible, and we include the multiplier of 1√

2π
to get

a similar expression for the inverse Fourier transform, which when defined will be given by(
F−1f̂

)
(x) = f(x) =

1√
2π

∫
R
eixξ f̂(ξ)dξ. (2.35)

Clearly, equations (2.34) and (2.35) will be valid whenever the integrals converge. For this reason
it is typical to consider a condition of absolute integrability for the function f .

Definition 2.5.1 (Absolute integrability). A function f : R → C is said to be absolutely in-

tegrable if

∫
R
|f(x)|dx < ∞. We denote by L1(R) the space of absolutely integrable functions,

quotiented with the equivalence relation of a.e. equality.

Definition 2.5.2 (Fourier transform in L1(R)). We denote by DF (R) ⊂ L1(R) the space of
absolutely integrable functions f such that equation (2.34) also defines an absolutely integrable

function f̂ . We define the Fourier transform operator F : DF (R) → DF (R) by Ff = f̂ , given by

equation (2.34). We define the inverse Fourier transform F−1 : DF (R) → DF (R) by F−1f̂ = f ,
given by equation (2.35). The fact that F and F−1 are well-defined bijections in DF (R) follows
from the Fourier inversion theorem, [Fol95].

Definition 2.5.3 (Fourier transform in S(R)). We recall the Schwarz space, denoted by S(R),
which was presented previously in Example 2.2.10 as a Fréchet space. This space consists of infinitely
differentiable functions whose derivatives decay rapidly (i.e. faster than any power of x). We then
define the Fourier transform and inverse Fourier transform operators F ,F−1 : S(R) → S(R) in a
similar fashion.

Remark 2.5.4 (Fourier transform in L2(R)). We should mention that the Fourier transform
and its inverse can also be defined in the space L2(R) of square-integrable functions, by extending
continuously the Fourier transform in S(R) and using the Plancherel theorem; see for example [Fol95]
for details.

26

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Bounded domain: Consider the case where X is a class of periodic functions of type [0, 2π]→ C.
For each such function f = f(x), the complex Fourier coefficients, when defined, will be given by
the equations

(Ff)k = f̂k =
1√
2π

∫ 2π

0

e−ikxf(x)dx, for k ∈ Z. (2.36)

Observe that we represent f as a function of real argument x and f̂ as a sequence indexed by
integer k; other choices for the Fourier coefficients are possible; when defined, the inverse operation
of (2.36) will be given by the Fourier series(

F−1f̂
)

(x) = f(x) =
1√
2π

∑
k∈Z

f̂ke
ikx. (2.37)

Observe that we use the terms ‘Fourier transform’ and ‘inverse Fourier transform’ for the un-
bounded domain and the corresponding terms ‘Fourier coefficents’ and ‘Fourier series’ for the
bounded domain.

Equations (2.36) and (2.37) will be valid whenever the integral or series converge. As in the
unbounded case, it is typical to consider a condition of absolute integrability for f , or absolute
summability for f̂ .

Definition 2.5.5. A function f : [0, 2π] → C is said to be absolutely square-integrable whenever∫ 2π

0

|f(x)|2dx < ∞. We denote by L2([0, 2π]) the space of absolutely square-integrable functions,

quotiented with the equivalence relation of a.e. equality.

Definition 2.5.6. A sequence f̂ ∈ CZ is said to be absolutely square-summable if
∑
k∈Z
|f̂k|2 < ∞.

We denote by `2(Z) the space of absolutely square-summable sequences.

Definition 2.5.7. We define the Fourier transform operator F : L2([0, 2π]) → `2(Z), given by
equation (2.36) and the inverse Fourier transform operator F−1 : `2(Z) → L2([0, 2π]), given by
equation (2.37).

2.6 Existence, uniqueness and convergence in the Schwarz
space

In this section, as a first case study, we consider the situation in which X = S(R). The two main
advantages of choosing such space are that all operators involved are totally defined and continuous;
and we can easily state the fixed point problem in the Fourier space.

Proposition 2.6.1. Let p be a polynomial in one variable and let L = p(∂x) be a linear differential
operator acting on S(R). Then L : S(R) → S(R) is total and continuous. Moreover, if u ∈ S(R),
then

F(Lu)(ξ) = p(iξ)û(ξ). (2.38)

Proposition 2.6.2. Let p be a polynomial in one variable and let L = p(∂x) be a linear differential
operator acting on S(R). For g ∈ S(R), consider the operator Φg : C(T,S(R))→ C(T,S(R)) given
by

27

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Φg(u)(t) = g +

∫ t

0

Lu(s)ds. (2.39)

Then we can define an operator Φ̂ĝ : C(T,S(R))→ C(T,S(R)), given by

Φ̂ĝ(û)(t) = ĝ +

∫ t

0

p(iξ)û(s)ds. (2.40)

Moreover, for u ∈ C(T,S(R)), u is a fixed point of Φg if and only if û is a fixed point of Φ̂ĝ.

Therefore, we shall try to obtain existence and uniqueness results for fixed points of Φ̂ĝ, defined
in (2.40). As usual, we begin by proving contraction inequalities. We observe that S(R) is a Fréchet
space, and we shall use a slighty different (yet equivalent) choice of pseudonorms from Example
2.2.10, namely for a, b ∈ N we consider the pseudonorm

‖u‖a,b = sup
x∈R

∣∣(1 + |x|)a∂bxu(x)
∣∣ , (2.41)

so that C(T,S(R)) is a Fréchet space with pseudonorms

‖u‖a,b,T = sup
0≤t≤T

‖u(t)‖a,b. (2.42)

Proposition 2.6.3. Let p be a polynomial of degree m. There is a constant C, depending on p only,
such that for any ξ ∈ R, k ∈ N and j ∈ N, we have∣∣∣∂jξ(p(iξ)k)

∣∣∣ ≤ (mk)jCk(1 + |ξ|)mk. (2.43)

Proposition 2.6.4. Let p be a polynomial of degree m and g ∈ S(R). There is a constant C,
depending on p only, such that for any pseudonorm ‖ · ‖a,b,T and any k ∈ N, û, v̂ ∈ C(T,S(R)), we
have

∥∥∥Φ̂kĝ(û)− Φ̂kĝ(v̂)
∥∥∥
a,b,T

≤ (2mk)b(CT)k

k!

b∑
j=0

‖û− v̂‖a+km,j,T . (2.44)

Proof. First observe that p(iξ)k(û− v̂) is infinitely differentiable in ξ, with

∂bξ
(
p(iξ)k(û− v̂)

)
=

b∑
j=0

(
b

j

)
∂jξ
(
p(iξ)k

)
∂b−jξ (û− v̂). (2.45)

We have∥∥∥Φ̂kĝ(û)− Φ̂kĝ(v̂)
∥∥∥
a,b,T

=

∥∥∥∥∫ t

0

· · ·
∫ sk−1

0

p(iξ)k(û− v̂)dsk . . . ds1

∥∥∥∥
a,b,T

(2.46a)

≤ sup
0≤t≤T

sup
ξ∈R

∫ t

0

· · ·
∫ sk−1

0

(1 + |ξ|)a
∣∣∂bξ (p(iξ)k(û− v̂)

)∣∣ dsk . . . ds1 (2.46b)

≤ T k

k!
sup

0≤t≤T
sup
ξ∈R

(1 + |ξ|)a
b∑
j=0

(
b

j

) ∣∣∣∂jξ (p(iξ)k) ∂b−jξ (û− v̂)
∣∣∣ (2.46c)

28

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

≤ T k

k!
sup

0≤t≤T
sup
ξ∈R

b∑
j=0

(
b

j

)
(mk)jCk(1 + |ξ|)a+mk

∣∣∣∂b−jξ (û− v̂)
∣∣∣ (2.46d)

≤ (2mk)b(CT)k

k!

b∑
j=0

‖û− v̂‖a+km,j,T , (2.46e)

where (2.46c) is justified by equation (2.45) and (2.46d) by Proposition 2.6.3. This concludes the
proof.

Remark 2.6.5. Once more, we arrive at a situation similar to what occured in the previous sections:
our contraction inequalities relate pseudonorms ‖ · ‖a,b,T with pseudonorms ‖ · ‖a′,b′,T , for some a′

higher than a (in this case, a′ = a+ km) and some b′ smaller than b (in this case, all b′ = 0, . . . , b).
As we have seen before, a possible next step would be to impose conditions on û and v̂ that ensure∥∥∥Φ̂kĝ(û)− Φ̂kĝ(v̂)

∥∥∥
a,b,T

−→
k→∞

0.

Proposition 2.6.6. Let p be a polynomial of degree m and g ∈ S(R). Let û, v̂ ∈ C(T,S(R)) with
the following property: for all b ∈ N, T ∈ T, there is a constant Cb,T such that, for all a ∈ N,

‖û‖a,b,T , ‖v̂‖a,b,T ≤ C
a
b,T .

Then ∥∥∥Φ̂kĝ(û)− Φ̂kĝ(v̂)
∥∥∥
a,b,T

−→
k→∞

0.

Proof. We have

∥∥∥Φ̂kĝ(û)− Φ̂kĝ(v̂)
∥∥∥
a,b,T

≤ (2mk)b(CT)k

k!

b∑
j=0

‖û− v̂‖a+km,j,T (2.47a)

≤ (2mk)b(CT)k

k!

b∑
j=0

‖û‖a+km,j,T + ‖v̂‖a+km,j,T (2.47b)

≤ (2mk)b(CT)k

k!

b∑
j=0

Ca+km
j,T + Ca+km

j,T (2.47c)

≤ (2mk)b(CT)k

k!
2

 b∑
j=0

Cj,T

a+km

−→
k→∞

0, (2.47d)

where (2.47a) is justified by Proposition 2.6.4, (2.47b) by triangle inequality and (2.47c) by the
growth bounds on the pseudonorms of û and v̂. This concludes the proof.

Theorem 11 (Fixed points of Φ̂ĝ: existence and convergence in S(R)). Let p be a polynomial
of degree m and g ∈ S(R). Suppose that for all b ∈ N, there is a constant Cb such that, for all a ∈ N,

‖ĝ‖a,b ≤ C
a
b .

Then the sequence ûk = Φ̂kĝ(0) converges in C(T,S(R)) to a fixed point û∗ of Φ̂ĝ.

29

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Proof. Fix a, b, T . We observe that

∞∑
k=0

‖ûk+1 − ûk‖a,b,T =

∞∑
k=0

‖Φ̂kĝ(ĝ)− Φ̂kĝ(0)‖a,b,T (2.48a)

≤
∞∑
k=0

(2mk)b(CT)k

k!

b∑
j=0

‖ĝ‖a+km,j,T (2.48b)

≤
∞∑
k=0

(2mk)b(CT)k

k!

b∑
j=0

Ca+km
j (2.48c)

≤
∞∑
k=0

(2mk)b(CT)k

k!

 b∑
j=0

Cj

a+km

<∞, (2.48d)

where (2.48b) is justified by Proposition 2.6.4 and (2.48c) by the growth bounds on the pseudonorms
of ĝ. The summability of the last series can be justified, for example, by the ratio test (or noting
that the k! factor greatly dominates the remaining factors).

Repeating the reasoning of previous proofs (cf. Theorem 7), we then conclude that, for i < j,
‖ûj − ûi‖a,b,T −→

i→∞
0, so that (ûk) is a Cauchy sequence and thus it must converge to some limit û∗,

which must be a fixed point of Φ̂ĝ.

Remark 2.6.7. For a given ĝ ∈ S(R), let us consider the sequence uk where û0 = 0 and ûk+1 =
Φ̂ĝ(ûk). It is easy to check that u1(t, ξ) = ĝ(ξ), u2(t, ξ) = ĝ(ξ) + p(iξ)tĝ(ξ) and more generally

ûk =

k−1∑
i=0

p(iξ)ktk

k!
ĝ(ξ);

this can be proven by induction on k, or simply by applying the Fourier Transform to the result on
Lemma 2.3.1. Thus, we have convergence to a fixed point if and only if the series

∞∑
k=0

p(iξ)ktk

k!
ĝ(ξ) (2.49)

is convergent in C(T,S(R)).

It is a relevant question whether the growth conditions on g in Theorem 11 can be relaxed in
some manner. We present an example where the series in (2.49) is not absolutely convergent, and
thus it suggests a negative answer.

Example 2.6.8. Let p be a polynomial of degree m > 0, which can be written as p(iξ) = Cmξ
m +

. . . + C1ξ + C0, where Ci are complex numbers and the leading coefficient Cm 6= 0. We can make
an estimate and assume there exist positive constants C and X such that

|p(iξ)| ≥ Cξm, for ξ ≥ X. (2.50)

Now consider ĝ ∈ S(R) such that

ĝ(ξ) = e−ξ, for ξ ≥ X; (2.51)

30

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

since the decay is exponential for ξ → +∞, we can construct such a ĝ. Next we consider k large
enough, namely k ≥ X, and estimate one particular pseudonorm (a = 0, b = 0, some T),

∥∥∥∥p(iξ)ktkk!
ĝ

∥∥∥∥
0,0,T

= sup
0≤t≤T

sup
ξ∈R

∣∣∣∣p(iξ)ktkk!
ĝ(ξ)

∣∣∣∣ (2.52a)

≥ sup
ξ≥X

∣∣∣∣p(iξ)kT kk!
e−ξ
∣∣∣∣ (2.52b)

≥ sup
ξ≥X

(CTξm)k

k!
e−ξ (2.52c)

≥ (CTkm)ke−k

k!
(2.52d)

≥ (CTkm)ke−k

ekk+1/2e−k
(2.52e)

=
(CT)k

e
k(m−1)k−1/2, (2.52f)

where (2.52c) is justified by the bound (2.50) on p(iξ), (2.52d) by evaluating at ξ = k and (2.52e)
by Stirling’s approximation [Rud76, Chapter 8],

√
2πkk+ 1

2 e−k ≤ k! ≤ ekk+ 1
2 e−k. (2.53)

If T is taken to be large enough, namely T > 1/C, then the series with terms given as
(CT)k

e
k(m−1)k−1/2 diverges, and therefore (2.49) is not absolutely convergent for k → ∞, that

is,

lim
K→∞

K∑
k=0

∥∥∥∥p(iξ)ktkk!
ĝ

∥∥∥∥
0,0,T

= +∞.

Of course, this does not tell us definitely whether there is convergence to the fixed point; we
only proved that (2.49) is not an absolutely convergent series, but not that it is not convergent (as
per Remark 2.6.7). In particular, the Riemann rearrangement theorem suggests that the sum may
depend on the order we sum its terms. In any case, it can be seen that our choice of g does not
fulfill the conditions on Theorem 11, and in fact for any b ∈ N, ‖g‖a,b grows like (ae)−a.

We next consider a slightly different approach and reframe our problem in the larger space of
C∞(R) functions. Recall that this is a Fréchet space with pseudonorms

‖u‖M,b = sup
|x|≤M

∣∣∂bxu(x)
∣∣ , (2.54)

so that C(T, C∞(R)) is a Fréchet space with pseudonorms

‖u‖M,b,T = sup
0≤t≤T

‖u(t)‖M,b. (2.55)

We observe that S(R) is a linear subspace of C(R); one can also see that the topology induced by
the pseudonorms of S(R) is finer than the topology induced by the pseudonorms of C∞(R). Thus,
if (un)n∈N is a sequence in S(R) converging to u ∈ S(R), then we also have that un converges to u

31

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

in C∞(R). However, the converse does not hold, as the following example shows.

Example 2.6.9. Consider the sequence un(x) = e−(x−n)2 , given by the translation of the Gaussian

e−x
2

to the right by n units. It is obvious that un ∈ C∞(R) for all n; also, the fast decay at infinity
ensures that un ∈ S(R) as well. Moreover, one can see that, since the Gaussian wave ‘travels to
infinity’ as n → ∞, then the sequence un and any of its derivatives vanish in every fixed compact
interval. In other words, un → 0 in the topology induced by the C∞(R) pseudonorms.

Figure 2.6: Plot of a Gaussian wave un(x).

However, such convergence does not hold in the S(R)-topology; in fact, just by looking at the
first pseudonorm ‖ · ‖0,0 one sees that

‖un‖0,0 = sup
x∈R
|un(x)| = un(n) = 1 6→ 0,

and thus un 6→ 0 in S(R).

The arguments presented above also apply in the corresponding stream spaces C(T,S(R)) and
C(T, C∞(R)); moreover, when ĝ ∈ S(R) (and more generally for ĝ ∈ C∞(R)), we can extend the
operator Φ̂ĝ given by (2.40) and think of it as acting on C(T, C∞(R)).

Proposition 2.6.10. Let p be a polynomial of degree m and g ∈ S(R). There is a constant C,
depending on p only, such that for any pseudonorm ‖ · ‖M,b,T and any k ∈ N, û, v̂ ∈ C(T, C∞(R)),
we have

∥∥∥Φ̂kĝ(û)− Φ̂kĝ(v̂)
∥∥∥
M,b,T

≤ (2mk)b(CT (1 +M)m)k

k!

b∑
j=0

‖û− v̂‖M,j,T . (2.56)

Proof. We have∥∥∥Φ̂kĝ(û)− Φ̂kĝ(v̂)
∥∥∥
M,b,T

=

∥∥∥∥∫ t

0

· · ·
∫ sk−1

0

pk(iξ)(û− v̂)dsk . . . ds1

∥∥∥∥
M,b,T

(2.57a)

≤ sup
0≤t≤T

sup
|ξ|≤M

∫ t

0

· · ·
∫ sk−1

0

∣∣∂bξ (pk(iξ)(û− v̂)
)∣∣ dsk . . . ds1 (2.57b)

≤ T k

k!
sup

0≤t≤T
sup
|ξ|≤M

b∑
j=0

(
b

j

) ∣∣∣∂jξ (pk(iξ)
)
∂b−jξ (û− v̂)

∣∣∣ (2.57c)

≤ T k

k!
sup

0≤t≤T
sup
|ξ|≤M

b∑
j=0

(
b

j

)
(mk)jCk(1 + |ξ|)mk

∣∣∣∂b−jξ (û− v̂)
∣∣∣ (2.57d)

32

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

≤ (2mk)b(CT (1 +M)m)k

k!

b∑
j=0

‖û− v̂‖M,j,T , (2.57e)

where (2.57c) is justified by Equation (2.45) and (2.57d) by Proposition 2.6.3. This concludes the
proof.

With the previous results in hand, we proceed to prove existence and uniqueness of a fixed point
of Φ̂ĝ defined in C(T, C∞(R)).

Theorem 12 (Fixed points of Φ̂ĝ: existence, uniqueness and convergence in C∞(R)).

Let p be a polynomial of degree m and g ∈ S(R). Then there is exactly one fixed point of Φ̂ĝ in

C(T, C∞(R)), and moreover, for any û0 ∈ C(T, C∞(R)), we have Φ̂kĝ(û0) −→
k→∞

û∗ in C(T, C∞(R)),

with û∗ denoting the fixed point.

Proof. We first simplify the bound given by Proposition 2.6.10 by noting that, for any M, b, T ∈ N,
there is a constant Cp,M,b,T (depending on p, M , b and T) such that, for all k ∈ N,

∥∥∥Φ̂kĝ(û)− Φ̂kĝ(v̂)
∥∥∥
M,b,T

≤
Ckp,M,b,T

k!

b∑
j=0

‖û− v̂‖M,j,T . (2.58)

Existence and convergence: Take an arbitrary û0 ∈ C(T, C∞(R)); we shall show that the
sequence ûk := Φ̂kĝ(û0) has a limit.

Fix M, b, T ∈ N. As usual, we observe that

∞∑
k=0

‖ûk+1 − ûk‖M,b,T =

∞∑
k=0

‖Φ̂kĝ(û1)− Φ̂kĝ(û0)‖M,b,T (2.59a)

≤
∞∑
k=0

Ckp,M,b,T

k!

b∑
j=0

‖û1 − û0‖M,j,T (2.59b)

= eCp,M,b,T

b∑
j=0

‖û1 − û0‖M,j,T <∞, (2.59c)

where (2.59b) is justified by Equation (2.58).
Repeating the reasoning of previous proofs (cf. Theorem 7), we then conclude that ‖ûj −

ûi‖a,b,T −→
i,j→∞

0, so that (ûk) is a Cauchy sequence and thus it must converge to some limit û∗,

which must be (by continuity) a fixed point of Φ̂ĝ.

Uniqueness: Let û∗, v̂∗ ∈ C(T, C∞(R)) be fixed points of Φ̂ĝ. We shall prove that they coincide
by showing that, for every M, b, T , we have ‖û∗ − v̂∗‖M,b,T = 0. This will be done by induction on
b ∈ N.

Base step: Let b = 0 and let k be large enough such that
Ck

p,M,0,T

k! < 1. Then

‖û∗ − v̂∗‖M,0,T = ‖Φ̂kĝ(û∗)− Φ̂kĝ(v̂∗)‖M,0,T ≤
Ckp,M,0,T

k!
‖û∗ − v̂∗‖M,0,T , (2.60)

which implies ‖û∗ − v̂∗‖M,0,T = 0.

33

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Induction step: Assume ‖û∗ − v̂∗‖M,j,T = 0 for j = 0, . . . , b. Let k be large enough such that
Ck

p,M,b+1,T

k! < 1. Then

‖û∗ − v̂∗‖M,b+1,T = ‖Φ̂kĝ(û∗)− Φ̂kĝ(v̂∗)‖M,b+1,T ≤
Ckp,M,b+1,T

k!

b+1∑
j=0

‖û∗ − v̂∗‖M,j,T

=
Ckp,M,b+1,T

k!
‖û∗ − v̂∗‖M,b+1,T ,

where the last step is justified by induction hypothesis; the inequality then implies ‖û∗−v̂∗‖M,b+1,T =
0.

Since we have ‖û∗ − v̂∗‖M,b,T = 0, we can conclude by point separability that û∗ = v̂∗, so that
we have uniqueness.

From Theorem 12, we get existence, uniqueness and convergence to a fixed point in the space
C(T, C∞(R)). Therefore, one concludes that there is at most one fixed point of Φ̂ĝ in the subspace
C(T,S(R)). The next logical step is to question whether the fixed point in C(T, C∞(R)), obtained
through Theorem 12, also belongs in C(T,S(R)), and if so, whether the convergence to that fixed
point is preserved in the finer topology.

As an attempt to answer this question, we first look at the linear (in û) evolution problem

ût(t, ξ) = p(iξ)û(t, ξ), û(0, ξ) = ĝ(ξ);

if we treat this as a decoupled system, then we can use the classical expression

û∗(t, ξ) = ep(iξ)tĝ(ξ) (2.61)

as the solution to our problem. We can easily check that û∗ must be the fixed point of Φ̂ĝ in the
space C(T, C∞(R)). Next, we determine whether û∗ is in C(T,S(R)); as we will see, this can be
accomplished by enforcing a condition on the polynomial p. Recall that, for a complex number z,
Re(z) denotes the real part of z.

Proposition 2.6.11. Let p be a polynomial of degree m and g ∈ S(R). Suppose that there is a
constant C such that, for all ξ ∈ R, Re(p(iξ)) ≤ C. Then û∗ defined as in (2.61) is in C(T,S(R)).

Proof. First observe that û∗ is infinitely differentiable in ξ, with

∂bξ

(
ep(iξ)tĝ

)
=

b∑
k=0

(
b

k

)
∂kξ

(
ep(iξ)t

)
∂b−kξ ĝ; (2.62)

moreover, the term ∂kξ

(
ep(iξ)t

)
can be seen to be of the form qk(t, ξ) ·ep(iξ)t, for some qk polynomial

in t and ξ. Let mk be the degree2 of qk. Now we can show that all pseudonorms are finite,

‖û∗‖a,b,T = sup
0≤t≤T

sup
ξ∈R

∣∣∣(1 + |ξ|)a∂bξ
(
ep(iξ)tĝ

)∣∣∣ (2.63a)

≤ sup
0≤t≤T

sup
ξ∈R

b∑
k=0

∣∣∣∣(bk
)

(1 + |ξ|)aqk(t, ξ)ep(iξ)t∂b−kξ ĝ

∣∣∣∣ (2.63b)

2it is fairly trivial to prove that mk = k(m− 1), but we do not need this fact.

34

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

≤ eCT
b∑

k=0

sup
0≤t≤T

sup
ξ∈R

∣∣∣∣(bk
)

(1 + |ξ|)aqk(t, ξ)∂b−kξ ĝ

∣∣∣∣ <∞, (2.63c)

where (2.63b) is justified by Equation (2.62); (2.63c) by the hypothesis that Re(p(iξ)) ≤ C and thus
|ep(iξ)t| ≤ eCt for all t, ξ; and to justify the finiteness of the last term, we can bound each of the
terms in the sum by a weighted sum of the pseudonorms ‖ĝ‖a′,b−k for a ≤ a′ ≤ a+mk. We conclude
that û∗ ∈ C(T,S(R)).

Remark 2.6.12. We can actually see that the condition Re(p(iξ)) ≤ C is necessary for ep(iξ)tĝ to
be in C(T,S(R)) for all ĝ. Let p be a polynomial such that Re(p(iξ)) is positively unbounded; thus
we can assume that Re(p(iξ)) ≥ C|ξ|k for some constants C > 0 and k ∈ N+, and for large positive
ξ, or large negative ξ; without loss of generality we assume this holds for large positive ξ, say ξ ≥ X.
Now take ĝ ∈ S(R) such that

ĝ(ξ) = e−Cξ
k

, for ξ ≥ X;

since the decay is exponential for ξ → +∞, we can construct such a ĝ. Finally we prove that
ep(iξ)tĝ 6∈ C(T,S(R)), just by looking at one of its pseudonorms (a = 0, b = 0, T = 2),

‖ep(iξ)tĝ‖0,0,2 = sup
0≤t≤2

sup
ξ∈R
|ep(iξ)tĝ|

≥ sup
0≤t≤2

sup
ξ≥X
|ep(iξ)te−Cξ

k

|

= sup
0≤t≤2

sup
ξ≥X

eRe(p(iξ))te−Cξ
k

≥ sup
0≤t≤2

sup
ξ≥X

eC(t−1)ξk = +∞.

We have seen that, under some conditions on the polynomial p(iξ), the solution to our prob-
lem given by (2.61) does indeed belong in the smaller space C(T,S(R)). However, it is a much
harder question whether the construction presented in Theorem 12 converges to that fixed point in
C(T,S(R)). Example 2.6.9 shows that convergence in C(T, C∞(R)) does not entail convergence in
C(T,S(R)), and Example 2.6.8 shows that, for some choices of ĝ, the construction in Theorem 11
produces a series (2.49) which is not absolutely convergent in C(T,S(R)), even though Theorem 12
implies that such series is absolutely convergent in C(T, C∞(R)). Based on these results, we would
conjecture that, in general, there is no convergence in the finer topology, even with the bound on
the polynomial p(iξ). However, a proof of such statement, or of its negation, still eludes us.

2.7 Existence, uniqueness and convergence in the h∞-space

In this section, as a second case study, we consider the case in which X = C∞p ([0, 2π]). In other
words, X is the space of infinitely differentiable functions g of type [0, 2π]→ C such that

g(k)(0) = g(k)(2π) for all k ∈ N. (2.64)

We refer to (2.64) as periodic boundary conditions; the motivation is that such a function g can
be extended to an infinitely differentiable function g̃ ∈ C∞(R) such that g̃(x) = g̃(x + 2π) for all
x ∈ R.

35

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

We also remark that C∞p ([0, 2π]) is a Fréchet space under the pseudonorms

‖g‖2M =

∫ 2π

0

∣∣∣∣ dMdxM g(x)

∣∣∣∣2 dx.
The reason for taking integral norms (instead of supremum norms) will be made clear shortly. We

introduce the subspace h∞(Z) of `2(Z) given by those sequences which decay faster than algebraically,
in the sense that ĝ ∈ h∞(Z) if and only if the quantities

‖ĝ‖2M =
∑
k∈Z

k2M |ĝk|2 (2.65)

are finite for every M ∈ N. It should be mentioned that (2.65) define a family of pseudonorms and
h∞(Z) is a Fréchet space. Moreover, we have the following result relating C∞p ([0, 2π]) and h∞(Z).

Proposition 2.7.1. Let F : L2([0, 2π]) → `2(Z) and F−1 : `2(Z) → L2([0, 2π]) be the Fourier
transforms on Definition 2.5.7.

1. F(C∞p ([0, 2π])) = h∞(Z) and F−1(h∞(Z)) = C∞p ([0, 2π]).

2. If g ∈ C∞p ([0, 2π]) and ĝ = F(g), then for all M ∈ N we have

‖g‖M = ‖ĝ‖M .

In other words, the restrictions of F to C∞p ([0, 2π]) and F−1 to h∞(Z) are inverses to respect to
each other and are isometries.

Most of this section will consist of proving the analog of some results on Section 2.6 for the
bounded domain case. We begin by showing how to state the fixed point problem in the space of
Fourier coefficients.

Proposition 2.7.2. Let p be a polynomial in one variable and let L = p(∂x) be a linear differen-
tial operator acting on C∞p ([0, 2π]). Then L : C∞p ([0, 2π]) → C∞p ([0, 2π]) is total and continuous.
Moreover, if g ∈ C∞p ([0, 2π]), then

(F(Lg))k = p(ik)ĝk. (2.66)

Proposition 2.7.3. Let p be a polynomial in one variable and let L = p(∂x) be a linear differential
operator acting on C∞p ([0, 2π]). For g ∈ C∞p ([0, 2π]), consider the operator Φg : C(T, C∞p ([0, 2π]))→
C(T, C∞p ([0, 2π])) given by

Φg(u)(t) = g +

∫ t

0

Lu(s)ds. (2.67)

Then we can define an operator Φ̂ĝ : C(T, h∞(Z))→ C(T, h∞(Z)), given by

Φ̂ĝ(û)(t)k = ĝk +

∫ t

0

p(ik)ûk(s)ds. (2.68)

Moreover, for u ∈ C(T, C∞p ([0, 2π])), u is a fixed point of Φg if and only if û is a fixed point of

Φ̂ĝ.

Remark 2.7.4. At this point, we can give an additional motivation for requiring, at the beginning
of this section, that all derivatives of functions in X must coincide at the boundary. On the usual

36

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

problems in PDEs, typical boundary conditions involve only a finite number of derivatives at the
endpoints. However, we are interested in a framework in which the operator L = p(∂x) is total.
Thus it makes sense to impose that any function in X be infinitely differentiable. Moreover, if we
only consider a finite number of boundary conditions in the definition of X , it may happen that
Lg 6∈ X for some g ∈ X , as the following example suggest.

Example 2.7.5. Let L = ∂2
x, so fixed points of Φg correspond to solutions of the heat equation

ut = uxx with initial data g. The typical periodic boundary conditions for the heat equation are
that u(t, 0) = u(t, 2π) and ux(t, 0) = ux(t, 2π). One could naively start by considering the space X
of functions g of type [0, 2π] → C which are (at least once) continuously differentiable and with a
periodic condition for g and g′. If we take initial data g(x) = x(x − π)(x − 2π) which is infinitely
differentiable, one can see that g(0) = g(2π) = 0 and g′(0) = g′(2π) = 2π2, so g would be in such
space X . However, Lg(x) = 6x− 6π, which does not satisfy the boundary conditions (in particular,
Lg(0) = −6π 6= 6π = Lg(2π). Thus any attempt of producing a fixed point Φg via iterations starting
from u0 = 0 would fail, since the iterates would escape the space C(T,X) after a finite number of
steps.

Figure 2.7: Plot of a periodic initial condition g(x) = x(x− π)(x− 2π)..

For the rest of this section we try to obtain existence and uniqueness results for fixed points of
Φ̂ĝ, defined in (2.68). We recall that C(T, h∞(Z)) is a Fréchet space with pseudonorms

‖û‖M,T = sup
0≤t≤T

‖û‖M = sup
0≤t≤T

∑
k∈Z

k2M |û(t)k|2.

Theorem 13 (Fixed points of Φ̂ĝ: existence and convergence in h∞(Z)). Let p be a polyno-
mial of degree m and ĝ ∈ h∞(Z). Suppose that there is a constant D such that, for all M ∈ N,

‖ĝ‖M ≤ DM .

Then the sequence û(n) = Φ̂nĝ (0) converges in C(T, h∞(Z)) to a fixed point û∗ of Φ̂ĝ.

Proof. Without loss of generality assume that p(0) = 0, so that there exists a constant C, depending
on p only, such that

|p(ik)| ≤ C|k|m, for all k ∈ Z. (2.69)

We observe that û(0)(t)k = 0, û(1)(t)k = ĝk, û(2)(t)k = Φ̂ĝ(ĝ)(t)k = ĝk+p(ik)tĝk, and, in general,
we have

37

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

û(n)(t)k =

n−1∑
`=0

p(ik)`t`

`!
ĝk, (2.70)

which can be proven by induction on n. Next consider v̂(`) : T×Z→ C given by v̂(`)(t)k = p(ik)`t`

`! ĝk.
Since ĝ ∈ h∞(Z), we get the following bounds for any t ∈ T and M ∈ N,

∑
k∈Z

k2M |v̂(`)(t)k|2 =
∑
k∈Z

k2M

∣∣∣∣p(ik)`t`

`!
ĝk

∣∣∣∣2 (2.71a)

≤
∑
k∈Z

k2M (C|k|m)2`t2`

(`!)2
|ĝk|2 (2.71b)

=
(Ct)2`

(`!)2

∑
k∈Z

k2M+2m`|ĝk|2 =
(Ct)2`

(`!)2
‖ĝ‖2M+m`, (2.71c)

where (2.71b) is justified by (2.69).
Therefore, it follows that v̂(`) ∈ C(T, h∞(Z)) and moreover, for any T,M we have

‖v̂(`)‖M,T ≤
(CT)`

`!
‖ĝ‖M+m`. (2.72)

We can also see that û(n) =

n−1∑
`=0

v̂(`). Our next step is to prove that the series
∑
v̂(`) is absolutely

convergent in C(T, h∞(Z)). For any M,T ∈ N we have that

∞∑
n=0

‖v̂(`)‖M,T ≤
∞∑
`=0

(CT)`

`!
‖ĝ‖M+m` (2.73a)

≤
∞∑
`=0

(CT)`

`!
DM+m` (2.73b)

= CDM
∞∑
`0

(TDm)`

`!
= CDMeTD

m

<∞, (2.73c)

where (2.73a) is justified by (2.72) and (2.73b) is justified by the growth bounds on the pseudonorms
of ĝ.

Since
∑
v̂(`) is absolutely convergent for any pseudonorm ‖ · ‖M,T , it follows that û(n) is a

convergent sequence in C(T, h∞(Z)). Denoting by û∗ its limit, we conclude by continuity of Φ̂ĝ that

û∗ is a fixed point of Φ̂ĝ.

Theorem 14 (Fixed points of Φ̂ĝ: existence, uniqueness and convergence in CZ). Let p be
a polynomial of degree m and ĝ ∈ CZ.

1. For any û(0) ∈ C(T,CZ), the sequence Φ̂nĝ (û(0)) converges in C(T,CZ) to a fixed point û∗ of

Φ̂ĝ.

38

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

2. û∗ is the unique fixed point of Φ̂ĝ in C(T,CZ), and it is given by

û∗(t)k = ep(ik)tĝk. (2.74)

Proof. The topology of CZ is that of pointwise convergence; we say that ĝ(n) converges to ĝ if

ĝ
(n)
k → ĝk for all k ∈ Z. Since Z is countable, we can think of CZ as a Fréchet space with pseudonorms
{‖ · ‖k}k∈Z given by ‖ĝ‖k = |ĝk|. Thus C(T,CZ) is a Fréchet space with pseudonorms

‖û‖k,T = sup
0≤t≤T

|û(t)k|.

We first prove contraction inequalities for Φ̂ĝ. Let n ∈ N and consider a pseudonorm ‖ · ‖k,T .
We have

∥∥∥Φ̂nĝ û− Φ̂nĝ v̂
∥∥∥
k,T

=

∥∥∥∥∫ t

0

· · ·
∫ sn−1

0

p(ik)n(û− v̂)dsn . . . ds1

∥∥∥∥
k,T

(2.75a)

= sup
0≤t≤T

∣∣∣∣∫ t

0

· · ·
∫ sn−1

0

p(ik)n(û− v̂)dsn . . . ds1

∣∣∣∣ (2.75b)

≤ sup
0≤t≤T

∫ t

0

· · ·
∫ sn−1

0

|p(ik)|n|û(sn)k − v̂(sn)k|dsn . . . ds1 (2.75c)

≤ |p(ik)|nTn

n!
sup

0≤t≤T
|û(t)k − v̂(t)k| (2.75d)

≤ |p(ik)|nTn

n!
‖û− v̂‖k,T . (2.75e)

Next we take an arbitrary û(0) ∈ C(T,CZ) and prove that the sequence û(n) = Φ̂nĝ û
(0) has a

limit. We fix k, T ∈ N and observe that

∞∑
n=0

‖û(n+1) − û(n)‖k,T =

∞∑
n=0

‖Φ̂nĝ û(1) − Φ̂nĝ û
(0)‖k,T

≤
∞∑
n=0

|p(ik)|nTn

n!
‖û(1) − û(0)‖k,T

= e|p(ik)|T ‖û(1) − û(0)‖k,T <∞.

Repeating the reasoning of previous proofs (cf. Theorem 7), we then conclude that (û(n)) is a
Cauchy sequence and thus it must converge to some limit û∗, which must be (by continuity) a fixed
point of Φ̂ĝ. This proves the first claim.

To prove uniqueness, let û∗, v̂∗ ∈ C(T,CZ) be fixed points of Φ̂ĝ. Take any pseudonorm ‖ · ‖k,T
and let n be large enough such that |p(ik)|nTn

n! < 1. Then

‖û∗ − v̂∗‖k,T = ‖Φ̂nĝ (û∗)− Φ̂nĝ (v̂∗)‖k,T ≤
|p(ik)|nTn

n!
‖û∗ − v̂∗‖k,T , (2.76)

which implies ‖û∗ − v̂∗‖k,T = 0. As k and T were arbitrary, we conclude that û∗ = v̂∗.
Finally, to prove (2.74), we let û∗(t)k = ep(ik)tĝk and compute

39

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Φ̂ĝû
∗(t)k = ĝk +

∫ t

0

p(ik)ep(ik)sĝkds = ĝk +
[
ep(ik)sĝk

]s=t
s=0

= ĝk + ep(ik)tĝk − ĝk = ep(ik)tĝk.

Therefore, û∗ is a fixed point of Φ̂ĝ. By uniqueness, it follows that any sequence of iterates

Φ̂nĝ û
(0) must converge to û∗, which concludes the proof.

Proposition 2.7.6. Let p be a polynomial of degree m and ĝ ∈ h∞(Z). Suppose that there is a
constant C such that, for all k ∈ Z, Re(p(ik)) ≤ C. Then û∗ defined as in (2.74) is in C(T, h∞(Z)).

Proof. For any pseudonorm ‖ · ‖T,M we have

‖û∗‖2M,T = sup
0≤t≤T

∑
k∈Z

k2M |û∗(t)k|2 (2.77a)

= sup
0≤t≤T

∑
k∈Z

k2M |ep(ik)t|2|ĝk|2 (2.77b)

≤ sup
0≤t≤T

∑
k∈Z

k2Me2Ct|ĝk|2 (2.77c)

= e2CT
∑
k∈Z

k2M |ĝk|2 = e2CT ‖ĝ‖M <∞, (2.77d)

where (2.77c) is justified by the bound on the real part of p(ik). Thus û∗ ∈ C(T, h∞(Z)), as we
wanted to prove.

2.8 Discussion

The goal of this chapter was to study linear evolution problems and present some useful notions
and concepts. As we have seen, the notion of Fréchet space appears to be fundamental in our frame-
work. In other words, the topology of the underlying space is induced by a family of pseudonorms
instead of just a norm. This may happen for two reasons related to some type of unboundedness;
first, the space X may correspond to functions in an unbounded domain, such as X = C(R); second,
the time domain may be itself unbouded, T = [0,∞). We also remark that the framework of Fréchet
spaces was implicitly present in the work by Tucker and Zucker; however, it had not been discussed
in detail before.

As we mentioned, linear differential operators are continuous in the Fréchet space of infinitely dif-
ferentiable functions. By considering analytic initial conditions, we saw how the Cauchy-Kowalevski
theory allows for finding of analytic solutions. In the case of the transport equation, we can obtain
contraction inequalities, which can be used to prove convergence of fixed points. As a next step, one
may look as a more general operator L : X → X using higher-order derivatives, for example with
bounds of the form

‖Lu‖T,X,k ≤ C‖∂`xu‖T,X,k ≤ C‖u‖T,X,k+`. (2.78)

We observe that analyticity of the initial condition g is not enough to ensure existence of solutions.
A counterexample is given by the heat equation ut = uxx with initial condition g(x) = 1

1−x . Even
though g is analytic near zero, the solution fails to be analytic at a neighborhood of the origin

40

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

(see [ES98]). Thus, the general case may require different tools such as explicit bounds on the
pseudonorms of g.

We also tested an approach to obtain fixed points using the Fourier Transform. In this case,
analyticity is no longer a requirement; however, we had to restrict our attention to functions with
a special decay at infinity, such as the Schwarz space S(R). We have seen that the usual theory
for solving linear partial differential equations in this setting can be reformulated as existence and
uniqueness of fixed points in C(T,S(R)). Moreover, by allowing a coarser topology in the frequency
space (corresponding to the space C(T, C∞(R))), we also obtained convergence of iterations to the
fixed point. However, there remained a gap in trying to prove convergence in the finer topology,
which is left as an open problem.

It is possible to use continuity to extend the results from the Schwarz space to finer spaces,
such as L2(R) or Hs(R), using boundedness of the solution operators; see for example [Rau91]. We
chose not to study such results in the fixed point framework for two reasons. First, we are mostly
interested in spaces of continuous functions, since we want to talk about computability properties.
Second, the finer spaces still require some special behaviour at infinity (at least integrability), which
leaves out many interesting functions (such as polynomials).

As a next step, one could wonder if the Fourier Transform approach could be extended to C∞-
functions. We know that the solution of the initial value problem du

dt = p(∂x)u with u(0) = g ∈ S(R)
can be given by

u(t, x) = F−1ep(iξ)tFg(x) =
1

2π

∫
R

∫
R
ei(x−y)ξ+p(iξ)tg(y)dydξ;

can we make sense of this construction for g ∈ C∞(R)? For example, one could approximate the
Fourier Transforms and replace the improper integrals by finite integrals such as

∫ n
−n dx, and then

study the limit n→∞. We leave this approach as an open question.

41

Chapter 3

Semantics of Analog Systems

In this chapter we develop a model of analog computation that will be studied extensively in our
thesis. Essentially, this model is a generalization of Shannon’s General Purpose Analog Computer
(GPAC) [Sha41]. In the Shannon GPAC channels carry real-valued streams; in our model, channel
values can lie in a general complete metric vector space X , such as a Banach or a Fréchet space.
This allows us to, among other things, establish a framework dealing with functions of more than
one variable.

We begin by presenting the Shannon GPAC, its semantics and some basic examples of generable
functions. We also present Shannon’s characterization theorem in terms of differentially algebraic
functions. We then move to a model called X -GPAC, whose channels carry function-valued streams.
We define semantics of an X -GPAC using a notion of quasi-well-posedness and obtain a charac-
terization of the X -GPAC-generable functions. Afterwards, we consider a multityped GPAC and
present various modular operations such as module derivation and channel contraction.

Let us comment on the original content of this chapter. The idea of considering function-valued
streams (as opposed to real-valued streams) is arguably our biggest contribution to this field of re-
search. Consequently, the X -GPAC (Definition 3.4.4) is an original model and Theorem 17 extends
Shannon’s characterization into the realm of functions of more than one variable and partial differ-
ential equations in a novel way. The notion of quasi-well-posedness (Definition 3.4.7) is an original
adaptation of the notion of well-posedness existing in literature (see [Had52, CH53]). The last part
of the chapter, devoted to a multityped GPAC, provides a new and perhaps promising direction
of research; unfortunately it is not pursued in much detail and only some basic results are proved.
We believe that Lemma 3.9.4, which relates contractive operators with channel contractions and
motivates one of the findings in [Jam12], is the most interesting result in this part.

3.1 The Shannon GPAC

We start by presenting the Shannon GPAC, originally introduced in [Sha41], and later improved
by [PE74, LR87, GC03].

The construction of an analog system presupposes the notion of channels, which carry informa-
tion, and modules, which operate on channels. In the original construction of Shannon, there is only
one channel type:

• real-valued stream channels, which carry a real-valued stream a ∈ C1(T,R).

42

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

In contrast to the previous chapter, we shall only deal with bounded time T = [0, T], where
T ∈ R+ denotes the final time. The case where T = [0,∞) (unbounded time) can be treated in a
similar manner. We recall that C1(T,R) denotes the class of continuously differentiable functions
from T to R.

Each module has zero, one or more input channels, and must have a single output channel. In
the original construction of Shannon, there are only four types of modules, which we now present.

Definition 3.1.1 (Basic Shannon modules). The basic Shannon modules are defined as follows:

• the Shannon constant module has one input and one output. For input a, it outputs the
constant stream b ≡ 1;

• The Shannon adder module has two inputs and one output. For inputs a and b, it outputs
the sum a+ b;

• for each k ∈ R, we define a Shannon scalar multiplier module with one input and one output.
For input a, it outputs the product ka;

• the Shannon integrator module has two inputs and one output. For inputs a and b, it outputs
the Lebesgue-Stieltjes integral k +

∫
adb, where k ∈ R is an initial setting.

1
a 1

1 : C1([0, T],R)→ C1([0, T],R)

1(a)(t) = 1

+

a

b
a+ b

+ : C1([0, T],R)× C1([0, T],R)→ C1([0, T],R)

+(a, b)(t) = a(t) + b(t)

×k
a ka

×k : C1([0, T],R)→ C1([0, T],R)

×k(a)(t) = k · a(t)

a

b

: C1([0, T],R)× C1([0, T],R)→ C1([0, T],R)

(a, b)(t) = k +
∫ t

0
a(s)db(s)

Figure 3.1: The four basic Shannon modules.

Remark 3.1.2. The integrator module is well defined, since the Lebesgue-Stieltjes integral is well
defined for continuous integrand and continuously differentiable integrator. In other words, for any
a, b ∈ C1([0, T],R), the expression

∫ t
0
a(s)db(s) defines a function in C1([0, T],R).

Remark 3.1.3. We also introduce the symbol ‘ ’ to denote the operator associated with the integra-
tor module, in order to differentiate from the actual integral; we can then write (a, b) = k +

∫
adb.

43

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Remark 3.1.4. The reader familiar with computable analysis may wonder if the space of multi-
plication modules is too broad and if, instead, we should consider only the multiplication modules
associated with computable real numbers k ∈ R. Our choice to allow any real number is compatible
with the existing literature on the subject. Later on, in Chapter 5, we will be interested in studying
concrete computability, in which case we must enforce computability of the constants involved.

Definition 3.1.5 (Shannon GPAC). A Shannon general purpose analog computer (GPAC) is a
network built with the four Shannon basic modules (constants, adders, multipliers and integrators)
and connections between their inputs and outputs, with the following restrictions:

• the only connections allowed are between an output and an input;

• each input may be connected to either zero or one output;

Remark 3.1.6. Of course, there can be cycles in a GPAC, for example, an output connected to
an input of its own module. This is called feedback and it is fundamental to develop an interesting
theory.

Example 3.1.7. A simple example of a Shannon GPAC can be seen in Figure 3.2.

a

b
a

Figure 3.2: A GPAC for computing the exponential function.

This GPAC has only one module, which is an integrator module, and only one connection,
between its output channel and one of its input channels.

Once we have a GPAC, such as the one in the previous example, we would like to study what
function or tuple of functions, if any, is generated by that system (in other words, we want to
attribute semantics to each GPAC). In other to do that, we define the notion of operator induced
by a GPAC.

Definition 3.1.8 (Shannon GPAC induced operator). Let G be a Shannon GPAC. We define:

• the constant space of G is the cartesian product of the spaces associated with each constant
occuring in an integrator. This constant space can be written as C = Rp, for some p ≥ 0;

• the proper input space of G is the cartesian product of the spaces associated with each un-
connected input channel. This input space can be written as I = C1([0, T],R)q, for some
q ≥ 0;

• the proper output space of G is the cartesian product of the spaces associated with each un-
connected output channel. This output space can be written as O = C1([0, T],R)m, for some
m ≥ 0;

• the mixed space of G is the cartesian product of the spaces associated with each channel which
connects an input with an output. This mixed space can be written as M = C1([0, T],R)r,
for some r ≥ 0;

44

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

• the induced operator of G is the function

Φ : C × I ×M→M×O, Φ(k,aI ,aM) = (ãM ,aO), (3.1)

where k is a vector of scalars and each a is a vector of stream channels. Moreover, each of the
components in the codomain of Φ is given by the module with which it is associated. In other
words, for each ai component of either ãM or aO,

– if ai is associated with the output channel of a constant, then ai = 1(b), where b is the
component in aI or aM associated with the input channel of that module;

– if ai is associated with the output channel of an adder, then ai = +(b1, b2), where b1 and
b2 are the components in aI or aM associated with the input channels of that module;

– if ai is associated with the output channel of a scalar multiplier, then ai = ×k(b), where
b is the component in aI or aM associated with the input channel of that module, and k
is its corresponding multiplication factor;

– if ai is associated with the output channel of an integrator, then ai = (b1, b2), where
b1, b2 are the components in aI or aM associated with the input channels of that module,
and k is the component in k associated with the initial setting of that module.

Example 3.1.9. The above definition may seem verbose or even pedantic. For the sake of expo-
sition, let us come back to Example 3.1.7 and see what the induced operator is. In this situation,
there is only one constant k, one unconnected input channel b, and one mixed channel a. There are
no unconnected output channels. Thus, the vector aO is empty, and the other vectors only have one
component, k = k, aI = b and aM = a. The variable ã associated with the only mixed channel must
be given by the formula for the integrator (Figure 3.1). Thus, the induced operator is given by

Φ : R× C1([0, T],R)× C1([0, T],R)→ C1([0, T],R);

Φ(k, a, b)(t) = k +

∫ t

0

a(s)db(s). (3.2)

Remark 3.1.10. A general Shannon GPAC, with proper input space I, mixed spaceM and proper
output space O may be represented in a diagram as in Figure 3.3. Notice that the constants (i.e.
initial settings of integrators) are implicit in the GPAC diagram but are explicit in the description
of the induced operator.

Φ

I

M

O

M Φ : C × I ×M→M×O

Figure 3.3: General diagram for a Shannon GPAC.

It should be clear that, once the induced operator is defined, the next task is to search for fixed
points (we still need to clarify what a fixed point is, since the domain and codomain of Φ do not
match in general). Not all possible constructions of a GPAC are desirable; in fact, we should only
be interested in those systems for which the fixed point problem is well-posed, in the sense of the
following definition.

45

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Definition 3.1.11 (Well-posedness of Shannon GPAC). Let G be a Shannon GPAC and
Φ : C × I ×M→M×O be its induced operator. Let U be an open subset of C × I. We say that
G is well-posed on U if

• (existence) for every (k,aI) ∈ U , there exists (aM ,aO) ∈M×O such that

Φ(k,aI ,aM) = (aM ,aO); (3.3)

• (uniqueness) for every (k,aI) ∈ U , the tuple (aM ,aO) such that (3.3) holds is unique;

• (continuity) the map (k,aI) 7→ (aM ,aO), with domain U and codomain M×O, given as the
unique solution of (3.3), is continuous.

Let k ∈ C and aI ∈ I. We say that G is well-posed at (k,aI) if G is well-posed in some
neighbourhood of (k,aI).

Definition 3.1.12 (Semantics of Shannon GPAC). Let G be a Shannon GPAC having induced
operator Φ : C × I ×M→M×O. Let U be an open subset of C × I such that G is well-posed on
U . The specification of G on U is the (partial) function

F : C × I ⇀M×O;
F (k,aI) = (aM ,aO),

(3.4)

whose domain is U and where (aM ,aO) is given by (3.3). We also say that G generates F on
U = dom(F).

A function F : C×I ⇀M×O is Shannon GPAC-generable if its domain is an open set, and there
exists a Shannon GPAC G such that G is well-posed on the domain of F and F is the specificaton
of G.

Example 3.1.13. Returning to Example 3.1.7, whose induced operator is given by (3.2); the fixed
point equation (3.3) becomes

k +

∫ t

0

a(s)db(s) = a(t); (3.5)

since a, b ∈ C1([0, T],R) we can differentiate both sides to obtain

a′(t) = a(t)b′(t); (3.6)

this is a linear ODE whose solution can be easily seen to be (note that (3.5) implies a(0) = k)

a(t) = keb(t)−b(0); (3.7)

we then conclude that this GPAC is well-posed on the whole space C × I = R × C1([0, T],R), for
any T ∈ R+, and generates the function

F : R× C1([0, T],R)→ C1([0, T],R); F (k, b)(t) = keb(t)−b(0). (3.8)

In the case that k = 1 and b is linear time, that is, b(t) = t, the output of F is the exponential
function F (1, b) : t 7→ et.

Remark 3.1.14. The function t 7→ t will appear frequently in this thesis; we shall refer to it as
linear time and denote this function by t.

46

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

We will be interested in generalizing the Shannon GPAC to functions of more than one variable
in this thesis, but before that, we should present some results that illustrate the power of GPACs.

Lemma 3.1.15 (Basic operations on GPACs).

• Let F1 : C1×I1 ⇀M1×O1 and F2 : C2×I2 ⇀M2×O2 be Shannon GPAC-generable; write

F1(cst1, in1) = (mix1,out1); F2(cst2, in2) = (mix2,out2),

whenever F1 and F2 are defined; then the parallel composition (F1, F2) : C1 × C2 × I1 × I2 ⇀
M1 ×M2 ×O1 ×O2, given by

(F1, F2)(cst1, cst2, in1, in2) = (mix1,mix2,out1,out2),

whenever F1 and F2 are both defined, is Shannon GPAC-generable.

• Let F1 : C1 × I1 ⇀ M1 × O1 and F2 : C2 × I2 ⇀ M2 × O2 be Shannon GPAC-generable;
assume that

I2 =M1 ×O1

(that is, the mixed and output channels of F1 agree with the input channels of I2); write

F1(cst1, in1) = (mix1,out1);

F2(cst2,mix1,out1) = (mix2,out2),

whenever F1 and F2 are defined; then the serial composition F2 ◦ F1 : C × I ⇀M×O, given
by

C = C1 × C2; I = I1; M =M1 ×M2 ×O1; O = O2;

F2 ◦ F1(cst1, cst2, in1) = (mix1,mix2,out1,out2),

is Shannon GPAC-generable.

Φ1

I1

M1

O1

M1

Φ2

I2

M2

O2

M2

Φ1

I1

M1
Φ2

O1

M1

M2

O2

M2

Figure 3.4: Parallel and serial composition of Shannon GPACs.

Proof. Just observe that, given Shannon GPACs which generate F1 and F2, we can combine them to
obtain a Shannon GPAC which generates the parallel composition (F1, F2) or the serial composition
F2 ◦ F1, as in Figure 3.4. We leave the details to the reader.

Remark 3.1.16. Mixtures of parallel and serial composition are possible; for example, one may
imagine that some input channels connect only to G1, or only to G2, or to both; and that some

47

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

mixed and output channels of G1 connect as input channels of G2, while others do not. Each of these
possible mixtures can in turn be abstracted in a diagram similar to those in Figure 3.4.

Lemma 3.1.17 (Normal form Lemma).

(a) Let G be a Shannon GPAC generating a function F : C × I ⇀ M × O. Assume I =
C1([0, T],R)p and M× O = C1([0, T],R)q. Then all tuples of the form (in, F (cst, in)) =
(in,mix,out) satisfy a system of q differential equations in q + p variables

q+p∑
i=0

q+p∑
j=1

aijkziz
′
j = 0; k = 1, . . . , q, (3.9)

where aijk are real constants, z0 ≡ 1, the variables z1, . . . , zp correspond to the input channels
and the variables zp+1, . . . , zp+q correspond to the mixed and output channels. This system can
also be rearranged in the form

A(x,y) · y′ = B(x,y) · x′, (3.10)

where x = (z1, . . . , zp), y = (zp+1, . . . , zp+q), A is a q× q matrix, B is a q× p matrix, and the
coefficients of A and B are linear in 1,x,y.

(b) Conversely, if systems (3.9) or (3.10) have a well-posed solution for initial conditions

zp+1(0) = C1, . . . , zp+q(0) = Cq,

and inputs z1, . . . , zp in some open set U ⊆ Rq × C1([0, T],R)p, then the map

(C1, . . . , Cq, z1, . . . , zp) 7→ (zp+1, . . . , zp+q)

is the projection of a GPAC-generable function

F : C × I ⇀M×O

onto some of its mixed and output channels.

The main idea of proving the lemma above is by reducing all modules in the GPAC construction
to a single module type.

Definition 3.1.18 (Integral-matrix module). For each (n + 1) × n matrix B, we define an
integral-matrix module with n inputs and one output. For inputs w1, . . . , wn, it outputs the stream
k +

∑n
i=0

∑n
j=1 bij

∫
widwj , where k is an initial setting and w0 ≡ 1.

B

w1

. . .

wn

B

: C1([0, T],R)n → C1([0, T],R)

B

(w1, . . . , wn)(t) = k +

n∑
i=0

n∑
j=1

bij

∫ t

0

wi(s)w
′
j(s)ds

Figure 3.5: The integral-matrix module.

48

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Proof. For part (a), we observe that each of the four Shannon basic modules are special cases of the
integral-matrix module. For example, the identity

a(t) + b(t) = a(0) + b(0) +

∫ t

0

a′(s)ds+

∫ t

0

b′(s)ds

implies that the adder module can be expressed as the integral-matrix module with 2 inputs, initial
setting a(0) + b(0) and matrix B such that b01 = b02 = 1 and bij = 0 for the other coefficients,
with the correspondence w0 ≡ 1, w1 ≡ a, w2 ≡ b. Similarly, the expression defining the integrator
module,

k +

∫ t

0

a(s)b′(s)ds

implies that the integrator module can be expressed as the integral-matrix module with two inputs,
initial setting k and matrix B such that b12 = 1 and bij = 0 for the other coefficients, with the
correspondence w0 ≡ 1, w1 ≡ a, w2 ≡ b. We leave the constant and scalar multiplier modules to the
reader and summarize the results in the following table.

Type of module Expression B matrix initial setting

Constant 1

[
0
0

]
1

Adder a+ b

1 1
0 0
0 0

 a(0) + b(0)

Scalar multiplier ka

[
k
0

]
ka(0)

Integrator k +
∫
adb

0 0
0 1
0 0

 k

Let G be a Shannon GPAC in the conditions of the lemma. Let us label the proper input channels
with z1, . . . , zp and the remaining (proper output and mixed) channels with zp+1, . . . , zp+q. Let us
also introduce z0 ≡ 1 for ease of notation. By writing each of the modules of G in the integral-matrix
formulation, we obtain

zk(t) = Ck +

p+q∑
i=0

p+q∑
j=1

bijk

∫ t

0

zi(s)z
′
j(s)ds, k = p+ 1, . . . , p+ q (3.11)

where Ck may depend on the initial values of some zi or on an initial setting. Differentiating in
time, we get

z′k(t) =

p+q∑
i=0

p+q∑
j=1

bijkzi(t)z
′
j(t); (3.12)

rearranging this expression gives us (3.9). Of course, we can switch between (3.9) and (3.10), using

49

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

the conversions

z =

[
x
y

]
,
[
−B(x,y) A(x,y)

]q,p+q
k=1,j=1

=

[
p+q∑
i=0

aijkzi

]
.

For the converse direction (b), we start from (3.9) and write it in the form (3.12); after inte-
grating both sides we get the integral-matrix formulation (3.11). We can obtain the integral-matrix
formulation as a composition of the Shannon basic modules, and thus we can construct a GPAC
that implements (3.11), possibly with extra initial settings and extra mixed (auxiliary) channels (see
Figure 3.6 for an example with n = 2 channels).

+

+
+

×
×
×

×
×
×

1

z1

z2

Figure 3.6: Reduction of the integral-matrix module via the Shannon basic modules, for n = 2; the
channel labelled 1 can be obtained as the output of the constant module; the coefficients bij of the
B matrix correspond to the scalar multiplier modules, but are omitted for simplicity.

Since (3.9) is, by assumption, well-posed on some open set U ⊆ Rq × C1([0, T],R)p of initial
conditions and inputs and the extra channels are uniquely continuously determined by the zi, we get
that the GPAC is also well-posed on U and generates a function F : Rq ×C1([0, T],R)p ⇀M×O.
The channels zp+1, . . . , zp+q will correspond to some of the channels inM×O and can be obtained
with a suitable projection.

Remark 3.1.19. When p = 1 and x = t, that is, there is only one input channel x, which is given
by x(t) = t (cf. Remark 3.1.14), equation (3.10) becomes

A(t,y) · y′ = B(t,y), (3.13)

where y = (y1, . . . , yq) can be regarded as a tuple of functions of t, A is a q × q matrix, B is a q × 1
vector, and the coefficients of A and B are linear in 1, t, y1, . . . , yq. This is the form that appears in
[PE74] and is widely used as the definition of GPAC-generability, instead of Definition 3.1.12.

Remark 3.1.20. We must remark that (3.9) is nonlinear in the variables z1, . . . , zp+q; in fact, a
way of understanding (3.9) is realizing that GPACs have the ability to generate pairwise products
of variables. For example, the relation z1 = z2z3 can be written as z′1 − z2z

′
3 − z3z

′
2 = 0, which is in

the form of (3.9). Another example is the relation z1 = z2
2 , which can be written as z′1 − 2z2z

′
2 = 0,

again in the form of (3.9). Using intermediate variables and system of equations we can easily devise
ways to obtain relations between products of higher power, like z1 = z2z3z4 or z1 = z4

2 . In fact, any
expression which is polynomial in its variables should be ‘generable’ (in some sense) by a GPAC.
This is the fundamental result in the study of the Shannon GPAC, and is formulated in Theorems 15
and 16 below. Their proofs use parts (a) and (b), respectively, of the Normal Form Lemma (Lemma
3.1.17).

50

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Definition 3.1.21 (Differentially algebraic function). A function f : [0, T] → R is said to
be differentially algebraic if there exists k ∈ N and a polynomial P in k + 2 variables such that
f ∈ Ck([0, T]) and

P (t, f(t), f ′(t), . . . , f (k)(t)) = 0, for all t ∈ [0, T]. (3.14)

Theorem 15 (GPAC-generability implies differential algebraicity). Let G be a Shannon
GPAC with one input channel (that is, I = C1([0, T],R)), well-posed in some open set U ⊆ C × I,
and let F : C ×I ⇀M×O be its specification. Then, for any k ∈ C such that (k, t) ∈ U (that is, G
is well-posed at (k, t)), we have that F (k, t) is a tuple of differentially algebraic functions (that is,
each component Fi(k, t) of F (k, t) is differentially algebraic).

Example 3.1.22. Returning to example 3.1.7, which was seen to specify the functional F (k, b)(t) =
keb(t)−b(0), we can then conclude using Theorem 15 that f(t) = et = F (1, t)(t) is differentially
algebraic. Of course, one might simply directly verify that f(t) = et is differentially algebraic since
it satisfies f ′(t)− f(t) = 0.

Theorem 16 (Differential algebraicity implies GPAC-generability). Let f : [0, T] → R be
differentially algebraic. Let k ∈ N and P be a polynomial in k+2 variables such that f ∈ Ck([0, T],R)
and (3.14) holds. Assume in addition that k ≥ 1 and that

P (t, g(t), g′(t), . . . , g(k)(t)) = 0, g(0) = y0, g
′(0) = y1, . . . , g

(k−1)(0) = yk−1,

is a well-posed problem in Ck([0, T],R) and on a open subset U of Rk containing (f(0), . . . f (k−1)(0)).
Then f(t) = Fi(f(0), f ′(0), . . . , f (k−1)(0), id)(t), where Fi is a component of a Shannon GPAC-
generable function F : Rk × C1([0, T],R) ⇀M×O.

Remark 3.1.23. An original proof of Theorems 15 and 16 can be found in [Sha41], but this proof
had flaws, which were corrected in the papers [PE74], [LR87], [GC03].

3.2 Limitations of the Shannon GPAC

The Shannon GPAC is regarded as an important and powerful method of analog computation,
thanks largely to Theorems 15 and 16. Despite this, many authors have pointed out some limitations
to the model. For example, the gamma function

Γ(t) =

∫ ∞
0

xt−1e−xdx

is not differentially algebraic (proven in [Höl86]), and so cannot be generated by a GPAC (as noted by
Shannon himself in [Sha41]). However, one could expect that, in a ‘sensible’ model of computability
on continuous data, this function would be computable. Indeed, the gamma function is effectively
computable in the sense of computable analysis, a branch of analog computability studied by Pour-
El, Richards [PER89], Weihrauch [Wei00], Grzegorczyk [Grz55, Grz57], Lacombe [Lac55a, Lac55b,
Lac55c], Tucker, Zucker [TZ07], among others. Some authors have addressed this limitation, and
Graça [Gra04] showed that the gamma function can indeed be considered as GPAC computable if

...we redefine our notion of GPAC-computability in a manner that it matches more closely
the philosophy underlying computable analysis...

There is, however, another limitation with the Shannon GPAC, that appears to have been over-
looked by Shannon, Pour-El and others. It lies in the fact that the Shannon GPAC can fundamentally

51

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

reason only about real-valued functions of one independent variable t. Ironically, it was stated in
[Sha41] and [PE74] that the generalization to more than one independent variable only requires an
obvious modification, but this is by no means the case. In fact, it is hard to conceive a realistic
physical interpretation for a formalism involving two (or more) independent “time” variables.

We briefly remark that this limitation was pointed out in [Rub93]. Rubel says

For one thing, the GPAC works in one (“time”) variable only, while the EAC [Extended
Analog Computer] produces functions of any finite number of real variables.

To address this problem, Rubel defined what he called an Extended Analog Computer (EAC).1

However, Rubel stressed that

... the EAC is a conceptual computer - the extent to which it can be realized by actual
physical, chemical, or biological devices or systems remains to be investigated.

A different attempt to deal with this problem was recently proposed by Bournez, Graça and
Pouly [Pou15, BGP16]. In their approach, channels can carry a n-variable real-valued data stream
of type Rn → R. In this way, they were able to introduce functions with multiple variables by
extending the input space; for example, replacing C1([0, T],R) with C1([0, X1] × . . . × [0, Xn],R).
This seems to be a very natural way of generalizing the Shannon GPAC.

Despite the fact that [BGP16, Definition 14] uses Jacobians (which imply independent variables),
we would like to point out that their model can still be re-expressed in terms of only one (implicit
“time”) variable. This idea is present in [BGP16, Examples 12 and 13]. It also occurs in [BGP16,
Remark 15], where it is explained that the value of a generable function y at a given point x can be
obtained by solving an initial value problem in one independent variable (this is done by introducing
a smooth curve γ from x0, an initial point, to x).

In this thesis we adopt an approach which in some way is orthogonal to the one in [BGP16];
our idea is to extend the output space, that is, replacing C1([0, T],R) with C1([0, T],X), where X
is a metric vector space. For example, we can think of X as the space of continuous real-valued
functions on a bounded domain Ω ⊂ Rn, that is, X = C(Ω,R). In this way, our channels will now
carry X -valued streams of data u : [0, T]→ X , which correspond to functions of n+ 1 real variables,
under the uncurrying

[0, T]→ (Ω→ R) ' [0, T]× Ω→ R.

It is evident that one of the variables, namely the “time” variable, plays a different role from the
others. Our approach is, to some extent, motivated by the theory of partial differential equations,
in which some fundamental problems (such as the heat equation, wave equation and Schrödinger
equation) can be expressed as time evolution problems in a function space.

3.3 Data channels in function spaces

In this section we present various possibilities of complete metric vector spaces X . We hope that
this can provide some intuition on how exactly we intend to generalize Shannon’s results to functions
of more than one variable. The abundance of possibilities can also be seen as an indication of the
broadness of our methods.

Definition 3.3.1 (Domain). A domain is an open, connected subset of Rd.
1An implementation of the EAC (or at least, of some of its components) has been achieved with the work of Mills,

[Mil08].

52

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

We will usually denote domains by the Greek letter Ω. In mathematical analysis, there are two
common classes of domains, for which different techniques are applicable:

• unbounded domains, such as Ω = Rd;

• bounded domains, such as Ω = [0, 1]d;

In this section, we shall restrict our attention to the two examples above, while working in one
spatial dimension d = 1.

We now present the following types of data spaces: C, Cp and C∞ spaces, L2, Hp and H∞

spaces.

Definition 3.3.2. For a domain Ω ⊆ R, we denote by C(Ω) the space of real-valued functions on
Ω which are continuous;

• when Ω = R, this is a Fréchet space with pseudonorms ‖f‖C(R),n = sup
|x|≤n

|f(x)| indexed by

n ∈ N;

• when Ω = [0, 1], this is a Banach space with norm ‖f‖C[0,1] = sup
0≤x≤1

|f(x)|.

Definition 3.3.3. For a domain Ω ⊆ R and k ∈ N, we denote by Ck(Ω) the space of real-valued
functions on Ω which have continuous derivatives of order k;

• when Ω = R, this is a Fréchet space with pseudonorms ‖f‖Ck(R),j,n = sup
|x|≤n

|f (j)(x)| indexed

by j ∈ {0, . . . , k} and n ∈ N;

• when Ω = [0, 1], this is a Banach space with norm ‖f‖Ck[0,1] = sup
0≤j≤k

sup
0≤x≤1

|f (j)(x)|.

Observe that we have C(Ω) = C0(Ω).

Definition 3.3.4. For a domain Ω ⊆ R, we denote by C∞(Ω) the space of real-valued functions on
Ω which have continuous derivatives of any order;

• when Ω = R, this is a Fréchet space with pseudonorms ‖f‖C∞(R),k,n = sup
|x|≤n

|f (k)(x)| indexed

by k ∈ N and n ∈ N;

• when Ω = [0, 1], this is a Fréchet space with pseudonorms ‖f‖C∞[0,1],k = sup
0≤x≤1

|f (k)(x)|

indexed by k ∈ N.

Definition 3.3.5. For a domain Ω ⊆ R, we denote by L2(Ω) the space of (equivalence classes under
a.e. equality of) real-valued functions on Ω which are square-integrable; whether Ω = R or Ω = [0, 1],

this is a Banach space with norm ‖f‖2L2(Ω) =

∫
Ω

|f(x)|2dx.

Definition 3.3.6. For a domain Ω ⊆ R, and k ∈ N, we denote by Hk(Ω) the space of (equiv-
alence classes under a.e. equality of) real-valued functions on Ω which have square-integrable
weak derivatives of order k; whether Ω = R or Ω = [0, 1], this is a Banach space with norm

‖f‖2Hk(Ω) =

∫
Ω

|f(x)|2 + |f (k)(x)|2dx.

Observe that we have L2(Ω) = H0(Ω).

53

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Definition 3.3.7. For a domain Ω ⊆ R, we denote by H∞(Ω) the space of (equivalence classes
under a.e. equality of) real-valued functions on Ω which have square-integrable weak derivatives of
any order; whether Ω = R or Ω = [0, 1], this is a Fréchet space with pseudonorms ‖f‖2H∞(Ω),k =∫

Ω

|f (k)(x)|2dx indexed by k ∈ N.

For the unbounded case Ω = R, we have the following chains of inclusions:

C(R) ⊃ C1(R) ⊃ · · · ⊃ Ck(R) ⊃ · · · ⊃ C∞(R).
L2(R) ⊃ H1(R) ⊃ · · · ⊃ Hk(R) ⊃ · · · ⊃ H∞(R).

For the bounded case we have additional inclusions between Ck-spaces and Hk spaces; since
bounded functions are integrable in a bounded domain, we have

Ck[0, 1] ⊂ Hk[0, 1], for k ∈ N;

moreover we can apply the Sobolev embedding Theorem [Bré11, Section 9.3]; a version of it (valid
for one dimension, and square-integrable functions)2 states that

Hk+1[0, 1] ⊂ Ck[0, 1], for k ∈ N.

In addition, we may also desire to impose boundary conditions such as Dirichlet, Neumann or
periodic conditions. In this section we focus on data that vanishes at the boundary, that is, for
k ∈ N we consider a restriction to functions g such that g(j)(0) = g(j)(1) = 0 for all derivatives up
to order k. We use a subscripted zero to indicate we are enforcing boundary vanishing data; thus,
we define the spaces C0[0, 1], Ck0 [0, 1] for k ∈ N, C∞0 [0, 1], Hk

0 [0, 1], for k ∈ N+ and H∞0 [0, 1].3

The Sobolev inclusions also hold for Dirichlet conditions, and in fact we have the relations

Hk+1
0 [0, 1] = Hk+1[0, 1] ∩ Ck0 [0, 1] ⊂ Ck[0, 1] ∩ Ck0 [0, 1] = Ck0 [0, 1], for k ∈ N.

Thus, we can write the following chains of inclusions:

L2[0, 1]⊃ C[0, 1] ⊃H1[0, 1]⊃C1[0, 1]⊃ · · · ⊃Hk[0, 1]⊃Ck[0, 1]⊃ · · · ⊃H∞[0, 1] =C∞[0, 1]
∪ ∪ ∪ ∪ ∪ ∪ ∪

C0[0, 1]⊃H1
0 [0, 1]⊃C1

0 [0, 1]⊃ · · · ⊃Hk
0 [0, 1]⊃Ck0 [0, 1]⊃ · · · ⊃H∞0 [0, 1] =C∞0 [0, 1]

3.4 The X -GPAC

As discussed in Section 3.2 we decide to change our data space X to become a function space.
For most of this chapter we will now focus on a very specific case among those presented in Section
3.3. Namely, we shall take X to be the space of continuous real functions of a real variable,

X = C(R).

2Technically speaking, this inclusion states that any element of Hk+1, being an equivalence class of real-valued
functions, contains a function which is in Ck.

3For Sobolev spaces, we must make another technical remark. From g ∈ Hk+1[0, 1], we can use Sobolev inclusions

to conclude that g is almost everywhere equal to some function, say g̃, such that g̃ ∈ Ck[0, 1]. By g ∈ Hk+1
0 [0, 1] we

simply mean that g̃ satisfies the Dirichlet conditions g̃(j)(0) = g̃(j)(1) = 0, for all derivatives up to order k. Observe
also that L2

0[0, 1] is not a well-defined class, as those ‘functions’ do not have a well-defined point evaluation.

54

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

We make this choice because C(R) is possibly the simplest example from Section 3.3. However,
it will still allow us to obtain quite strong equivalence results (Theorem 17 below). For the moment,
let us observe that X is a Fréchet space, with the family of pseudonorms

‖g‖M = sup
|x|≤M

|g(x)|. (3.15)

We also consider the subspace D = C1(R) of continuously differentiable functions. This is also
a Fréchet space, with the family of pseudonorms

‖g‖M = sup
|x|≤M

|g(x)|+ sup
|x|≤M

|∂xg(x)|. (3.16)

Note that D is a linear and dense (under the X -pseudonorms) subspace of X .
We can define a differential operator as

∂x : X ⇀ X
u(x) 7→ ∂xu(x).

(3.17)

We establish some important properties of the differential operator:

• ∂x is a partial function from X to X , with domain dom(∂x) = D;

• ∂x is linear, that is, for all u, v ∈ D and α, β ∈ R we have ∂x(αu+ βv) = α∂xu+ β∂xv;

• ∂x has dense domain, that is, D is dense in X (under the topology in X induced by its
pseudonorms);

• ∂x is a discontinuous operator, as seen in Example 2.1.2;

• ∂x has a closed graph, that is, if (un) is a sequence in D with un → u and ∂xun → v, then
u ∈ D and ∂xu = v;

We include here the definition of closed operator, which will play a role in our notion of well-
posedness.

Definition 3.4.1 (Closed operator). Let X and Y be metric spaces and A : X ⇀ Y a partial
function with domain D(A). We say that A is closed if its graph is a closed subset of X × Y; in
other words, if for all sequences (xn) in X , x ∈ X and y ∈ Y we have

if

 xn → x as n→∞,
xn ∈ D(A) for all n,
Axn → y as n→∞;

 then x ∈ D(A) and Ax = y.

Hence ∂x is a closed operator on X . We remind the reader that closedness is, in general, a
weaker property than continuity. We also remark that both are equivalent in the space of total
linear operators between Banach spaces (this basic result is known as the Closed Graph Theorem).

We consider X -streams as elements in the space C1([0, T],X) of X -valued, continuously differen-
tiable functions, for some T > 0. By continuous differentiability we mean that, for u ∈ C1([0, T],X),
the expression

v(t) = lim
h→0

u(t+ h)− u(t)

h

is well-defined for all t ∈ [0, T] and v is a continuous function of time.

55

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

In this way, C1([0, T],X) is a Fréchet space under the family of pseudonorms

‖u‖T,M = sup
0≤t≤T

‖u(t)‖M + sup
0≤t≤T

‖u′(t)‖M ;

note that in the right-hand side we consider pseudonorms of X .
We proceed to define the modules for this new setting; at the same time, we introduce a new

module based on the differential operator.

Definition 3.4.2 (X -GPAC modules). The X -GPAC modules are defined as follows.

• for each g ∈ X , there is a constant module (denoted by cstg or g) with zero inputs and one
output v. We can write v = cstg, or simply v = g; the output is given by

v(t) = g;

• the adder module (denoted by add or +) has two inputs u, v and one output w. We can write
w = add(u, v), or simply w = u+ v; the output is given by

w(t) = u(t) + v(t);

• the multiplier module (denoted by mult or ×) has two inputs u, v and one output w. We can
write w = mult(u, v), or simply w = u · v; the output is given by

w(t) = u(t)v(t);

• the integrator module (denoted by int or) has an initial setting g, two inputs u, v and one
output w. We can write w = int(g, u, v) or simply w = g +

∫
udv; the output is given by

w(t) = g +

∫ t

0

u(s)v′(s)ds;

• the differential module (denoted by diff or ∂x) has one input u and one output v. We can
write v = diff(u) or simply v = ∂xu; the output is given by

v(t) = ∂xu(t).

∂x
u ∂xu

∂x : C1([0, T],X) ⇀ C1([0, T],X)

∂x(u)(t) = ∂xu(t)

Figure 3.7: The differential module.

We remark that the differential module ∂x : C1([0, T],X) ⇀ C1([0, T],X) is partially defined
and its domain is C1([0, T], D). As mentioned above, ∂x is a closed but discontinuous operator.

Remark 3.4.3. The choices adopted here for basic modules in an X -GPAC are slightly different
from those originally presented by Shannon (Definition 3.1.1). However, both constructions can be
seen to be equivalent. Later on (in Sections 3.7 and 3.8) we shall show how to convert between
different formulations of the basic modules.

56

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

With the above considerations in mind we can arrive at the desired generalization of the Shannon
GPAC. The following Definitions 3.4.4, 3.4.5, 3.4.7 and 3.4.11 should be compared with Definitions
3.1.5, 3.1.8, 3.1.11 and 3.1.12.

Definition 3.4.4 (X -GPAC). An X -valued general purpose analog computer (X -GPAC) is a net-
work built with the five X -modules (constants, adders, multipliers, integrators and differentials) and
X -channels connecting their inputs and outputs, with the following restrictions:

• the only connections allowed are between an output and an input;

• each input may be connected to either zero or one output;

Definition 3.4.5 (X -GPAC induced operator). Let G be an X -GPAC;

• the constant space of G is the cartesian product of the spaces associated with all the initial
settings occuring in any integrator. The constant space can be written as C = X p, for some
p ≥ 0;

• the proper input space of G is the cartesian product of the spaces associated with all the
unconnected input channels. The input space can be written as I = C1([0, T],X)q, for some
q ≥ 0;

• the proper output space of G is the cartesian product of the spaces associated with all the
unconnected output channels. The output space can be written as O = C1([0, T],X)m, for
some m ≥ 0;

• the mixed space of G is the cartesian product of the spaces associated with all the channels which
connect some input with some output. The mixed space can be written asM = C1([0, T],X)r,
for some r ≥ 0;

• the induced operator of G is the function

Φ : C × I ×M⇀M×O, Φ(g,uI ,uM) = (ũM ,uO), (3.18)

where g is an X -valued vector and each u is a vector of X -channels. Moreover, each of the
components in the codomain of Φ is given by the module with which it is associated. In other
words, for each ui component of either ũM or uO,

– if ui is associated with the output channel of a constant, then ui = g, where g is the
constant associated with that module;

– if ui is associated with the output channel of an adder, then ui = +(v1, v2), where v1 and
v2 are the components in uI or uM associated with the input channels of that module;

– if ui is associated with the output channel of a multiplier, then ui = ×(v1, v2), where
v1 and v2 are the components in uI or uM associated with the input channels of that
module;

– if ui is associated with the output channel of an integrator, then ui = (g, v1, v2), where
v1, v2 are the components in uI or uM associated with the input channels of that module,
and g is the component in g associated with the initial setting of that module;

– if ui is associated with the output channel of a differential, then ui = ∂x(v), where v is
the component in uI or uM associated with the input channel of that module.

57

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

We remark that Φ may be partially defined; for each differential module occuring in G, there is
a component of I ×M which is restricted to C1([0, T], D). Hence, to describe the domain of Φ we
must take into special consideration those channels which are inputs of differential modules.

Example 3.4.6. To achieve a better understanding of Definition 3.4.5 we provide an example in
Figure 3.8 of an X -GPAC with one constant and four X -channels.

∂x ∂x

g
u3

u1

u2 u3 u4

Figure 3.8: An X -GPAC implementing a transport equation, and one spatial derivative of its solu-
tion.

In this example there is one constant (associated with the integrator module), one input channel
(labeled u1), two mixed channels (labeled u2 and u3) and one output channel (labeled u4). The
induced operator simply formalizes the input/output relation between these channels,

C = X , I = C1(T,X), M = C1(T,X)2, O = C1(T,X);

Φ : C × I ×M⇀M×O

Φ(g, u1, u2, u3) =

(
g +

∫
u3du1, ∂xu2, ∂xu3

)
= (ũ2, ũ3, u4).

Definition 3.4.4 gives a lot of freedom in the construction of X -GPACs and it turns out that
not all of the possible networks lead to ‘valid and interesting’ X -GPACs (similarly to the fact that
not all ASCII expressions lead to ‘valid and interesting’ computer programs). Thus we present a
well-posedness-like notion to restrict the space of X -GPACs that we wish to consider.

Definition 3.4.7 (Quasi-well-posedness of X -GPAC). Let G be an X -GPAC and Φ : C × I ×
M⇀M×O be its induced operator. Let U ⊆ C × I. We say that G is quasi-well-posed on U if

• (existence) for every (g,uI) ∈ U , there exists (uM ,uO) ∈M×O such that

Φ(g,uI ,uM) = (uM ,uO); (3.19)

• (uniqueness) for every (g,uI) ∈ U , the tuple (uM ,uO) such that (3.19) holds is unique;

• (closedness) the map (g,uI) 7→ (uM ,uO), with domain U and codomainM×O, given as the
unique solution of (3.19), defines a closed operator.

We may refer to (3.19) as the fixed point equation; note that the mixed variables uM are the
only ones that appear in both sides of the equation.

If, as in Definition 3.1.11, we required continuity instead of closedness (that is, if we required U
to be an open set, and the map (g,uI) 7→ (uM ,uO) to be continuous), then our definition would
match the three usual principles for well-posedness - existence, uniqueness, continuity of solutions
- as presented by Hadamard [Had52] (see also [CH53]). Instead, we choose to use closedness (and
a non-necessarily open domain U), which is a strictly weaker criterion, hence the term ‘quasi-well-
posed’. The reason for choosing closedness is the presence of the differential module, which defines
a closed function of type X ⇀ X which is not continuous.

58

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Admittedly, some could argue that a discontinuous operation is of little interest in the study
of computable functions on continuous spaces. We must then make the important remark that
continuity can be obtained from closedness (and thus well-posedness can be obtained from quasi-
well-posedness) if we define a finer topology in the domain, induced by graph (pseudo)norms. To be
precise, we recall the following basic result in functional analysis.

Proposition 3.4.8 ([RR06, p. 240, Exercise 8.7]). Let (X , ‖ · ‖X) and (Y, ‖ · ‖Y) be Banach spaces
and A : X ⇀ Y a closed linear operator with domain D(A). Then

• (D(A), ‖ · ‖G(A)) is a Banach space with the graph norm given by

‖x‖G(A) = ‖x‖X + ‖Ax‖Y ;

• the restriction A : D(A)→ Y is a continuous linear map between Banach spaces.

Proof. We first prove that ‖ · ‖G(A) defines a norm:

• if x ∈ D(A), then ‖x‖G(A) = 0 iff ‖x‖X + ‖Ax‖Y = 0 iff ‖x‖X = 0 iff x = 0;

• if x ∈ D(A) and α ∈ R, then ‖αx‖G(A) = ‖αx‖X + ‖A(αx)‖Y = |α|‖x‖X + |α|‖Ax‖Y =
|α|‖x‖G(A);

• if x, y ∈ D(A), then ‖x+y‖G(A) = ‖x+y‖X +‖A(x+y)‖Y ≤ ‖x‖X +‖y‖X +‖Ax‖Y+‖Ay‖Y =
‖x‖G(A) + ‖y‖G(A).

Next we prove that D(A) is complete. Let {xn}n be a Cauchy sequence in D(A), so that
‖xN+k − xN‖G(A) = ‖xN+k − xN‖X + ‖A(xN+k − xN)‖Y vanishes (uniformly on k) as N →∞. In
particular, we must have that {xn}n is a Cauchy sequence in X (under the X -norm) and {Axn} is
a Cauchy sequence in Y. Since X and Y are Banach spaces it follows that there exist x ∈ X and
y ∈ Y such that xn → x and Axn → y. By closedness of A we conclude that x ∈ D(A) and Ax = y,
so that xn → x in D(A) (under the graph norm). Thus (D(A), ‖ · ‖G(A)) is a Banach space.

Finally we prove that A : D(A) → Y is continuous. Let {xn}n be a sequence in D(A) and
x ∈ D(A) such that xn → x in D(A). Then ‖xn − x‖G(A) → 0, which implies ‖xn − x‖X → 0 and
‖A(xn − x)‖Y → 0, so that, in particular, Axn → Ax in Y.

Proposition 3.4.9. Let X and Y be Fréchet spaces with families of pseudonorms {‖ · ‖X ,n}n and
{‖ · ‖Y,m}m and A : X ⇀ Y a closed linear operator with domain D(A). Then

• D(A) is a Fréchet space with graph pseudonorms given by

‖x‖G(A),n,m = ‖x‖X ,n + ‖Ax‖Y,m;

• the restriction A : D(A)→ Y is a continuous linear map between Fréchet spaces.

Proof. The proof is similar to that of Proposition 3.4.8.

Proposition 3.4.10. Let X and Y be complete metric spaces with metrics dX and dY and A : X ⇀ Y
a closed operator with domain D(A). Then

• D(A) is a complete metric space with graph metric given by

dG(A)(x1, x2) = dX (x1, x2) + dY(Ax1, Ax2);

59

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

• the restriction A : D(A)→ Y is a continuous linear map between complete metric spaces.

Proof. The proof is similar to that of Proposition 3.4.8.

This finer topology is usually equivalent to a topology of interest in the domain space. For
example, consider the differential operator ∂x : C(R) ⇀ C(R) given by (3.17), which is closed but
not continuous under the usual family of pseudonorms in C(R). However, it becomes a continuous
operator if we restrict it to the space C1(R) and consider the graph pseudonorms

‖f‖n,m = ‖f‖n + ‖∂xf‖m = sup
|x|≤n

|f(x)|+ sup
|x|≤m

|∂xf(x)|,

under whose topology C1(R) is a Fréchet space. Moreover, this family of pseudonorms can be seen
to be equivalent to the usual family of pseudonorms in C1(R) given by (3.16).

We shall then adopt the notion of quasi-well-posedness in this chapter, while reminding ourselves
that, if needed, we can in principle express our results in terms of well-posed operators. Later on, in
Chapter 5, we will consider a slightly different notion of induced operator for which well-posedness
is regained.

The final step in this section is to assign semantics to X -GPACs, that is, to define the notion of
X -GPAC-generable functions.

Definition 3.4.11 (Semantics of X -GPAC).

(a) Let G be an X -GPAC and Φ : C × I ×M⇀M×O be its induced operator. Let U ⊆ C × I
such that G is quasi-well-posed on U . We define the specification of G as the (partial) function

F : C × I ⇀M×O;
F (g,uI) = (uM ,uO),

whose domain is U and where (uM ,uO) is given by (3.19). We also say that G generates F on
U = dom(F).

(b) A function F : C × I ⇀M×O is X -GPAC-generable if there exists an X -GPAC G such that
G is quasi-well-posed on the domain of F and F is the specification of G.

We remark that every integrator in an X -GPAC has an initial setting (which is one of the
constants in the space C) and an output (which is one of the mixed/output channels in M×O).
Since we can define an injective map from the initial settings to the mixed/output channels, we have
the following basic property.

Proposition 3.4.12. If F : C×I ⇀M×O is X -GPAC-generable, then dim(C) ≤ dim(M)+dim(O).

3.5 Normal form systems

In the previous section we have defined the class of X -GPAC-generable functions, which consti-
tute our space of interest. We can state our objective as follows.

Problem. Characterize the class of X -GPAC-generable functions in terms of a suitable
generalization of the class of differential algebraic equations.

In the study of the GPAC, an intermediate step is usually taken in the transition from generable
functions to differential algebraic equations. For example, in [Sha41] a system of equations called

60

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

a fundamental solvability condition was considered (Theorem I in that paper). Also in [PE74] a
similar system of equations is used in the actual definition of GPAC generable functions (Definition
10 in that paper; see also Lemma 3.1.17 and Remark 3.1.19) instead of the usual definition involving
analog networks. We shall generalize that notion into our framework, and refer to the resulting
objects as normal form systems.

Definition 3.5.1 (Normal form equation). Let N ∈ N. A normal form equation on the N
variables y1, . . . , yN is an equation of the form

N∑
i=0

N∑
j=1

bijyiy
′
j +

N∑
j=1

cj∂xy
′
j = 0, (3.20)

under the conventions that y0 ≡ 1 and bij , cj are real numbers.

We remark that y0 ≡ 1 is not a variable, just a notational convenience to obtain a more compact
equation. We also note that index i starts at 0 whereas index j starts at 1; thus (3.20) will not
include the term y′0 (which would be equal to 0, and therefore irrelevant).

We also alert the reader to our choice of terms of the form ∂xy
′
j in the second summation in

(3.20), with derivatives both in time and space. One could think that a similar definition of normal
form equations with terms of the form ∂xyj would be more ‘natural’. In fact, both definitions would
be equivalent, and we could move from the former to the latter by adding extra variables (namely,
one would have to add the extra variable t that specifies “linear time”, t(t, x) = t). The main reason
for choosing (3.20) as our template for normal form equations is practicality, as it makes the proof
of Lemma 3.5.7 (below) much simpler.

Here are some examples of normal form equations:

y′1 = y1y
′
2;

y′1 = y′2 + y′3;

y′1 = ∂xy
′
1.

Definition 3.5.2 (Normal form system over X). Let K,L ∈ N and N = K + L. A normal
form system (NFS) on the N variables y1, . . . , yN is a system of the form

N∑
i=0

N∑
j=1

bij`yiy
′
j +

N∑
j=1

cj`∂xy
′
j = 0 , for ` = 1, . . . , L;

yK+`(0) = g` , for ` = 1, . . . , L,

(3.21)

under the conventions that y0 ≡ 1, bij`, cj` are real numbers and g` ∈ X .
We say that g1, . . . , gL are the (initial) constants, y1, . . . , yK are the inputs or independent vari-

ables and yK+1 . . . , yK+L are the outputs or dependent variables.

We briefly remark that, in a well-posed system of equations, the number of equations and the
number of unknowns must be the same. In the previous definition, these correspond to the outputs
yK+1, . . . , yK+L; hence there must be L equations.

Definition 3.5.3 (Quasi-well-posedness of NFS). Let K,L ∈ N and N = K + L. Let N be an
NFS given by (3.21) with K inputs and L outputs and consider the spaces

C = XL, I = C1([0, T],X)K , O = C1([0, T],X)L.

Let U ⊆ C × I. We say that N is quasi-well-posed on U if

61

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

• (existence) for every (g,uI) ∈ U , there exists uO ∈ O such that (3.21) holds for (g,uI ,uO),
where g = (g1, . . . , gL), uI = (y1, . . . , yK), uO = (yK+1, . . . , yK+L);

• (uniqueness) for every (g,uI) ∈ U , the tuple uO such that (3.21) holds is unique;

• (closedness) the map (g,uI) 7→ uO, with domain U and codomain O, given as the unique
solution of (3.21), defines a closed operator.

Definition 3.5.4 (Semantics of NFS).

(a) Let K,L ∈ N and N = K+L. Let N be an NFS with K inputs and L outputs. Let U ⊆ C×I
such that N is quasi-well-posed on U . We define the solution of N as the (partial) function

F : C × I ⇀ O;
F (g,uI) = uO,

whose domain is U and where uO is given by (3.21). We also say that N generates F on
U = dom(F).

(b) A function F : C × I ⇀ O is NFS-generable if there exists an NFS N such that N is quasi-
well-posed on the domain of F and F is the solution of N .

We remark that in an NFS, there is a bijection between the initial conditions and the outputs;
thus we have the following basic property (cf. Proposition 3.4.12).

Proposition 3.5.5. If F : C × I ⇀ O is NFS-generable, then dim(C) = dim(O).

We have established semantics for NFS, and the next step is to show that every X -GPAC-
generable function is a projection of an NFS-generable function, as in the following definition.

Definition 3.5.6 (Function projection). Let F : A ⇀ B and F ′ : A×A′ ⇀ B ×B′, and let

G(F) = {(a, b) : a ∈ dom(F) and F (a) = b} ⊆ A×B,
G(F ′) = {(a, a′, b, b′) : (a, a′) ∈ dom(F ′) and F ′(a, a′) = (b, b′)} ⊆ A×A′ ×B ×B′

be their graphs. We say that F is a projection of F ′ if for all (a, b) ∈ A×B,

• if (a, b) 6∈ G(F) then for all a′ ∈ A′, b′ ∈ B′ we have (a, a′, b, b′) 6∈ G(F ′);

• if (a, b) ∈ G(F) then there exist unique a′ ∈ A′ and b′ ∈ B′ such that (a, a′, b, b′) ∈ G(F ′).

We briefly remark that the notion of projection induces a partial order in the class of functions.
We have the following lemma.

Lemma 3.5.7 (X -GPAC-generable implies NFS-generable). Let FG : CG × IG ⇀MG ×OG
be X -GPAC-generable with domain UG ⊆ CG×IG. Then there exists FN : CN ×IN ⇀ ON which is
NFS-generable with domain UN ⊆ CN × IN with the following properties:

• dim(IN) = dim(IG) and dim(ON) = dim(MG) + dim(OG);

• for every (g,uI) ∈ CG×IG such that (g,uI) 6∈ UG, we have (g,g∗,uI) 6∈ UN for any X -vector
g∗;

• for every (g,uI) ∈ CG × IG such that (g,uI) ∈ UG, there exists a unique X -vector g∗ such
that (g,g∗,uI) ∈ UN ; moreover, we have

FG(g,uI) = FN (g,g∗,uI).

62

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

In other words, FG is a projection of FN .

Proof. Let FG : CG × IG ⇀MG ×OG be X -GPAC-generable with domain UG ⊆ CG × IG. Denote
by G the X -GPAC that generates FG and Φ : CG × IG ×MG ⇀MG ×OG the induced operator.

The important idea of the proof is understanding how to write the equational specification of Φ
as an NFS. We apply the following conversions, for every u appearing in MG ×OG:

u = g

{
u′ = 0
u(0) = g

u = v + w

{
u′ = v′ + w′

u(0) = v(0) + w(0)

u = v · w

{
u′ = vw′ + wv′

u(0) = v(0) · w(0)

u = g +
∫
vdw

{
u′ = vw′

u(0) = g

u = ∂xv

{
u′ = ∂xv

′

u(0) = ∂xv(0)

We observe that the input/output relation of each module of G can be written as a normal
form equation coupled with an initial condition. Therefore, we can construct an NFS, N , from G,
including an initial condition for each channel.

However, the constant space CG appearing in the specification of G only takes into account those
constants appearing as initial settings of integrators. In order to define the solution mapping, ΦN ,
we need to extend the constant space to include the initial settings of the other types of operations,
as they appear in the list of conversions above.

Let IN = C1([0, T],X)K and ON = C1([0, T],X)L, where K,L are the number of inputs and
outputs of N . By construction each input of N corresponds to an input channel of G and each output
of N corresponds to either a mixed or output channel of G. Therefore, we have that IN = IG and
ON =MG ×OG, so that dim(IN) = dim(IG) and dim(ON) = dim(MG) + dim(OG), which proves
the first bullet.

The next step is to find a suitable UN for the domain of FN . By quasi-well-posedness of G on
UG, we know that, for every (g,uI) ∈ UG, there exists a unique (uM ,uO) ∈ MG × OG such that
Φ(g,uI ,uM) = (uM ,uO). Thus, if we define (g,g∗) as the vector of initial conditions4 of (uM ,uO),
we can infer that g∗ depends uniquely on (uM ,uO), and thus it depends uniquely on (g,uI). With
this in mind we define

UN = {(g,g∗,uI) : (g,uI) ∈ UG and (g,g∗) = FG(g,uI) �t=0};

FN (g,g∗,uI) =

{
FG(g,uI) if (g,g∗,uI) ∈ UN ;
undefined otherwise.

By the above construction, UN and FN satisfy the second and third bullets, and all is left is
to show that FN is the solution of N on UN . By quasi-well-posedness of G on UG, it is clear that
for (g,g∗,uI) ∈ UN , the tuple (uM ,uO) ∈ ON that solves the NFS exists, is unique and given by
FG(g,uI).

To prove closedness of FN , consider a sequence (gn,g
∗
n,u

I
n) ∈ UN such that

4Possibly after reordering the mixed and output channels; this can be done without loss of generality.

63

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

(gn,g
∗
n,u

I
n)→ (g,g∗,uI) and FN (gn,g

∗
n,u

I
n)→ (uM ,uO);

then we have

(gn,u
I
n)→ (g,uI) and FG(gn,u

I
n) = FN (gn,g

∗
n,u

I
n)→ (uM ,uO).

By closedness of FG, we have

(g,uI) ∈ UN and FG(g,uI) = (uM ,uO);

Now define (uMn ,u
O
n) = FG(gn,u

I
n), so that

(gn,g
∗
n) = FG(gn,u

I
n) �t=0= (uMn ,u

O
n) �t=0;

by taking limits, we conclude that (g,g∗) = (uM ,uO) �t=0. Thus,

(g,g∗,uI) ∈ UN and FN (g,g∗,uI) = (uM ,uO),

which concludes the proof.

Example 3.5.8. In order to better understand the construction in the proof of Lemma 3.5.7, we
apply it to the X -GPAC seen on Example 3.4.6 (repeated in Figure 3.9).

∂x ∂x

g
u3

u1

u2 u3 u4

Figure 3.9: An X -GPAC implementing a transport equation, and one spatial derivative of its solu-
tion.

It can be checked that this X -GPAC is well-posed for u1 ∈ C1([0, T],X) and g ∈ C2(R). It
generates the function FG : X 1 × C1([0, T],X)1 ⇀ C1([0, T],X)3, given by FG(g, u1) = (u2, u3, u4),
where

u2(t, x) = g(x+ u1(t)− u1(0)), u3(t, x) = g′(x+ u1(t)− u1(0)), u4(t, x) = g′′(x+ u1(t)− u1(0));

if u1 is linear time, u1 = t, this has the simpler form

u2(t, x) = g(x+ t), u3(t, x) = g′(x+ t), u4(t, x) = g′′(x+ t).

Let us construct an NFS with solution FN such that FG is a projection of FN . The X -GPAC
generates the equational relations

u2 = g +

∫ t

0

u3du1, u3 = ∂xu2, u4 = ∂xu3; (3.22)

which can be converted into an NFS with three constants, one input and three outputs,

u′2 = u3u
′
1, u′3 = ∂xu

′
2, u′4 = ∂xu

′
3,

u2(0) = g, u3(0) = g3, u4(0) = g4.
(3.23)

64

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

We can see that the constant space of the NFS has three parameters g, g3 and g4, which is two
more than in the constant space of the X -GPAC. Therefore any solution of the NFS must be of type
X 3 × C1([0, T],X)1 ⇀ C1([0, T],X)3.

We also see that if (g, u1, u2, u3, u4) produces a specification of the X -GPAC, then (u1, u2, u3, u4)
produces a solution of the NFS for the initial conditions g, g3 = u3(0), g4 = u4(0); in other words,
the NFS generates a function FN such that

if FG(g, u1) = (u2, u3, u4), then FN (g, u3(0), u4(0), u1) = (u2, u3, u4).

Thus FG is a projection of FN , as expected.

3.6 Partial differential algebraic equations

In this section we will define partial differential algebraic systems, which will prove to be the
correct generalization of differentially algebraic equations for our purposes, as will be made clear
from our main result (Theorem 17).

Definition 3.6.1 (Partial differential algebraic equation). Let N ∈ N. A partial differential
algebraic equation (PDAE) on the N variables y1, . . . , yN is an equation of the form

P (t, y1, . . . , yN , . . . , ∂
α1
x y

(β1)
1 , . . . , ∂αN

x y
(βN)
N) = 0, (3.24)

where P is a polynomial in y1, . . . , yN and some of their derivatives, with real coefficients.

Definition 3.6.2 (System of PDAEs). Let K,L ∈ N and N = K+L. A partial differential alge-
braic system (PDAS), also referred to as system of PDAEs, on the N variables y1, . . . , yK , z1, . . . , zL
is a system of the form{

P`(t, y1, . . . , yK , z1, . . . , zL . . . , ∂
α1
x y

(β1)
1 , . . . , ∂αN

x z
(βN)
L) = 0 , for 1 ≤ ` ≤ L;

z
(β)
` (0) = g`,β , for 1 ≤ ` ≤ L and 0 ≤ β < β`,

(3.25)
under the conventions that P` are polynomials in y1, . . . , yK , z1, . . . , zL and some of their derivatives,
with real coefficients, and g`,β ∈ X .

We say that y1, . . . , yK are the inputs or independent variables and z1 . . . , zL are the outputs or
dependent variables.

We provide a short explanation on the notation in the previous definition. Each variable yk can
appear in the polynomial expressions with space derivatives of order at most αk and time derivatives
of order at most βk, and similarly for z`; for each output z`, we need to provide β` initial conditions;

they correspond to the values of z` and its time derivatives z
(β)
` of order up to β` − 1 at time t = 0,

z`(0), z′`(0), . . . , z
(β`−1)
` (0).

This is a standard assumption in the theory of PDEs and is a necessary condition for well-
posedness (with fewer initial conditions, the system is underdetermined; with more initial conditions,
the system is overdetermined).

Definition 3.6.3 (Quasi-well-posedness of PDAS). Let K,L ∈ N and N = L+K. Let P be a
PDAS given by (3.25) with K inputs, L outputs and J initial conditions and consider the spaces

C = X J , I = C1([0, T],X)K , O = C1([0, T],X)L.

65

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Let U ⊆ C × I. We say that P is quasi-well-posed on U if

• (existence) for every (g,uI) ∈ U , there exists uO ∈ O such that (3.25) holds for (g,uI ,uO),
where g is the vector of initial conditions, uI = (y1, . . . , yK), uO = (z1, . . . , zL);

• (uniqueness) for every (g,uI) ∈ U , the tuple uO such that (3.25) holds is unique;

• (closedness) the map (g,uI) 7→ uO, with domain U and codomain O, given as the unique
solution of (3.25), defines a closed operator.

Definition 3.6.4 (Semantics of PDAS).

(a) Let K,L ∈ N and N = K+L. Let P be a PDAS with K inputs and L outputs. Let U ⊆ C×I
such that P is quasi-well-posed on U . We define the solution of P as the (partial) function

F : C × I ⇀ O;
F (g,uI) = uO,

whose domain is U and where uO is given by (3.25). We also say that P generates F on
U = dom(F).

(b) A function F : C × I ⇀ O is PDAS-generable if there exists a PDAS P such that P is
quasi-well-posed on the domain of F and F is the solution of P.

Remark 3.6.5. Observe that a PDAS describes a system of L equations on the variables y1, . . . , yK ,
z1, . . . , zL, which can be seen as an L-dimensional ‘surface’ on the N -dimensional space of variables.
The notion of quasi-well-posedness allows us to define a semantics map (y1, . . . , yK) 7→ (z1, . . . , zL).
This should be compared to the Implicit Function Theorem, which allows us to make such statements
on Euclidean spaces (however, in our case the variables are not real but elements of C(T,X) instead).
Hence, in principle, (local) well-posedness would be equivalent to some invertibility property on the
Jacobian corresponding to the PDAS,

J(y1, . . . , yK , z1, . . . , zL) =

∂P1

∂y1
· · · ∂P1

∂yK
∂P1

∂z1
· · · ∂P1

∂zL
...

. . .
...

...
. . .

...
∂PL

∂y1
· · · ∂PL

∂yK
∂PL

∂z1
· · · ∂PL

∂zL

 .
We also remark that in a PDAS, there is a correspondence between the outputs and a subset of

the initial conditions (namely, those for which β = 0), and so we have the following basic property
(cf. Propositions 3.4.12 and 3.5.5).

Proposition 3.6.6. If F : C × I ⇀ O is PDAS-generable, then dim(O) ≤ dim(C).

Our next two results will complete the cycle in Figure 3.10, showing that generable functions in
each mode can be seen as projections of generable functions in the other modes.

X -GPAC

NFSPDAS

Figure 3.10: Cycle of main results.

66

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Lemma 3.6.7 (NFS-generable implies PDAS-generable). Any NFS-generable function is
PDAS-generable.

Proof. Any normal form equation is a partial differential algebraic equation where the variables
occur with time (and space) derivatives of order at most 1; thus the initial conditions in an NFS are
exactly those appearing as initial conditions in the corresponding PDAS; in other words, every NFS
is a PDAS.

Lemma 3.6.8 (PDAS-generable implies X -GPAC-generable). Let FP : CP × IP ⇀ OP be
PDAS-generable with domain UP ⊆ CP × IP . Then there exists FG : CG × IG ⇀MG × OG which
is X -GPAC-generable with domain UG ⊆ CG × IG with the following properties:

• dim(IG) = dim(IP) + 1 and dim(CG) ≥ dim(CP);

• for every (g,uI) ∈ CP × IP such that (g,uI) 6∈ UP , we have (g,g∗,uI , y) 6∈ UG for any
X -vector g∗ and any X -stream y;

• for every (g,uI) ∈ CP × IP such that (g,uI) ∈ UP , there exists a unique X -vector g∗ and
X -stream y such that (g,g∗,uI , y) ∈ UG; moreover, there exists a unique X -stream vector u∗

such that
FG(g,g∗,uI , y) = (u∗, FP (g,uI)).

In other words, FP is a projection of FG.

The equality and inequality in the first bullet will be explained below.

Proof. Let FP : CP × IP ⇀ OP be PDAS-generable with domain UP ⊆ CP × IP . Denote by P the
PDAS that generates FP .

The important idea of the proof is understanding how to write partial differential algebraic
equations with X -GPAC modules. We start with channels for all variables y1, . . . , yK , z1, . . . , zL. To
obtain derivatives in time, we include modules and connections as in Figure 3.11.

+ + ×
−1

yi v1 v2 v3 v4

t

gi,0

Figure 3.11: An X -GPAC for computing time derivatives.

Note that the channels on Figure 3.11 must obey the system
v1 = yi + v4;
v2 = v1 + v2;
v3 = gi,0 +

∫
v2dt;

v4 = −v3;
yi(0) = gi,0;

⇒

v1 = 0;
v2 = y′i;
v3 = yi;
v4 = −yi;

so that we obtain y′i in the channel labeled v2. Observe that we must include an initial setting
(in the above case, the initial value yi(0)) every time we need to take a time derivative. We also
need to include a channel carrying linear time t ∈ C1([0, T],X). By composing several of these

67

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

modules, we can get all time derivatives that appear in P, that is, we obtain y
(β)
k for k = 1, . . . ,K,

β = 0, . . . , βk − 1; and z
(β)
` for ` = 1, . . . , L, β = 0, . . . , βK+` − 1.

Next, by successive applications of the differential module (see Figure 3.12) we obtain all the

partial derivatives appearing in P, which are of the form ∂αx y
(β)
k for k = 1, . . . ,K, α = 0, . . . , αk,

β = 0, . . . , βk − 1; and ∂αx z
(β)
` for ` = 1, . . . , L, α = 0, . . . , αK+`, β = 0, . . . , βK+` − 1.

∂x ∂x ∂x· · ·y
(β)
i ∂xy

(β)
i ∂αx y

(β)
i

Figure 3.12: An X -GPAC for computing spatial derivatives.

Next, we compute the polynomial expressions P` from the partial derivative terms using con-
stants, multipliers and adders. Any term appearing in the polynomials P` is of the form atd11 · · · tdnn ,
where a ∈ R (obtainable from a constant module), each ti is either t (obtainable using the channel t

carrying linear time) or some ∂αx y
(β)
k , ∂αx z

(β)
` , and thus can be obtained by a constant module and a

sequence of multipliers. Each polynomial P` is a finite sum of such terms, and thus can be obtained
by a sequence of adders.

Finally, to enforce the relation P`(t, y1, . . . , yK , z1, . . . , zL . . . , ∂
α1
x y

(β1)
1 , . . . , ∂αN

x z
(βN)
L) = 0, we

add z` to both sides of the equation and include an adder and feedback loop, as shown on Figure
3.13. We can then loop the channel labeled z` back to the start, enforcing it to be a mixed channel.

+P`
z`

Figure 3.13: Feedback loop implementing P` = 0.

Figure 3.14 illustrates the several steps of our construction, which results in an X -GPAC G. We
must next address the underlying spaces of G. The constant space is constructed with the initial
settings of integrators, which only appear in the phase where we build time derivatives. For every
original variable yk which appears in P with time derivatives of order up to βk, we have included

the βk initial settings gk,β = y
(β)
k (0), 0 ≤ β < βk. Hence, the constant space of G, denoted by CG,

is an extension of CP , which only takes into account the initial settings associated with the output
variables z`; therefore dim(CG) ≥ dim(CP).

time
derivatives differentials

constants,
multipliers,

adders
+

{gk,β}
{yk}
{z`}

t

{y(β)
k }
{z(β)
` }

{∂αx y
(β)
k }

{∂αx z
(β)
` }

{P`}
{z`}

Figure 3.14: Construction of an X -GPAC from a PDAS.

In regards to the input space, the original input variables yk, k = 1, . . . ,K appear in G as proper
input channels. The only other proper input channel is linear time t, which can be seen as an

68

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

‘explicit time’ inserted into the system. In this way, dim(IG) = dim(IP) + 1, which proves the first
bullet.

Observe that the original output variables z`, ` = 1, . . . , L, all appear in G as mixed channels
because of the feedback loop that ensures P` = 0. There are (potentially many) other mixed and

proper output channels in G, which carry the value of either partial derivatives ∂αx y
(β)
k , ∂αx z

(β)
` ,

multiplying terms atdii · · · tdnn or sums of multiplying terms; hence dim(MG ×OG) ≥ dim(OP).
The next step is to find a suitable UG for the domain of FG. By quasi-well-posedness of P, we

know that, for every (g,uI) ∈ UP , there exists a unique uO ∈ OP that solves P. Thus, if we define
(g∗,g) as the vector of initial conditions of all time derivatives of the input and output variables,

which are of the form y
(β)
k (0) for k = 1, . . . ,K, β = 0, . . . , βk − 1 and z

(β)
` (0) for ` = 1, . . . , L,

β = 0, . . . , βK+` − 1, we can infer that g∗ depends uniquely on (uI ,uO), and thus it depends
uniquely on (g,uI). With this in mind we define

UG = {(g∗,g,uI , t) :(g,uI) ∈ UP and (g∗,g) = (y1, . . . , y
(βK−1)
K , z1, . . . , z

(βK+L−1)
L) �t=0,

where (y1, . . . , yK) = uI and (z1, . . . , z`) = uO = FP (g,uI)}.

To define FG, we need to define the value of all the mixed and output channels appearing in G.
As described above, these are either the output variables z1, . . . , zL, or uniquely obtained from the
tuple (uI ,uO, t) = (y1, . . . , yK , z1, . . . , zL, t) via partial derivatives, products and sums. If we let u∗

denote the value of all the mixed and output channels which are not the output variables, then u∗

depends uniquely on (uI ,uO, t) and thus also on (g,uI), so that we can define

FG(g∗,g,uI , t) =

{
(u∗, FP (g,uI)) if (g,g∗,uI , t) ∈ UG;
undefined otherwise.

By this construction, UG and FG satisfy the second and third bullet points, and all is left is to
show that FG is the specification of G on UG. By quasi-well-posedness of P on UP and the above
discussion, it is clear that for (g∗,g,uI , t) ∈ UG, the tuple (u∗,uO) ∈ OG that solves the equational
specification of G exists and is unique; that is to say, uO is given by FP (g,uI) and u∗ is obtained
from (uI ,uO, t) via partial derivatives, produts and sums.

To prove closedness of FG, consider a sequence5 (g∗n,gn,u
I
n, t) ∈ UG such that

(g∗n,gn,u
I
n, t)→ (g∗,g,uI , t) and FG(g∗n,gn,u

I
n, t)→ (u∗,uO);

by defining (u∗n,u
O
n) = FG(g∗n,gn,u

I
n, t), we have

(gn,u
I
n)→ (g,uI) and FP (gn,u

I
n) = uOn → uO.

By closedness of FP , we have

(g,uI) ∈ UP and FP (g,uI) = uO.

Now (g∗n,gn) corresponds to the values of the variables in (uIn,u
O
n) and some of their deriva-

tives at t = 0. By closedness of the differential operator, we can take limits and conclude that
(g∗,g) corresponds to the values of the variables in (uI ,uO) and their derivatives at t = 0; thus,
(g∗,g,uI , t) ∈ UG. Also, since partial derivatives, products and sums are closed operators, we infer
that (u∗n,u

O
n)→ FG(g∗,g,uI , t), so that FG(g∗,g,uI , t) = (u∗,uO), which concludes the proof.

5Since the last component of any tuple in UG must be linear time t, we only need to consider sequences for the
other three subtuples.

69

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Example 3.6.9. We provide an example of the construction in the previous Lemma by applying it
to the one-dimensional heat equation, which can be written as the following PDAS,

u′ = ∂2
xu, u(0) = g.

To produce a solution to the heat equation, we consider, for example, a square-integrable initial
condition g ∈ C(R) ∩ L2(R), for which the solution can be obtained via the heat kernel, that is,
FP : X ⇀ C1([0, T],X) is given by FP (g) = u, where

u(t, x) =

∫
R
K(t, x− y)g(y)dy, K(t, x) =

1√
4πt

e−x
2/4t.

Let us construct an X -GPAC with specification FG such that FP is a projection of FG. We
start with a channel for the variable u. Using the constructions on Figures 3.11 and 3.12 we obtain
channels with the derivatives u′, ∂xu and ∂2

xu. We can then construct the partial differential algebraic
expression P (u, u′, ∂xu, ∂

2
xu) = u′ − ∂2

xu using one constant module, one multiplier module and one
adder module. Finally, we include an adder and feedback loop as in Figure 3.13 and loop the variable
u to the beginning. The final X -GPAC can be seen in Figure 3.15.

+ + ×

∂x ∂x × + +

−1

−1

−u u′

u′ −u
u 0

g

t
u

u′ u
u ∂xu u

∂2
xu −∂2

xu P = 0

Figure 3.15: Construction of an X -GPAC from the heat equation.

We can see that the X -GPAC has one additional input t, which carries linear time. It should
also be noted that the heat equation has only one variable u, whereas the X -GPAC has a total of
twelve channels and thus twelve variables (of course, most of those are redundant). Therefore, any
specification of the X -GPAC must be of type X 1 × C1([0, T],X)1 ⇀ C1([0, T],X)11.

We can also see that if FP (g) = u produces a solution to the heat equation, then there is a
unique tuple u of values that satisfy Φ(g, t,u) = u, where Φ is the induced operator of the X -GPAC
in Figure 3.15, g is the initial condition of the integrator and t is the input channel (linear time).
In other words, we can construct a specification FG(g, t) = u of the X -GPAC such that FP is a
projection of FG, as expected.

It should be clear from this example that the construction in Lemma 3.6.8 is universal (in the
sense that it works for any PDAS) but is not necessarily optimal (in the sense that it does not add
a minimal number of new variables). In fact, one could construct a much simpler X -GPAC (with
only three modules!) that generates solutions to the heat equation, as in Figure 3.16. The reader
can verify that FP is also a projection of the specification of this X -GPAC.

Finally we can state and prove our main result.

Theorem 17 (X -GPAC Characterization Theorem). Let

F : X j × C1([0, T],X)k ⇀ C1([0, T],X)`.

70

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

∂x ∂x
u

g

t

Figure 3.16: An X -GPAC that generates solutions to the heat equation.

The following are equivalent:

• F is the projection of an X -GPAC-generable function;

• F is the projection of an NFS-generable function;

• F is the projection of a PDAS-generable function;

Proof. We prove each implication:
(X -GPAC ⇒ NFS) Let F be the projection of an X -GPAC-generable function FG. By Lemma

3.5.7, FG is the projection of an NFS-generable function FN , and so F is a projection of FN .
(NFS ⇒ PDAS) Similar to the previous case, but use Lemma 3.6.7 instead.
(PDAS ⇒ X -GPAC) Similar to the previous case, but use Lemma 3.6.8 instead.

3.7 The Multityped GPAC

The rest of this chapter is devoted to a more abstract study of the X -GPAC. The addition
of C1([0, T],X) as a new space of data channels suggests a generalization of the GPAC model to
manipulate data in many-sorted data types. As we mentioned in Section 3.3, we could consider
other function spaces, such as

X = Cp(Ω) or X = Hp(Ω),

where Ω is a domain in Rn. Another possible direction would be to consider modules operating on
multiple data types, which could be written as

Φ : τ `11 × . . .× τ `nn → τ ;

in other words, we can define a model of computation where different channels may carry different
types of data.

This direction of research would have a strongly technical aspect. As a starting point, we shall
extend the known model by taking X to be any complete metric vector space and assuming the
existence of four different types of channels (cf. beginning of Section 3.1):

• R-scalar channels, which carry a constant k ∈ R;

• X -scalar channels, which carry a constant x ∈ X ;

• R-stream channels, which carry a stream a ∈ C1([0, T],R);

• X -stream channels, which carry a stream u ∈ C1([0, T],X).

We make the important observation that adding scalar channels that carry constants will give
us some extra freedom and enable some operations that technically were not present in Shannon’s
original construction. We must also redefine our basic modules.

71

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Definition 3.7.1 (Basic X -modules). The basic X -modules are defined as follows:

• for any k ∈ R, the k-constant module has zero inputs and one R-scalar output. It outputs the
constant k. Similarly, for any x ∈ X , the x-constant module has zero inputs and one X -scalar
output. It outputs the constant x;

• the R-adder module has two R-stream inputs and one R-stream output. For inputs a and b,
it outputs the sum a + b. Similarly, the X -adder module has two X -stream inputs and one
X -stream output. For inputs u and v, it outputs the sum u+ v;

• the R-scalar-R-multiplier module has one R-scalar input, one R-stream input and one R-stream
output. For inputs k and a, it outputs the product ka. Similarly, the R-scalar-X -multiplier
module has one R-scalar input, one X -stream input and one X -stream output. For inputs k
and u, it outputs the product ku;

• the R-integrator module has one R-scalar input, two R-stream inputs and one R-stream output.
For inputs k, a and b, it outputs the Lebesgue-Stieltjes integral k+

∫
adb. Similarly, there are

two X -integrator modules, each having one X -scalar input, one R-stream input, one X -stream
input and one X -stream output. For inputs x, a and u, one outputs the Lebesgue-Stieltjes
integral x+

∫
adu and the other outputs the Lebesgue-Stieltjes integral x+

∫
uda;

x
x

x :→ X

x ∈ X

+

u

v
u+ v

+ : C1([0, T],X)× C1([0, T],X)→ C1([0, T],X)

+(u, v)(t) = u(t) + v(t)

×
k

u
ku

× : R× C1([0, T],X)→ C1([0, T],X)

×(k, u)(t) = k · u(t)

x

u

a

: X × C1([0, T],X)× C1([0, T],R)→ C1([0, T],X)

(x, u, a)(t) = x+
∫ t

0
u(s)da(s)

x

a

u

: X × C1([0, T],R)× C1([0, T],X)→ C1([0, T],X)

(x, a, u)(t) = x+
∫ t

0
a(s)du(s)

Figure 3.17: Some basic modules in an X -GPAC.

Remark 3.7.2. Notice that we did not define an integrator module with two X -stream inputs.
The reason is that, at this level of generality, there may not be a product operation of the type

72

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

×k
a

ka

Figure 3.18: Derivation of Shannon scalar multiplier modules.

X × X → X . Notice also that the scalar multiplier and integrators in Definition 3.7.1 have an
extra scalar input channel compared to their Shannon counterparts in Definition 3.1.1. This can be
considered as a generalization, since we can represent the old modules via the new ones, as stated
in the following proposition.

Proposition 3.7.3. The Shannon basic modules (Definition 3.1.1) can be derived from the X -basic
modules (Definition 3.7.1).

Proof. The Shannon adder is given by the R-adder. Figure 3.18 shows how to derive the Shannon
multiplier from a k-constant and an R-scalar-R-multiplier. The Shannon integrator is given by the
R-integrator, making sure the R-scalar input is a proper input. The Shannon constant can be derived
from a 0-constant, a 1-constant, an R-scalar-R-multiplier and an R-integrator; we leave the diagram
to the proof of Proposition 3.8.6 after we introduce constant streamers.

3.8 Module derivation and channel contraction

In this section we present a few more additional modules which we find useful to understand
the power of X -GPACs. Moreover, we present two operations on GPACs to increase or reduce the
number of modules.

The main motivation is that some operations which one may consider ‘fundamental’ are not
captured in the basic modules from Figures 3.1 and 3.17. For example, the multiplication of two
R-scalars,

×(k, `) = k`,

or the multiplication of two R-streams,

×(a, b)(t) = a(t)b(t),

are not directly obtained in any of the previous modules. In regards to the multiplication of R-
streams, both Shannon and Pour-El argue that this can be obtained by the other basic modules,
due to the relation

a(t)b(t) = a(0)b(0) +

∫ t

0

a(s)db(s) +

∫ t

0

b(s)da(s), (3.26)

that holds for any a, b ∈ C1([0, T],R). However, the first term, a(0)b(0), cannot be obtained generally
from streams a and b via the basic modules, unless in specific circumstances (for example, if we
restrict a and b to the space of streams such that a(0) = 0). Therefore, there is no GPAC that
computes the right hand side of (3.26), if only the basic modules are considered.

To solve this issue, one could simply introduce a new module to compute the multiplication of
two R-streams, and include it in our definition of GPAC (indeed, this is what we did in Definition
3.4.4). This would however raise other questions, as there are many varieties of modules which we
would then need to include, one by one, as will be clear from the rest of this section. The path we
have chosen is instead to include one additional type of module, namely evaluation modules, from
which all these operations can be derived.

73

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Definition 3.8.1 (Initial evaluator modules). The R-initial evaluator has one R-stream input
and one R-scalar output. For an input a, it outputs the initial value a(0). Similarly, the X -initial
evaluator has one X -stream input and one X -scalar output. For an input u, it outputs the initial
value u(0).

a
δ0

a(0)
δ0 : C1([0, T],R)→ R

δ0(a) = a(0)

u
δ0

u(0)
δ0 : C1([0, T],X)→ X

δ0(u) = u(0)

Figure 3.19: Initial evaluator modules.

Definition 3.8.2 (Stream multiplier modules). The R-stream multiplier modules have one R-
stream input, one R-stream or X -stream input and one R-stream or X -stream output, respectively.
For inputs a, and b or u respectively, they output the products ab or au respectively.

×
a

b
ab

× : C1([0, T],R)× C1([0, T],R)→ C1([0, T],R)

×(a, b)(t) = a(t)b(t)

×
a

u
au

× : C1([0, T],R)× C1([0, T],X)→ C1([0, T],X)

×(a, u)(t) = a(t)u(t)

Figure 3.20: R-stream multiplier modules.

Proposition 3.8.3. The R-stream multiplier modules can be derived from the initial evaluator and
basic modules.

Proof. Figure 3.21 shows how to derive the R-stream-R-multiplier (that is, with two R-stream inputs
and one R-stream output) using two R-initial evaluators, an R-scalar-R-multiplier, a 0-constant, two
R-integrators and an R-adder. A similar proof works for the case C1([0, T],R) × C1([0, T],X) →
C1([0, T],X) as well.

Example 3.8.4. We show the usefulness of the R-stream multiplier by using it to build an inverter ,
a partially defined function given by

F : R× C1([0, T],R) ⇀ C1([0, T],R); F (k, b)(t) =
k

1 + k(b(t)− b(0))
. (3.27)

74

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

δ0 × δ0

0

+

a

b

a0
a0b a0b0

a

b

0

b

a

ab

Figure 3.21: Derivation of an R-stream multiplier module.

× −1 ×
k

b

a

Figure 3.22: A GPAC generating the inverter functional.

Let us show that F is GPAC-generable by considering the GPAC in Figure 3.22.
This GPAC induces a system of four equations on six variables, which is reducible to a single

equation on the channels labeled k, a and b, given by

a′(t) = −a(t)2b′(t), a(0) = k;

after some calculations we find the unique solution to be

a(t) =
k

1 + k(b(t)− b(0))
.

Therefore, F is a (component of a) GPAC-generable partial function; its domain is given by

D(F) = {(k, b) ∈ R× C(T,R) : k = 0 or b(t) 6= b(0)− 1/k for all t ∈ T}.

It is worth noticing that, when k = 1 and b = t is linear time, the corresponding solution is
a(t) = 1

1+t , which provides an example for a GPAC-generable rational function.

The next module we consider can be thought of as the inverse of the evaluator.

Definition 3.8.5 (Streamer modules). The R-constant streamer module has one R-scalar input,
one R-stream input and one R-stream output. For inputs k, a, it outputs the constant stream k.
Similarly, the X -constant streamer module has one X -scalar input, one X -stream input and one
X -stream output. For inputs x, u, it outputs the constant stream x.

Proposition 3.8.6. The R-constant streamer module can be derived from the basic modules. The
X -constant streamer module can be derived from the basic modules using an additional R-stream
input.

Proof. Figure 3.24 shows how to derive constant streamers using a 0-constant, an R-scalar multiplier

75

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

ι

x

a
x

ι : R× C1([0, T],R)→ C1([0, T],R)

ι(k, a)(t) = k

ι

k

u
k

ι : X × C1([0, T],X)→ C1([0, T],X)

ι(x, u)(t) = x

Figure 3.23: Constant streamer modules.

and an R-integrator. The main idea of the proof is the trivial relation

k = k +

∫ t

0

0da(s).

Observe also that, for the X -constant streamer, an additional R-stream input is used; that is,
the X -constant streamer only has two inputs but we required a third input for the GPAC in the
right-hand side of Figure 3.24. In the current framework this extra channel is necessary, since the
X -integrator module has an R-stream input. However, if a product operation of type X × X → X
exists (cf. Remark 3.7.2), then we can use the corresponding X -integrator module (and thus we
would not require such an additional channel).

0 ×

k

0

a

0 k 0 ×

x

0

u
0

a

x

Figure 3.24: Derivation of constant streamer modules.

We also observe that the Shannon constant module can be obtained from a constant streamer,
letting k be the output of a 1-constant (cf. proof of Proposition 3.7.3).

Clearly, once we have constant streamers and initial evaluators, we can derive addition and
multiplication of scalars from their stream counterparts.

Definition 3.8.7 (Scalar operation modules). The scalar adder and scalar multiplier modules
are defined as in Definition 3.7.1, but replacing every stream channel by its corresponding scalar
channel.

Proposition 3.8.8. The scalar adders and scalar multipliers can be derived from the constant
streamers, initial evaluators, and basic modules, using an additional stream input.

Proof. Figure 3.26 shows how to derive the scalar adder and scalar multiplier of type R × R → R.
The same idea works for the remaining cases.

76

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

+

k

`
k + `

+ : R× R→ R

+(k, `) = k + `

+

x

y
x+ y

+ : X × X → X

+(x, y) = x+ y

×
k

`
k`

× : R× R→ R

×(k, `) = k`

×
k

x
kx

× : R×X → X

×(k, x) = kx

Figure 3.25: Scalar adder and scalar multiplier modules.

ι

ι

+ δ0

k

`

a

k

`
k + ` k + `

ι
× δ0

k

`

a
`

k` k`

Figure 3.26: Derivation of scalar adder and scalar multiplier modules.

All the previous propositions describe how a variety of modules can be derived from the basic
modules and the initial evaluators. In an effort to formalize this notion, we introduce the concept
of derived module.

Definition 3.8.9 (Derived module). A derived operation is a functional F : I → O that can
be obtained as a composition of the basic modules and the initial evaluators. In other words,
there exists a GPAC G built only with basic modules and initial evaluators, with induced operator
Φ0 : I ×M→M×O such that

• G is an acyclic graph;

• Φ0 has the same input and output spaces as F ;

• G is well-posed on the whole input space, and F is the projection of the specification F0 of G
onto its output space,

F = πO ◦ F0.

A derived module is a module that specifies a derived operation.

Remark 3.8.10. To clarify the definition of derived operation, let G be an acyclic GPAC. Since
all the basic modules define total functions and G has no loops, it is clear that G is well-posed
on the whole input space I (that is, all mixed and output channels have well-defined values for
any valuation of the input channels). We can then define the induced operator Φ0 (which can be
‘read off’ G) and the specification F0 (which solves the fixed point equation). Finally, the derived
operation F is obtained from F0 by ‘ignoring’ the mixed channels and considering only the output
channels. Formally, we have

Φ0 : I ×M→M×O, F0 : I →M×O, F : I → O;

77

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

and for all in ∈ I, out ∈ O, we have

Φ0(in,mix) = (mix,out), for some mix ∈M iff

F0(in) = (mix,out), for some mix ∈M iff

F (in) = out.

Example 3.8.11. The stream multipliers, constant streamers, scalar adders and scalar multipliers
are derived modules.

Definition 3.8.12 (GPAC reducibility). Let G and G′ be GPACs, not necessarily exclusively
composed of basic modules. Let I, I ′, M, M′, O, O′ be their corresponding input, mixed and
output spaces. We say that G is reducible to G′ if

• G and G′ have the same input and output spaces, I = I ′, O = O′, and the mixed space of G′
is a subspace of the mixed space of G, M′ ⊆M;

• for any open set U ⊆ I, G is well-posed on U if and only if G′ is well-posed on U ;

• for any open set U ⊆ I on which G, G′ are well-posed, if F : I ⇀M×O is the specification
of G and F ′ : I ⇀M′ × O is the specification of G′, then F ′ is the projection of F onto the
subspace M′ ×O,

F ′ = πM′×O ◦ F.

Theorem 18 (Expansion of derived modules). For any GPAC G composed of derived modules,
there is a GPAC G′ composed of basic modules and initial evaluators such that G′ is reducible to G.

Proof. Given a GPAC G composed of derived modules, replace each derived module by the corre-
sponding composition of basic modules and initial evaluators (inserting additional mixed channels
as necessary), until a GPAC G′ composed of basic modules and initial evaluators is obtained. It is
then clear that G′ is reducible to G.

Example 3.8.13. Figure 3.27 shows an example of a GPAC composed of three derived modules
that computes sine and cosine functions, and the corresponding GPAC composed of basic modules
as in Theorem 18.

Theorem 18 describes a process in which we transform a GPAC with derived modules into a GPAC
with basic modules and initial evaluators, by increasing the number of modules and channels. We
now present the reverse process, by which we can contract channels to obtain a GPAC with fewer
modules and channels.

Definition 3.8.14 (Contractible channel). A mixed channel of a GPAC is said to be contractible
if it does not connect an input with an output of the same module, in other words, if it is the output
of a module M and the input of one or more modules, neither of which is M . A GPAC is said to be
contraction-free if it does not have contractible channels.

Theorem 19 (Contraction of GPACs). For any GPAC G, there is a contraction-free GPAC G′
such that G is reducible to G′.

Proof. Let G be a GPAC with a contractible channel y. Assume that y is the output of some module
M , where M has inputs x1, . . . , xk and generates an operation y = Φ(x1, . . . , xk). Assume that
y connects as an input to modules M1, . . . ,Mn. Consider the GPAC G′ obtained from G in the
following way (see Figure 3.28):

78

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

0 +
×−1

1 +
y1 y2 y3

x
y1(t) = 1 +

∫ t
0
y3(s)x′(s)ds;

y2(t) =
∫ t

0
y1(s)x′(s)ds;

y3(t) = −y2(t);

×y1 y2 y3

x

0 −1 1

Figure 3.27: Two GPACs that specify trigonometric functions; the first one is composed of three
derived modules; the second one is composed of six basic modules, being reducible to the first one; the
solution of the system is y1(t) = cos(x(t)−x(0)), y2(t) = sin(x(t)−x(0)), y3(t) = − sin(x(t)−x(0)).

• remove module M and replace modules M1, . . . ,Mn with modules M ′1, . . . ,M
′
n;

• connect all the inputs x1, . . . , xk of module M as inputs to modules M ′1, . . . ,M
′
n;

• if Mi specifies an operation zi = Φi(y, y1, . . . , ym), then let M ′i specify an operation zi =
Φ′i(x1, . . . , xk, y1, . . . , ym) via the composition

Φ′i(x1, . . . , xk, y1, . . . , ym) = Φi(Φ(x1, . . . , xk), y1, . . . , ym).

In this way, we obtain a GPAC G′ such that G is reducible to G′ and G′ has one less module and
at least one less contractible channel than G. Iterating this procedure a finite number of times, we
eventually arrive at a contraction-free GPAC.

Remark 3.8.15. For any GPAC G, the procedure indicated in the proof of Theorem 19 is ensured to
terminate and produce a contraction-free GPAC G′. However, G′ may not be the unique contraction-
free GPAC to which G is reducible; in fact, different choices of contractible channels may yield
different contraction-free GPAC, as the following example demonstrates.

Example 3.8.16. Returning to Example 3.8.13 and Figure 3.27, we see that there are three con-
tractible channels, labeled y1, y2 and y3. By contracting any two of these three channels, we arrive
at a contraction-free GPAC. Therefore, there are three possible reductions of the original GPAC to
a contraction-free GPAC, as shown in Figure 3.29.

3.9 Contracting GPACs and contracting operators

In the original ideas of Tucker and Zucker concerning analog networks [TZ07], the notions of
causal and contracting operators are presented and studied in great detail. Their main case study
is the mass-spring-damper system, which models a mass M suspended by a spring with stiffness K
and damping coefficient D and subject to a force f (which is a function of time). The goal of this

79

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

M

M1

Mi

Mn

x1

. . .

xk

y

y1,1

. . .

y1,m

yi,1

. . .

yi,m

yn,1

. . .

yn,m

z1

zi

zn

M ′1

M ′i

M ′n

x1. . .
xk

y1

yi

yn

z1

zi

zn

Figure 3.28: Schematic representation of channel contraction.

section is to briefly illustrate how the notion of contracting operator and the spring-mass-damper
system can be expressed in our framework.

Remark 3.9.1. We remark that, on a multityped GPAC, we can define metrics on each of the
associated spaces I, M and O. These are induced by the ‘standard’ metrics on R, X , C1([0, T],R)
and C1([0, T],X). Moreover, for Lemma 3.9.4 we shall assume in addition that the metric is induced
from a p-norm with 1 ≤ p <∞; in other words, if (X1, d1), . . . (Xn, dn) are metric spaces, we define
a metric on X1 × . . .×Xn by6

d((x1, . . . , xn), (y1, . . . , yn)) = (d(x1, y1)p + . . .+ d(xn, yn)p)
1/p

. (3.28)

Definition 3.9.2 (Contracting operator). Let G be a GPAC with induced operator Φ : I×M→
M×O.

• For yI ∈ I, Φ is said to be contracting at yI if πM ◦ Φ(yI , ·) is a contraction mapping with
respect to the metric on M (cf. Definition 2.1.4). In other words, there exists λ ∈ [0, 1) such
that, for any yM1 ,yM2 ∈M, writing

Φ(yI ,yM1) = (ỹM1 ,yO1);

Φ(yI ,yM2) = (ỹM2 ,yO2);

then
dM(ỹM1 , ỹM2) ≤ λdM(yM1 ,yM2).

• For an open set U ⊆ I, Φ is said to be (uniformly) contracting on U if πM ◦ Φ(yI , ·) is a
contraction mapping for each yI ∈ U ; and moreover the modulus of contractivity λ does not

6We can also consider p =∞, in which case we obtain the maximum norm.

80

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

φ1x

y1

φ1(y1, x)(t) = 1 +
∫ t

0

(
−
∫ s

0
y1(τ)x′(τ)dτ

)
x′(s)ds;

φ2x

y2

φ2(y2, x)(t) =
∫ t

0

(
1 +

∫ s
0
−y2(τ)x′(τ)dτ

)
x′(s)ds;

φ3x

y3

φ3(y3, x)(t) = −
∫ t

0

(
1 +

∫ s
0
y3(τ)x′(τ)dτ

)
x′(s)ds;

Figure 3.29: Three possible contraction-free reductions of the GPAC in Figure 3.27; the solution to
each system is y1 = cos(x(t)), y2 = − sin(x(t)) and y3 = sin(x(t)).

depend on yI ∈ U .

Proposition 3.9.3. Let G be a GPAC with induced operator Φ : I ×M→M×O.

1. Let yI ∈ I and suppose that Φ is contracting at yI . Then there exist unique yM ∈M, yO ∈ O
such that

Φ(yI ,yM) = (yM ,yO). (3.29)

2. Let U ⊆ I be open and suppose that Φ is uniformly contracting on U . Then G is well-posed
on U .

Proof. Both results follow easily from the Banach fixed point theorem (Theorem 2) and its proof.
Note that, in claim 2, we need to prove that the functional yI 7→ (yM ,yO) giving solutions to (3.29)
is continuous; since the modulus of contraction λ is uniform on U , this is achieved by expressing
such functional as the limit of an iteration scheme with uniform modulus of convergence.

Lemma 3.9.4 (Channel contraction preserves contractivity). Let G and G′ be GPACs with
induced operators Φ, Φ′ and suppose that G′ is obtained from G by contraction on one of its con-
tractible channels (as per the proof of Theorem 19). Assume also that the metrics on the underlying
spaces are as in Remark 3.9.1. Then, if Φ is contracting, so is Φ′.

Proof. The key ingredient in this proof is understanding how to express Φ′ (the induced operator of
the contracted GPAC) in terms of Φ (the induced operator of the original GPAC) and the module
function whose output is the channel being contracted. Let us begin by writing the induced operators
of G and G′ as of type

Φ : I ×M→M×O;

Φ′ : I ×M′ →M′ ×O;

moreover, let y denote the contractible channel andMC denote its underlying space, so that we can
write M =MC ×M′.

Now consider yI ∈ I such that Φ is contracting at yI , say with modulus of contractiveness λ.
To show that Φ′ is also contracting at yI , let us take yM1 ,yM2 , ỹM1 , ỹM2 ,yO1 ,y

O
2 with

Φ′(yI ,yM1) = (ỹM1 ,yO1);

81

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Φ′(yI ,yM2) = (ỹM2 ,yO2).

Let ΦC be the component of Φ associated to the contractible channel y. In other words, ΦC is the
function associated to the module in G whose output is y (cf. Figure 3.28). Since y is a contractible
channel, ΦC does not depend on the variable y; in other words, we can think of ΦC as a function of
type I ×M′ →MC ; moreover, Φ′ can be expressed in terms of Φ and ΦC as (ΦC ,Φ

′) = Φ(·,ΦC , ·).
To be precise, we mean the following: if y1 = ΦC(yI ,yM1) and y2 = ΦC(yI ,yM2), then

Φ(yI , y1,y
M
1) = (y1,Φ

′(yI ,yM1)) = (y1, ỹ
M
1 ,yO1);

Φ(yI , y2,y
M
2) = (y2,Φ

′(yI ,yM2)) = (y2, ỹ
M
2 ,yO2).

We now use the fact that Φ is contracting at yI to conclude that

dM((y1, ỹ
M
1), (y2, ỹ

M
2)) ≤ λdM((y1,y

M
1), (y2,y

M
2)). (3.30)

Observe that y1 and y2 appear on both sides of the inequality; the next step is to make them
disappear in order to obtain the desired bound on the remaining channels. Using the assumption
that dM is induced from a p-norm, we write

dM((y1, ỹ
M
1), (y2, ỹ

M
2))p = d(y1, y2)p + d(ỹM1 , ỹM2)p;

dM((y1,y
M
1), (y2,y

M
2))p = d(y1, y2)p + d(ỹM1 , ỹM2)p;

putting these into (3.30), we deduce as follows:

d(y1, y2)p + d(ỹM1 , ỹM2)p ≤ λp(d(y1, y2)p + d(ỹM1 , ỹM2)p);

d(ỹM1 , ỹM2)p ≤ λpd(ỹM1 , ỹM2)p + (λp − 1)d(y1, y2)p;

d(ỹM1 , ỹM2)p ≤ λpd(ỹM1 , ỹM2)p;

d(ỹM1 , ỹM2) ≤ λd(ỹM1 , ỹM2),

where on the third step we use the fact that (λp− 1) < 0. We conclude that Φ′ is contracting at yI .
Finally, if Φ is uniformly contracting on U ⊆ I, then it is contracting at each yI ∈ U with

some modulus of contractivity independent of yI . The previous argument then shows that Φ′ is
also contracting at each yI ∈ U with the same modulus of contractivity, so that Φ′ is uniformly
contracting on U as well.

Example 3.9.5. The rest of this section is dedicated to the study of the spring-mass-damper system,
as presented in [TZ07, Jam12]. This system can be expressed as the ODE

Mx′′(t) +Dx′(t) +Kx(t) = f(t), (3.31)

where M,D,K are positive constants. The system also has initial conditions x(0) = x0 and x′(0) =
v0 on the displacement and velocity.

By introducing new variables v, a for the velocity and acceleration, we can write the second-order
equation as a first-order system, which can be integrated to obtain

a(t) =
1

M
f(t)− D

M
v(t)− K

M
x(t);

82

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

v(t) =

∫ t

0

a(s)ds+ v0;

x(t) =

∫ t

0

v(s)ds+ x0.

In this way, the mass-spring-damper system can be represented by the analog network of Figure
3.30.

1
M

− D
M

−K
M

×

×

×

+

+

f

v

x

a

v0

t

v

x0

t

x

Figure 3.30: A GPAC comprised of basic modules for the mass-spring-damper system.

The GPAC presented in Figure 3.30 has a too large number of ten modules. As noted in [TZ07],
the network can be simplified by combining the constant, adder and scalar multiplier modules into
a single module that performs a weighted sum. In our framework, this corresponds to contracting
the GPAC on most of its channels. The resulting network (with only three modules) is presented in
Figure 3.31. We remark that its induced operator is given by

ΦTZ : R2 × C1([0, T],R)5 → C1([0, T],R)3

ΦTZ(x0, v0, f, x, v, a, t) =

(
1

M
f − D

M
v − K

M
x,

∫
ads+ v0,

∫
vds+ x0

)
. (3.32)

Tucker and Zucker study the contractiveness of the operator defined in (3.32) and their results
can be expressed in our framework as follows.

Proposition 3.9.6. Suppose that M > max{K, 2D}. Then there exists a sufficiently small T ∈ R+
such that, for all x0, v0 ∈ R, f ∈ C1([0, T],R), the operator ΦTZ defined in (3.32) is contracting at
(x0, v0, f, t).

weighted

sum

f

v

x

v0

a

t

x0

v

t

x

Figure 3.31: Simplified network for the mass-spring-damper system.

83

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

(w.s.)

v0

f
v
x
t

x0

v

t

x

Figure 3.32: Further simplified network for the mass-spring-damper system.

Proof. See [TZ07].

As evidenced from the above proposition, and as shown by James in [Jam12], the GPAC in
Figure 3.31 is not the most robust formulation for the mass-spring-damper system. By this we mean
that there are choices of parameters that violate the condition M > max{K, 2D} and for which the
operator ΦTZ defined in (3.32) is not contracting. However, it is not the case that the spring-mass-
damper system behaves erratically in some choices of parameter space. It turns out that we can
consider a slight modification of the GPAC in Figure 3.31 whose induced operator is contracting for
all choices of M,K,D, as our intuition would suggest. This revision was first proposed in [Jam12]; in
our framework, it can be expressed as the contraction of the GPAC in Figure 3.31 on the acceleration
channel a. The resulting network (with only two modules) is presented in Figure 3.32. Its induced
operator is given by

ΦJ : R2 × C1([0, T],R)4 → C1([0, T],R)2

ΦJ(x0, v0, f, x, v, t) =

(∫
1

M
f − D

M
v − K

M
xds+ v0,

∫
vds+ x0

)
. (3.33)

Proposition 3.9.7. There exists a sufficiently small T ∈ R+ such that, for all M,K,D ∈ R+,
x0, v0 ∈ R, f ∈ C1([0, T],R), the operator ΦJ defined in (3.33) is contracting at (x0, v0, f, t).

Proof. See [Jam12, Section 3.3].

In summary, we see that, given a GPAC comprised of basic modules (such as the one in Figure
3.30), we can simplify it by a sequence of channel contractions, obtaining other GPACs related by
the notion of reducibility (such as the ones in Figures 3.31 and 3.32). These reducibilities preserve
contractivity, that is, if the original GPAC has a contracting induced operator, then so do its reduc-
tions (Lemma 3.9.4). On the other hand, if the original GPAC does not have a contracting induced
operator, we may still hope that, after performing a sufficient number of channel contractions, we
may arrive at a contracting induced operator, as illustrated by the spring-mass-damper system.

3.10 Discussion

In this chapter we presented the X -GPAC as a generalization of the Shannon GPAC. We con-
sidered the case X = C(R) and, in the first part of the chapter, we introduced a differential module
that computes spatial derivatives. Theorem 17 is evidence that our model of computation provides
a suitable generalization of the original work on the GPAC. We can thus think of solutions to certain
differential equations as outputs or fixed points of certain analog networks. We have also seen that
(quasi)well-posedness conditions play an important role in this study.

84

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

A possible direction for research would be to consider function spaces other than C(R), such as

X = Cp(Ω) or X = Hp(Ω),

where Ω is, for example, a domain in Rn, either unbounded (such as Ω = Rn) or bounded (such
as Ω = [0, 1]n), and Hp denotes Sobolev spaces. In the case when Ω is bounded, we may further
restrict our space X to functions with prescribed behaviour on the boundary, such as Dirichlet
boundary conditions (f = 0 on ∂Ω). These examples were presented in Section 3.3. We believe that
such a direction could allow us to make interesting connections with the field of partial differential
equations, where such spaces are ubiquitous.

While on the topic of partial differential equations, we repeat here the disclaimer presented in
the introduction. We hope that our results show how the theory of PDEs can be applied into the
theory of computable analysis, and in particular the GPAC model. The reverse direction, i.e. using
the GPAC to ‘solve more difficult or more efficiently’ PDEs, is outside the scope of our study. As a
philosophical remark, our equivalence result can be interpreted as follows.

The task of finding whether a general GPAC is well-posed (i.e. ‘computes some function’) is equally
difficult as finding whether a general (algebraic) PDE is well-posed (i.e. ‘has some solution’).

We also started a direction of research in considering modules that operate on multiple data
types, which could be written as

Φ : τ `11 × . . .× τ `nn → τ ;

in this way we obtained channels of different types and defined a notion of multityped GPAC, and
corresponding many-typed analog networks. There is a strong technical aspect in following this direc-
tion, and we have only studied some basic concepts (such as module derivation, channel contraction
and reducibility). However, we feel that this avenue seems promising and it could lead to a model
of computation on many-sorted algebras as studied by Tucker and Zucker [TZ00, TZ07, TZ14].

There is also an important difference between the formalism adopted by other authors in the
study of the GPAC and ours. Usually, the GPAC has been used to study the computability of
functions of type R→ R; for example, a list of generable functions appears in [BGP16] that includes
exponentials, logarithms, inverses, sine, cosine and arctangent. However, technically speaking, the
model of GPAC studied in this thesis considers the computability of higher-order functionals, for
example of type7 (R → R) → (R → R); see, for example, Definition 3.4.11. The usual functions of
interest, having type R→ R, can be obtained in our framework as the output of a GPAC-generable
function for linear time input t and / or suitable real inputs.

A disadvantage of this formalism is that the usual functions of interest (that is, the functions
of type R → R prevalent in other models of analog computation such as computable analysis or
type-2 theory of effectivity) do not arise so ‘cleanly’; one must introduce, say, a linear time input
and express them as outputs of GPAC-generable functionals. However, there are two important
advantages in considering higher-type functionals. First, we gain some expressivity by being able to
study richer types of generable functions (in other words, computation over (R→ R)→ (R→ R) is
objectively more expressive than computation over R→ R); second, we are able to express generable
functionals as solutions of fixed point problems in an intuitive manner, which may allow us to apply
fixed point techniques to study computability in continuous spaces (in some sense, this was the goal
of Chapter 2).

7To be precise, we should write C([0, T],R)n → C([0, T],R)m, but we can consider n = m = 1 for simplicity and
take C([0, T],R) as a subspace of R→ R.

85

Chapter 4

The limit GPAC and
approximability

In this chapter we present a second extension to the Shannon GPAC model, presented in the
previous chapter. In particular, we wish to incorporate the procedure of taking limits into our model
of analog networks. In abstract terms, one may want to define a class of ‘computable’ elements C
such that

If f ∈ C, then lim f ∈ C.

Of course, part of the problem is understanding what kinds of ‘limit’ we are allowed to consider.
Usually, in computability theory on continuous spaces, we must demand that limits be ‘effective’,
in the sense that the modulus of convergence is known a priori and thus we can effectively obtain
an approximation to the limit within a prescribed precision. The notion of limit must also agree
with the topology of the underlying space, which can be induced by a metric, a norm, or a family of
pseudonorms. Thus if X is a function space we may be interested in ‘uniform’ or ‘locally uniform’
as opposed to ‘pointwise’ limits.

We begin by introducing discrete channel types, that is, channels which either assume discrete
values or that are defined at discrete points in time. We then define the notions of Cauchy sequence,
Cauchy stream and effective convergence. With those ingredients, we are able to consider a new
module that takes (discrete or continuous) limits and yet another extension to the Shannon GPAC,
which we call LGPAC. In the latter part of the chapter, we show how to generate some non-
differentially algebraic functions, such as the gamma and Riemann zeta functions, which are our
main motivation for including limits.

We briefly summarize the original content of this chapter. It is important to remark that the
idea of introducing approximability into the GPAC model is not new and can attributed to Graça,
[Gra04]. In particular, the paper [BCGH07] provides a notion of GPAC-computability also based
on limits, remarkably showing an equivalence with the class of computable functions on a compact
interval. However, we claim that (to the best of our knowledge) the approach of including a module
that performs limits is original. In our framework, approximability is incorporated on the GPAC
model itself, and not just in the way we define the GPAC semantics. This is how we suggest our
results be contrasted to those of Bournez, Campagnolo, Graça, Hainry and other authors. Therefore,
the main original content of this chapter consists in the introduction of limit modules (Definition
4.2.4) and the notion of LGPAC (Remark 4.2.5); the computability of the gamma and Riemann zeta
functions (Theorems 20 and 21) can be seen as applications of this theory.

86

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

4.1 Discrete channel types

We recall the multityped GPAC whose definition was sketched in Section 3.7. We considered a
complete metric vector space X and the following types of channels:

• R-scalar channels, which carry a constant k ∈ R;

• X -scalar channels, which carry a constant x ∈ X ;

• R-stream channels, which carry a stream a ∈ C1([0, T],R);

• X -stream channels, which carry a stream u ∈ C1([0, T],X).

In this chapter we will briefly consider discrete channel types. In that sense, our model can
be seen as a hybrid between digital and analog computation. The addition of more channels will
undoubtedly increase the difficulty of studying the power of the GPAC; but we make the important
remark that these discrete channel types are not essential to the main purpose of this chapter, which
is to generate some non-differentially algebraic functions. Therefore these are included only as an
illustration. In any case, here are the further channel types we may wish to consider:

• N-scalar channels, which carry a constant k ∈ N;

• N-sequence channels, which carry a sequence {kn} ∈ NN;

• R-sequence channels, which carry a sequence {kn} ∈ RN;

• X -sequence channels, which carry a sequence {gn} ∈ XN.

We remark that the channel type corresponding to N-streams is not necessary, since any contin-
uous function of type T→ N must be constant.

4.2 The limit operator and the limit GPAC

Let us make precise what we mean by effective limit. If we take X to be a complete metric space
with a metric d, then

• a sequence {gn} ∈ XN is a Cauchy sequence whenever

for all ε > 0 there exists N ∈ N such that for m,n ∈ N with m,n ≥ N one has d(gm, gn) < ε;

• a stream u ∈ C(T,X) is a Cauchy stream whenever

for all ε > 0 there exists T ∈ T such that for s, t ∈ T with s, t ≥ T one has d(u(s), u(t)) < ε;

To write the effective version of these limits, we begin by replacing the existential quantifiers
with functions on the precision ε. A possible approach is given in the following definitions.

Definition 4.2.1 (Moduli of convergence).

1. A discrete modulus of convergence is a nondecreasing function N : N→ N.

2. A continuous modulus of convergence is a nondecreasing, nonnegative function T ∈ C(T,R).

87

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Remark 4.2.2 (Effective moduli of convergence). Both definitions of moduli of convergence can
be effectivized in an intuitive manner. To effectivize the notion of discrete modulus of convergence
N : N→ N, we can require that N be computable (in the traditional sense). To effectivize the notion
of continuous modulus of convergence T ∈ C(T,R), we can require that T be GPAC-generable. In
the latter case we may further specify what type of GPAC we are interested in: either the Shannon
GPAC, the multityped GPAC from Section 3.7 (with or without the differential module) or the limit
GPAC which we will develop in this chapter. However, for most of the time we will desire T to be
a somewhat “simple” function, such as a monomial, an exponential, or a chain of exponentials, in
which case the notion of Shannon GPAC-generability suffices. In fact, we expect the computational
richness of the construction to be in the stream for which we are taking limits, but not on the
modulus of convergence itself.

Definition 4.2.3 (Effective limits on metric spaces).

1. Let N be a discrete modulus of convergence and {gn} ∈ XN. Then {gn} is an N -convergent
Cauchy sequence if

for all ν ∈ N, for all m,n ∈ N with m,n ≥ N(ν) one has d(gm, gn) < 2−ν .

2. Let T be a continuous modulus of convergence and u ∈ C(T,X). Then u is a T -convergent
Cauchy stream if

for all τ ∈ T, for all s, t ∈ T with s, t ≥ T (τ) one has d(u(s), u(t)) < 2−τ .

3. A sequence {gn} ∈ XN is called an effective Cauchy sequence if there is an effective discrete
modulus of convergence N such that {gn} is N -convergent.

4. A stream u ∈ C(T,X) is called an effective Cauchy stream if there is an effective continuous
modulus of convergence T such that u is T -convergent.

An example of a modulus of convergence is given by the identity function, either discrete (id : N→
N) or continuous (id ∈ C(T,R)). We note that any effective Cauchy sequence may be replaced by an
id-convergent Cauchy sequence via a composition with its modulus of convergence; in other words,
if {gn} is an N -convergent Cauchy sequence, then {gN(n)} is an id-convergent Cauchy sequence.
Similarly, an effective Cauchy stream may be replaced by an id-convergent Cauchy stream. Thus
we may assume, for convenience, that the modulus of convergence for a given effective limit is given
by the identity map.

The next step is to introduce a limit operator, and again we may do this in a discrete or continuous
manner.

Definition 4.2.4 (Limit modules).

1. For the data type X , there is a discrete limit module with one input of type XN and one output
of type X . For input {gn}, it outputs the id-convergent limit lim

n→∞
gn (if it exists).

2. For the data type X , there is a continuous limit module with one input of type C(T,X) and
one output of type X . For input u, it outputs the id-convergent limit lim

t→∞
u(t) (if it exists).

A few comments are in order. Firstly, it should be clear that the limit modules define partial-
valued operators; they are only defined for those sequences in XN (or those functions in C(T,X))
that have an id-convergent limit. Secondly, the choice of the identity as the ‘canonical’ modulus of

88

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Ld
{gn} Ld{gn}

Ld : XN ⇀ X

Ld{gn} = lim
n→∞

gn

Lc
u Lcu

Lc : C(T,X) ⇀ X

Lcu = lim
t→∞

u(t)

Figure 4.1: Limit modules.

convergence allows us to specify the limit operator as a one-input, one-output module. A different
approach could be taken, in which a two-input limit module is considered, having one input for the
sequence (or stream) and another input for the discrete (or continuous) modulus of convergence,
such as in Figure 4.2.

L̃d

{gn}
N

L̃d{gn}
L̃d : XN × NN ⇀ X

L̃d({gn}, N) = lim
n→∞

gn

L̃c

u

T
L̃cu

L̃c : C(T,X)× C(T,R) ⇀ X

L̃c(u, T) = lim
t→∞

u(t)

Figure 4.2: Two-input limit modules.

Since, as explained above, any effective limit may be converted to an id-convergent limit via a
composition with the modulus of convergence, we can derive the two-input limit module from the
one-input limit module using a composition, as depicted on Figure 4.3.

u

T

L̃c
t

u

T

L̃c(u, T)
T u Lc

t T u ◦ T Lc(u ◦ T)

Figure 4.3: Derivation of the two-input continuous limit module; the discrete case is done similarly.

Remark 4.2.5 (Limit GPAC). After abstracting the operation of taking limits as a module, we
can sketch the definition of limit GPAC (or LGPAC). This can be achieved similarly as in Definitions
3.1.5 and 3.4.4. The notions of induced operator, well-posedness, LGPAC semantics and LGPAC-
generability follow as well. Since the construction just mimics what was done in Chapter 3, we
refrain from giving a precise definition of the LGPAC. Moreover, there are some non-obvious choices
we would have to make to give that definition:

89

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

• Should we include the discrete channel types from Section 4.1 and the discrete limit module
from Definition 4.2.4?

• Should we opt for the one-input or two-input limit modules?

• What notion of effective modulus of convergence should we consider (cf. Remark 4.2.2)?

Clearly, as we increase the variety (in both channel types and modules) of our construction, we
get more inclusive models of computation, but finding characterization results becomes increasingly
difficult and technical. Keeping in mind that our goal is to compute some non-differentially algebraic
functions such as the gamma function and the Riemann zeta function, we can limit our construction
to the minimum that makes that goal achievable. As it shall be seen in Sections 4.5 and 4.6, this
can be accomplished by considering only continuous channel types and GPAC-generable continuous
moduli of convergence.

4.3 Infinite speedup, infinite slowdown

The composition presented in Figure 4.3 can be thought of as a time speedup by T (or slowdown,
if T grows slower than the identity). The goal of this section is to observe that infinite speedups
can also be expressed in our model. Thus, the choice of limit t → ∞ is not the only possibility, as
one may consider limits of the form t → T− for any positive time T ∈ T. In order to see this, we
consider the following functions that continuously map the interval [0, 1) to [0,∞) and vice versa.

Proposition 4.3.1. The following functions are Shannon GPAC-generable:

• (infinite speedup) t 7→ t
1−t , with domain [0, 1) and range [0,∞);

• (infinite slowdown) t 7→ t
1+t , with domain [0,∞) and range [0, 1).

Proof. Recall the inverter functional Φ : (k, b) 7→ a(t) = k
1+k(b(t)−b(0)) constructed in Example 3.8.4.

The function s↑(t) = 1
1−t can be obtained as the output of Φ with k = 1 and b(t) = −t. The function

s↓(t) = 1
1+t can be obtained as the output of Φ with k = 1 and b(t) = t. The desired functions can

then be obtained by multiplying s↑ or s↓ with t.

Figure 4.4: Plot of the functions t 7→ t
1−t (left) and t 7→ t

1+t (right).

Therefore, if we have a function u(t) with a desired limit as t→∞, we can perform a composition
of u with the infinite speedup to obtain the desired limit as t→ 1−. The reverse case is also possible;
that is, we can convert a limit as t→ 1− into a limit as t→ +∞ via a composition with the infinite
slowdown.

90

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

4.4 Pseudonorm effectiveness

Our construction of the limit module relies on the notion of effective limit, which is given by
the metric associated to the underlying space X . The advantage of this approach is that it requires
only a minimal structure on X (complete metric space), and thus it can be applied quite generally.
However, Chapters 2 and 3 provided evidence for the prevalence of Fréchet spaces in our research.
Since the topology in these spaces is induced by a family of pseudonorms, we may desire to define a
suitable notion of effective limits that takes this into consideration. Since a metric can be inferred
from the pseudonorms (recall Proposition 2.2.13), we may expect some equivalence between both
notions. In this section we formalize this argumentation.

Definition 4.4.1 (Moduli of convergence for pseudonorms).

1. A discrete modulus of convergence for pseudonorms is a function N : N×N→ N such that for
each n ∈ N, N(n, ·) is nondecreasing.

2. A continuous modulus of convergence for pseudonorms is a function T : N → C(T,R) such
that for each n ∈ N, T (n) ∈ C(T,R) is nonnegative and nondecreasing.

Observe that for each n ∈ N, the n-section of a (discrete or continuous) modulus of convergence
for pseudonorms is itself a (discrete or continuous) modulus of convergence in the underlying space.

Definition 4.4.2 (Effective limits on Fréchet spaces).

1. Let N be a discrete modulus of convergence for pseudonorms and {gn} ∈ XN. Then {gn} is
an N -Fréchet Cauchy sequence (or an N -FC sequence) if

for all ν ∈ N, n ∈ N, for all j, k ∈ N with j, k ≥ N(n, ν) one has ‖gj , gk‖n < 2−ν .

2. Let T be a continuous modulus of convergence for pseudonorms and u ∈ C(T,X). Then u is
a T -Fréchet Cauchy stream (or a T -FC stream) if

for all τ ∈ T, n ∈ N, for all s, t ∈ T with s, t ≥ T (n, τ) one has ‖u(s), u(t)‖n < 2−τ .

For the following lemma, we shall assume that the metric in X is induced by the pseudonorms
as

d(u, v) =
∑
n∈N

wnγ(‖u− v‖n), with wn = 2−n and γ(t) = min(t, 1), (4.1)

which satisfy the assumptions in Proposition 2.2.13 (see also Proposition 2.2.15).

Lemma 4.4.3 (Equivalence between effective limits).

1. Let N be a discrete modulus of convergence and g ∈ XN an N -convergent Cauchy sequence.
Then g is an Ñ -FC sequence, where Ñ(n, ν) = N(n+ ν); moreover, if N is computable, so is
Ñ .

2. Let T be a continuous modulus of convergenge and u ∈ C(T,X) a T -convergent Cauchy stream.
Then u is a T̃ -FC stream, where T̃ (n, τ) = T (n+ τ); moreover, if T is GPAC-generable, so is
T̃ (n) for each n.

91

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

3. Let Ñ be a discrete modulus of convergence for pseudonorms and g ∈ XN an Ñ -FC sequence.
Then g is an N -convergent Cauchy sequence, where N(ν) = max

n≤ν+1
Ñ(n, ν + 1); moreover, if

Ñ is computable, so is N .

4. Let T̃ be a continuous modulus of convergence for pseudonorms and u ∈ C(T,X) a T̃ -FC
stream. Then u is a T -convergent Cauchy stream, where T (τ) = max

n≤τ+2
T̃ (n, τ + 1).

Proof. To prove claim 1, we first observe that for each n, the function Ñ(n, ·) : ν 7→ N(n + ν) is
nonnegative and nondecreasing (since N is nonnegative and nondecreasing), so that Ñ is a discrete
modulus of convergence for pseudonorms. It is also clear from inspection that if N is computable,
so is Ñ .

Next, we take ν ∈ N, n ∈ N and j, k ∈ N with j, k ≥ Ñ(n, ν). By construction of Ñ this
means that j, k ≥ N(n + ν) and thus, since g is an N -convergent Cauchy sequence, it follows
that d(gj , gk) < 2−n−ν . By looking only at the n-th term in the sum in (4.1), we conclude that
wnγ(‖gj − gk‖n) < 2−n−ν , which implies that min(‖gj − gk‖n, 1) < 2−ν . Since 2−ν ≤ 1, we then

have that ‖gj − gk‖n < 2−ν . Thus g is an Ñ -FC sequence.
To prove claim 2, we first observe that for each n, the function t 7→ T (n+ t) is nonnegative and

nondecreasing (since T is nonnegative and nondecreasing), so that T̃ is a continuous modulus of
convergence for pseudonorms. Moreover, each t 7→ T (n+ t) is computable since it is the composition
of T with the function t 7→ n+ t, which can be obtained using one constant and one adder module.
As a side remark, the procedure that maps n into a GPAC Gn generating the corresponding T̃ (n) is
also computable on n.

The remainder of the claim can be proved, mutatis mutandis, as in claim 1.
To prove claim 3, we first see that the function ν 7→ max

n≤ν+1
Ñ(n, ν + 1) is nonnegative and

nondecreasing, since Ñ(n, ·) is nonnegative and nondecreasing for each n, so that N is a discrete
modulus of convergence. It is also clear that if Ñ is computable, so is N , since taking maxima is a
computable operation in N.

Next, we take ν ∈ N and j, k ∈ N with j, k ≥ N(ν). By construction of N this means that j, k ≥
Ñ(n, ν+1) for all n ≤ ν+1 and thus, since g is an Ñ -FC sequence, it follows that ‖gj−gk‖n < 2−ν−1

for all n ≤ ν + 1. By splitting the sum in (4.1), we can see that

d(gj , gk) =
∑
n∈N

wnγ(‖gj − gk‖n)

≤
∑

1≤n≤ν+1

2−n‖gj − gk‖n +
∑

n>ν+1

2−n

<
∑

1≤n≤ν+1

2−n2−ν−1 +
∑

n>ν+1

2−n

≤ 2−ν−1 + 2−ν−1 = 2−ν ,

so that g is an N -convergent Cauchy sequence.
To prove claim 4, we first see that the function t 7→ maxn≤τ+2 T̃ (n, τ + 1) is nonnegative and

nondecreasing, so that T is a continuous module of convergence. The remainder of the claim can be
proved, mutatis mutandis, as in claim 3.

92

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

4.5 Computability of the Gamma function

Our motivation for considering limit operators is the computability of the gamma function,

Γ(x) =

∫ ∞
0

tx−1e−tdt,

which is not differentially algebraic (and thus, not Shannon GPAC-generable)1. There are known
differential equations in two variables related to the gamma function; for example (see [OLBC10, p.
174]), if we define the incomplete gamma functions

γi1(t, x) =

∫ t

0

sx−1e−sds; (4.2)

γi2(t, x) =

∫ ∞
t

sx−1e−sds, (4.3)

then both incomplete gamma functions satisfy the differential equation (for w = w(t, x))

d2w

dt2
+

(
1 +

1− x
t

)
dw

dt
= 0; (4.4)

we shall now try to implement such relations on our analog networks.

Figure 4.5: Plot of the gamma function.

Observe that the X -GPAC includes a constant module for any function in X (by constant we
mean: not dependent on the time variable t), and in particular it includes a constant module for
the gamma function itself! Of course, this is not an interesting way to obtain the gamma function,
as one could then raise the question ‘how can we generate the constant modules?’

As a side note, we could answer this question by defining a notion of relative computability. For
example, if we consider a subclass G ⊆ X of ‘admissible constants’ we could say that ‘f is X -GPAC-
generable relative to G’ if there is an X -GPAC which generates f and whose constant inputs are all
in G. With this notion, we would obtain that Γ is X -GPAC-generable relative to itself, but this is

1Proved in [Höl86], mentioned in [Sha41].

93

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

not the approach we are interested in.
We shall thus present a more elaborate construction; the main idea is to obtain the gamma

function as the limit of a function in two variables,

Γ(x) = lim
t→∞

γ(t, x),

for some function γ ∈ C(T,X) which will be specified shortly. As remarked in Section 4.3, the choice
of limit t → ∞ is arbitrary, as we can take infinite speedups and consider, e.g., a limit t → 1−.
Since Γ(x) has a pole at x = 0, we need to consider a space where functions are defined in a region
“away from” x = 0. For simplicity, we shall take X = C[1,+∞). We also observe that (4.4) is
undetermined at t = 0, and it would allow initial conditions w|t=0 = dw

dt |t=0 = 0, for which w ≡ 0 is
a different solution. Since well-posedness is desired, we must avoid starting at t = 0; therefore, we
consider integrals starting at t = 1, writing

Γ(x) =

∫ ∞
0

tx−1e−tdt =

∫ 1

0

tx−1e−tdt+

∫ ∞
1

tx−1e−tdt.

The next step is to apply a change of variables in order to obtain integrals of the form
∫∞

0
; to

be precise, we apply t 7→ s = 1−t
t on the first integral and t 7→ s = t − 1 on the second integral,

obtaining ∫ 1

0

tx−1e−tdt =

∫ ∞
0

(
1

1 + s

)x+1

e−1/(1+s)ds = lim
t→+∞

γ1(t, x);∫ ∞
1

tx−1e−tdt =

∫ ∞
0

(1 + s)x−1e−(1+s)ds = lim
t→+∞

γ2(t, x),

where

γ1(t, x) =

∫ t

0

(1 + s)−(x+1)e−1/(1+s)ds;

γ2(t, x) =

∫ t

0

(1 + s)x−1e−(1+s)ds.

We proceed to show that γ1, γ2 are X -GPAC-generable.
Computation of γ1: by taking derivatives in time, we see that

dγ1

dt
= (1 + t)−(x+1)e−1/(1+t);

d2γ1

dt2
= −(x+ 1)(1 + t)−(x+2)e−1/(1+t) + (1 + t)−(x+3)e−1/(1+t) = −x+ xt+ t

(1 + t)2

dγ1

dt
; (4.5)

moreover, we have initial conditions

γ1(0, x) = 0,
dγ1

dt
(0, x) = 1/e.

We can look at the PDE (4.5) as an ODE in t with a parameter x. It is then easy to check that it
defines a well-posed problem since the multiplying factor u1(t, x) = −x+xt+t

(1+t)2 is defined for all t ∈ T.

As an intermediate step in generating γ1 with an X -GPAC, via (4.5), we generate the multiplying
factor u1, and to achieve this we consider the function s↓(t) = 1

1+t , which is GPAC-generable by

the proof of Proposition 4.3.1. We can thus construct u1 = −(x + xt + t)s2
↓ and obtain γ1 with an

94

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

X -GPAC as in Figure 4.6, which implements (4.5).

t

x

×

s↓

+

+

−1

×

×
×
u1

u1
×

t

γ′′1 γ′1 γ1

Figure 4.6: Construction of u1(t) = −x+xt+t
(1+t)2 and γ1(t, x).

Computation of γ2: by taking derivatives in time, we see that

dγ2

dt
= (1 + t)x−1e−(1+t);

d2γ2

dt2
= (x− 1)(1 + t)x−2e−(1+t) − (1 + t)x−1e−(1+t) =

x− t− 2

1 + t

dγ2

dt
; (4.6)

moreover, we have initial conditions

γ2(0, x) = 0,
dγ2

dt
(0, x) = 1/e.

We can look at the PDE (4.6) as an ODE in t with a parameter x. It is then easy to check that
it defines a well-posed problem, since the multiplying factor u2(t, x) = x−t−2

1+t is defined for all t ∈ T.
As an intermediate step in generating γ2 with an X -GPAC, via (4.6), we generate the multiplying
factor u2, and to achieve this we again consider the function s↓(t) = 1

1+t from proof of Proposition
4.3.1. We can thus construct u2 = (x − t − 2)s↓ and obtain γ2 with an X -GPAC as in Figure 4.7,
which implements (4.6).

t

−1

−2

x

×

+

s↓

+

×
u2

u2
×

t

γ′′2 γ′2 γ2

Figure 4.7: Construction of u2(t) = x−t−2
1+t and γ2(t, x).

Construction of Γ: We can obtain Γ(x) as the limit

Γ(x) = lim
t→∞

γ1(t, x) + γ2(t, x),

which can in principle be obtained using a continuous limit module. However, we still need to
determine the modulus of convergence of our approximation, which will be done with two technical
lemmas.

95

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Lemma 4.5.1. Let T ∈ T. For any x ∈ [1,+∞) and any t1, t2 ≥ T one has

|γ1(t1, x)− γ1(t2, x)| ≤ 1/T.

Proof. Under the assumptions of the lemma, we have

|γ1(t1, x)− γ1(t2, x)| =
∣∣∣∣∫ t1

t2

(1 + s)−(x+1)e−1/(1+s)ds

∣∣∣∣ < ∫ ∞
T

(1 + s)−(x+1)e−1/(1+s)ds

<

∫ ∞
T

(1 + s)−2ds =
1

1 + T
<

1

T
.

Lemma 4.5.2. Let T ∈ T, and k ∈ N. For any x ∈ [1, k + 1] and any t1, t2 ≥ T one has

|γ2(t1, x)− γ2(t2, x)| ≤ (k + 1)!(T + 1)ke−(T+1).

Proof. Under the assumptions of the lemma, we have

|γ2(t1, x)− γ2(t2, x)| =
∣∣∣∣∫ t1

t2

(1 + s)x−1e−(1+s)ds

∣∣∣∣ < ∫ ∞
T

(1 + s)x−1e−(1+s)ds

≤
∫ ∞
T

(1 + s)ke−(1+s)ds =

∫ ∞
T+1

ske−sds < (k + 1)!(T + 1)ke−(T+1),

where the last inequality can be proved by induction on k ∈ N.

Therefore, the limits in γ1, γ2 become effective for suitable moduli of convergence. We can merge
these two results and prove effectiveness of our construction, as in the next result. We continue to
use the metric given by (4.1). Recall that X = C([1,∞)) is a Fréchet space with pseudonorms
‖g‖n = sup

1≤x≤n
|g(x)|.

Lemma 4.5.3. Let γ = γ1 + γ2, where γ1, γ2 are defined as in (4.5), (4.6). Then lim
t→∞

γ(t) = Γ;

moreover, γ is a T -convergent Cauchy stream for T (τ) = C2τ with a suitably large constant C.

Proof. Only the effectiveness of the limit remains to be proven. Let τ ∈ T, T = T (τ) = C2τ and
take t1, t2 ∈ T with t1, t2 ≥ T . We can write d(γ(t1), γ(t2)) ≤ d(γ1(t1), γ1(t2)) + d(γ2(t1), γ2(t2))
and thus we can treat γ1 and γ2 separately.

To deal with γ1, we use Lemma 4.5.1 to conclude that, for any n ∈ N+, we have

‖γ1(t1)− γ2(t2)‖n ≤
1

T
≤ 1

C
2−τ ;

thus, we obtain the bound

d(γ1(t1), γ1(t2)) =

∞∑
n=1

2−n min{1, ‖γ1(t1)− γ1(t2)‖n}

≤
∞∑
n=1

2−n‖γ1(t1)− γ1(t2)‖n ≤
∞∑
n=1

2−n
1

C
2−τ =

1

C
2−τ ,

which is smaller than 2−τ−1 for a suitably large C (namely, for C > 2).

96

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

To deal with γ2, we use Lemma 4.5.2 to conclude that, for any n ∈ N+, we have

‖γ2(t1)− γ2(t2)‖n ≤ n!(T + 1)n−1e−(T+1);

next, we shall take N = dτe + 2, so that τ + 2 ≤ N < τ + 3. By splitting the sum, we obtain the
bound

d(γ2(t1), γ2(t2)) =

∞∑
n=1

2−n min{1, ‖γ1(t1)− γ1(t2)‖n} (4.7a)

≤
N∑
n=1

2−n‖γ1(t1)− γ1(t2)‖n +

∞∑
n=N+1

2−n (4.7b)

≤
N∑
n=1

2−nn!(T + 1)n−1e−(T+1) + 2−N (4.7c)

≤ N !(T + 1)N−1e−(T+1)
N∑
n=1

2−n + 2−τ−2 (4.7d)

< eNN+1/2e−N (T + 1)N−1e−(T+1) + 2−τ−2 (4.7e)

= exp{(N + 1/2) log(N)−N + (N − 1) log(T + 1)− T}+ 2−τ−2 (4.7f)

< exp{(τ + 7/2) log(τ + 3)− τ − 2 + (τ + 2) log(C2τ + 1)− C2τ}+ 2−τ−2,
(4.7g)

where (4.7e) is justified by Stirling’s approximation (2.53). The last step can be further taken to be
smaller than exp{− log(2)(τ + 2)}+ 2−τ−2 = 2−τ−1 for a suitably large C that does not depend on
τ (because the term C2τ in the exponential largely dominates all other terms; numerically, we have
found that C > 2.85216 suffices).

Combining the two bounds, we conclude that d(γ(t1), γ(t2)) < 2−τ and therefore γ is a T -
convergent Cauchy stream.

Theorem 20. The gamma function is LGPAC-generable.

Proof. By Lemma 4.5.3, the gamma function Γ can be seen as the T -convergent limit of some function
γ. Moreover, by the preceding discussion, both γ and T can be seen to be X -GPAC-generable; in
particular, γ is the sum of two X -GPAC-generable functions. Thus we can devise an LGPAC that
generates Γ, as in Figure 4.8.

T

γ1

γ2

+ Lc
t T (t) Γ

Figure 4.8: Construction of the gamma function; T denotes an exponential speedup T (τ) = C2τ .

97

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

4.6 Computability of the Riemann zeta function

Our next case study concerns the computation of the Riemann zeta function, which for complex
numbers with real part greater than 1 is given by

ζ(z) =

∞∑
n=1

1

nz
. (4.8)

This function has a pole at z = 1 and thus we should consider a space of functions defined in a
region “away from” z = 1. In particular, we take X = C[2,∞); in other words, we shall be interested
in computing ζ(x) for real values of x larger or equal to 2.

We need a representation of the Riemann zeta function that is amenable to our framework of
analog networks. Fortunately, there are known integral representations that we can use, such as

ζ(x) =
1

Γ(x)

∫ ∞
0

tx−1

et − 1
dt, (4.9)

or the Abel-Plana formula [Abe65, Pla20]

ζ(x) =
2x

x− 1
− 2x

∫ ∞
0

sin(x arctan t)

(1 + t2)x/2(eπt+1)
dt. (4.10)

The latter formula will allow us to express the zeta function as the limit of a function in two
variables,

ζ(x) = lim
t→∞

ζ1(t, x),

for a function ζ1 which computes the bounded integral

ζ1(t, x) =
2x

x− 1
− 2x

∫ t

0

sin(x arctan s)

(1 + s2)x/2(eπs+1)
ds. (4.11)

For such a function, we have ζ1(0, x) = 2x

x−1 and dζ1
dt = −2xζ2, where

ζ2(t, x) =
sin(x arctan t)

(1 + t2)x/2(eπt+1)
. (4.12)

Lemma 4.6.1. The function ζ2 defined in (4.12) is X -GPAC-generable.

Proof. This requires several steps, so we just provide a sketch of the construction:

1. the function t 7→ 1
1+t2 is GPAC-generable; it can be given as the output of the inverter (from

Example 3.8.4) with inputs k = 1 and b(t) = t2;

2. the function t 7→ arctan t is GPAC-generable; observe that (arctan t)′ = 1
1+t2 and use step 1;

3. the function (t, x) 7→ sin(x arctan t) is X -GPAC-generable; compose (t, x) 7→ x arctan t (from
step 2) with t 7→ sin(t);

4. the function (t, x) 7→ (1 + t2)−x/2 is X -GPAC-generable; if u(x, t) = (1 + t2)−x/2 then du
dt =

− xt
1+t2u, with u(0, x) = 1; use step 1;

5. the function t 7→ e−πt−1 is GPAC-generable; compose t 7→ −πt− 1 with t 7→ et;

98

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

6. the function ζ2 is X -GPAC-generable; write ζ2(t, x) = sin(x arctan t)(1 + t2)−x/2e−πt−1 and
use steps 3, 4, 5.

Theorem 21. The Riemann zeta function is LGPAC-generable.

Proof. We can obtain ζ1 (from (4.11)) by feeding ζ2 (which is X -GPAC-generable by Lemma 4.6.1)
into an integrator module and using constants 2x

x−1 , −2x. We can obtain the Riemann zeta function
by feeding ζ1 into an effective limit module. Thus we can devise an LGPAC that generates ζ, as in
Figure 4.9.

−2x

ζ2

2x

x−1

×

T

L̃c
t

ζ1

ζ

Figure 4.9: Construction of the Riemann zeta function; T denotes a suitable continuous modulus of
convergence.

The only thing left is to prove the effectiveness of the convergence. In order to do that we shall
prove that a linear modulus of convergence T (τ) = Cτ , for a suitable large constant C, is sufficient.
The following calculations are similar to those done for Lemmas 4.5.1, 4.5.2 and 4.5.3. To start, we
recall that X = C[2,∞) is a Fréchet space with pseudonorms ‖g‖n = sup

2≤x≤n
|g(x)|. Let T ∈ T, k ∈ N

with k ≥ 2, x ∈ [2, k] and t1, t2 ∈ T with t1, t2 ≥ T ; then we have the bound

|ζ1(t1, x)− ζ1(t2, x)| =
∣∣∣∣2x ∫ t1

t2

sin(x arctan t)

(1 + t2)x/2eπt+1
dt

∣∣∣∣
< 2x

∫ ∞
T

∣∣∣∣ sin(x arctan t)

(1 + t2)x/2eπt+1

∣∣∣∣ dt
≤ 2k

∫ ∞
T

1

eπt+1
dt =

2k

eπ
e−πT .

Thus, for any k ≥ 2 and any t1, t2 ≥ T (τ) we have

‖ζ1(t1)− ζ1(t2)‖k ≤
2k

eπ
e−πT =

2k

eπ
e−πCτ . (4.13)

Next, let us take N = dτe+ 1, so that τ + 1 ≤ N < τ + 2. By splitting the sum, we obtain

d(ζ1(t1), ζ1(t2)) =

∞∑
n=2

2−n min(‖ζ1(t1)− ζ1(t2)‖n, 1) (4.14a)

99

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

≤
N∑
n=2

2−n‖ζ1(t1)− ζ1(t2)‖n +
∑

n = N + 1∞2−n (4.14b)

≤
N∑
n=2

2−n
2n

eπ
e−πCτ + 2−N (4.14c)

≤ N − 1

eπ
e−πCτ + 2−τ−1 (4.14d)

<
τ + 1

eπ
e−πCτ + 2−τ−1 (4.14e)

= exp{−πCτ + log(τ + 1)− log(eπ)}+ 2−τ−1, (4.14f)

where (4.14c) is justified by (4.13). Finally, the last step can be further taken to be smaller than
exp{− log(2)(τ + 1)}+ 2−τ−1 = 2−τ for a suitably large C that does not depend on τ (because the
term πCτ dominates all other terms; numerically, we have found that C > 0.25079 suffices). Thus
d(ζ1(t1), ζ1(t2)) < 2−τ , so that ζ1 is a T -convergent Cauchy stream. Incidentally, since the lower
bound for C is less than 1, the stream ζ1 is id-convergent.

4.7 Discussion

In this chapter we took a different direction from Chapter 3 and introduced limit modules to
our model, arriving at a generalization which we called LGPAC. The main motivation was to prove
that some non-differentially algebraic functions such as the gamma function can be generated in this
framework. In some sense, that result was obtained before (see [Gra04]) by changing the notion of
GPAC-generability to allow for approximability of functions.

The idea of approximability is a cornerstone in many models of computability on continuous
spaces, especially those that use classically computable functions (i.e. computable functions on the
naturals) as a starting point. This is a consequence of the fact that many continuous spaces are
typically represented using a dense countable subset and codes of convergent sequences (as we shall
explain in the next chapter). Then, to say that a function is computable is to assert that its values
can be obtained up to a prescribed precision in an effective way.

100

Chapter 5

Tracking computability of
GPAC-generable functions

The goal of this chapter is to connect the model of computation presented in this thesis (the X -
GPAC and LGPAC) with other models of computability in continuous spaces. Namely, we shall look
into the notion of tracking computability presented in [TZ04] and show that, under some suitable
conditions, the functions generated by a GPAC are tracking computable. We will consider a version
of the GPAC which combines the constructions presented in Chapters 3 and 4; namely, it will have
both a differential module (as in Definition 3.4.2) and a (one-input, continuous) limit module (as in
Definition 4.2.4). As a technical note, we will have to slightly adapt our notions of induced operator
and GPAC semantics in order to prove computability of the desired functionals.

We begin by introducing the notions of computable structures and tracking computable functions
studied by Tucker and Zucker, providing examples for the spaces of interest in our GPAC model.
We then prove tracking computability of the functions associated to the LGPAC modules (including
the differential and continuous limit modules) and of the induced operator of an LGPAC. Finally,
we attempt to prove tracking computability of LGPAC-generable functions; in order to achive this,
we assume an additional condition on our LGPAC, which we call effective local reversibility.

In regards to the original content of this chapter, we remark that the paper [BCGH07] already
shows an equivalence between a GPAC model (which includes approximability) and computable
analysis, which is likely equivalent to tracking computability (papers [TZ04] and [TZ05] have results
in the direction of a formal proof). The main results obtained in this chapter (namely Lemma 5.2.1
and Theorems 22 and 23) can be seen as new insofar as they are expressed in a new framework,
where approximability is incorporated on the GPAC model by means of limit modules (as we argued
in Chapter 4). The technical notion of effective local reversibility (Definition 5.3.4) is also an original
idea.

5.1 Computable structures and tracking computable func-
tions

The procedure for defining tracking computability in general spaces has been extensively docu-
mented by many authors. The basic construction consists in taking an enumeration of a countable
dense subset, defining computable elements as those given by effective Cauchy sequences, and con-
sidering tracking functions.

101

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

As usual, we consider complete metric spaces X . In this chapter, we must include the extra
assumption that X be separable (i.e. has a countable dense subset).

Definition 5.1.1 (Enumeration). Let X be a separable, complete metric space and Xc a countable,
dense subset of X . An enumeration of Xc is a surjective total function α : N→ Xc.

We briefly recall the notion of effective Cauchy sequence given in Definition 4.2.3. For a complete
metric space X and a sequence (xn) in X , we say that (xn) is an effective Cauchy sequence if there
exists a function N : N→ N such that

• N is nondecreasing and computable (in the traditional sense);

• for all ν ∈ N, for all m,n ∈ N with m,n ≥ N(ν) one has d(xm, xn) < 2−ν .

The function N in the previous definition is called an effective discrete modulus of convergence
(cf. Definition 4.2.1 and Remark 4.2.2).

In the next definition we fix a family of computable bijections 〈·, · · · , ·〉 : NM → N, for M ∈ N+

(say, the Cantor pairing function 〈·, ·〉 for M = 2 and its generalizations to higher dimensions). We
also consider an enumeration {·} : N → (N ⇀ N) of the recursive functions (say, for e ∈ N the
encoding of a one-input, one-output Turing machine, {e} is the corresponding recursive function).

Definition 5.1.2 (Computability structure). Let X be a complete metric space, Xc a countable,
dense subset of X and α an enumeration of Xc. We define a computability structure (Ωᾱ, Cᾱ, ᾱ) as
follows.

1. The set of valid codes Ωᾱ, is the subset of N given by encodings of pairs of numbers c = 〈e,m〉
such that e is the index for a total recursive function {e} : N→ N, m is the index for an effective
discrete modulus of convergence {m} : N→ N and the sequence (α({e}(n))) is effective Cauchy
with modulus of convergence {m}.

2. The set of computable elements Cᾱ is the subset of X consisting of those x ∈ X for which
there exists a valid code c = 〈e,m〉 ∈ Ωᾱ such that x = limα({e}(n)).

3. The partial enumeration ᾱ : N⇀ X is the function with domain Ωᾱ, range Cᾱ, and such that
for any c = 〈e,m〉 ∈ Ωᾱ, ᾱ(c) = limα({e}(n)).

Example 5.1.3 (Computability on R). Let us construct a computability structure on the space
X = R. In this case, we take the rationals as our countable dense subset, Xc = Q. We take
α = αQ to be any ‘easily definable’ enumeration of the rationals (for example, by using the canonical
enumeration on Figure 5.1). In this case, the set of computable elements CᾱQ coincides with the
familiar set of computable real numbers (also called recursive reals or constructible reals), as in
[Tur36].

Example 5.1.4 (Computability on C(R)). Let us construct a computability structure on the
space X = C(R) of continuous real functions. In this case, we take Xc to be a countable subset
of piecewise linear rational functions, which is defined as follows. For each N ∈ N and each tuple
(p−N2 , . . . , p−1, p0, p1, . . . , pN2) of 2N2 + 1 rational numbers, we can consider a function f : R→ R
such that

• f(x) = p−N2 for every x ≤ −N and f(x) = pN2 for every x ≥ N ;

• f(j/N) = pj for each j = −N2, . . . , 0, . . . , N2;

102

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

p

p/q · · · −3 −2 −1 0 1 2 3 · · ·

q

1

2

3

4

...

· · · − 3
1−
3
1 − 2

1 − 1
1

0
1

1
1

2
1

3
1

· · ·

· · · − 3
2 − 2

2 − 1
2

0
2

1
2

2
2

3
2

· · ·

· · · − 3
3 − 2

3 − 1
3

0
3

1
3

2
3

3
3

· · ·

· · · − 3
4 − 2

4 − 1
4

0
4

1
4

2
4

3
4

· · ·

...
...

...
...

...
...

...
...

. . .

n p q α(n)
0 0 1 0
1 1 1 1
2 0 2 0
3 −1 1 −1
4 2 1 2
5 1 2 1/2
6 0 3 0
7 −1 2 −1/2
8 −2 1 −2
9 3 1 3

Figure 5.1: Enumeration of the rationals; we have that α(n) = p
q .

−N − 1
N

1
N

N

(
−N, p−N2

)

(
j
N

, pj

)
(
N, p

N2

)

Figure 5.2: A piecewise linear rational function.

• f is piecewise linear on the interval [j/N, (j + 1)/N], for each j = −N2, . . . , 0, . . . , N2 − 1.

In this way, the role of N is both to increase the ‘window size’ and decrease the ‘step size’ of
our approximation (see Figure 5.2). By using the bijections of type N2 → N and N2N2+1 → N,
and the enumeration αQ from the previous example, we can define an enumeration αX : N → Xc.
In particular, the enumeration is as follows: for n = 〈N, 〈m−N2 , . . . ,mN2〉〉, we define αX (n) to
be the stream u built from N and the tuple (p−N2 , . . . , pN2) where pj = αQ(mj) for each j =
−N2, . . . , 0, . . . , N2).

We must briefly comment on the requirement that Xc be dense in C(R). Recall that the
metric (and the topology) of interest in C(R) is induced by the family of pseudonorms ‖f‖N =
sup−N≤x≤N |f(x)|. Since any continuous function can be approximated on any compact set by one
of these piecewise linear rational functions, it follows that for any continuous function f we can
devise a sequence fN of piecewise linear rational functions such that fN → f in the underlying
topology.

Finally, we can apply the construction of Definition 5.1.2 and consider the set of computable
elements Cᾱ. In this case, this set coincides with the familiar set of computable real functions, as
seen in [PER89, Wei00], among others.

103

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Example 5.1.5 (Computability on C1(T,X)). Given a computability structure on a Fréchet
space X we shall construct a computability structure on the space of X -streams Z = C1(T,X). We
shall consider the case T = [0, 1] (bounded time); the case T = [0, T] is dealt in the exact same
manner and the case T = [0,∞) requires the additional trick presented in Example 5.1.4 of using a
natural N for both ‘window size’ and ‘step size’.

Let (Xc, αX) be an enumerated countable dense subset. We wish to apply the same principle as
in Example 5.1.4, that is, construct an interpolant from a finite amount of ‘data points’. However,
in this case we cannot use piecewise linear functions, because we need to work with continuously
differentiable functions. Recall that a function u : T→ X is in C1(T,X) if the expression

v(t) = lim
h→0

u(t+ h)− u(t)

h

is well-defined for all t ∈ T and defines a continuous function of time (that is, v ∈ C(T,X)).
Therefore, the idea of our construction is to approximate v by a piecewise linear function and then
integrate the approximation with respect to the time variable.

Formally, for each N ∈ N and each tuple (x0, y0, . . . , yN) of N + 2 elements in Xc, we consider
the functions u, v : T→ X such that

• v(j/N) = yj for each j = 0, . . . , N ;

• v is piecewise linear on the interval [j/N, (j + 1)/N], for each j = 0, . . . , N − 1;

• u(t) = x0 +
∫ t

0
v(s)ds.

1
N

1

y0

y1

y2
yN

1
N

1

x0

y0

y1

y2

yN

Figure 5.3: A continuous piecewise linear function v (left) and its integral, a C1 piecewise quadratic
function u (right). The data consist of an initial value x0 and derivative values y0, . . . , yN at
collocated points.

We observe that, by construction, each u is continuously differentiable and piecewise quadratic
(Figure 5.3). Now let Zc be the space of functions u considered above, so that Zc ⊆ Z. By using the
bijections of type N2 → N and NN+2 → N, and the enumeration αX , we can define an enumeration
αZ : N → Zc. Specifically: for n = 〈N, 〈m0,m

′
0, . . . ,m

′
N 〉〉, we can define αZ(n) to be the stream

u built from N and the tuple (x0, y0, . . . , yN) where x0 = αX (m0) and yj = αX (m′j) for each
j = 0, . . . N .

Since Xc is countable, it is clear that Zc is also countable. The fact that Zc is dense in Z follows
from basic topological principles (the proof is deferred to Proposition 5.1.6, after this example).
Thus, we can apply the construction of Definition 5.1.2 and obtain the computability structure
(ΩᾱZ , CᾱZ , ᾱZ).

104

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

We briefly remark that other constructible approaches are possible. For example, we could choose
to approximate u ∈ Z by polynomials (with respect to the time derivative)

u(t) ≈ x0 + x1t+ x2t
2 + . . .+ xN t

N , x0, x1, . . . , xN ∈ Xc,

so that the data would consist of tuples (x0, . . . , xN). We could also consider cubic splines, so that
Zc is the space of C1-functions which are piecewise cubic on each interval [tj , tj+1]. In this case, the
data would consist of tuples (x0, . . . , xN , y0, . . . , yN) corresponding to the values of a function and
its derivative at the grid points tj . Both these approaches can be seen to be equivalent to the first
one.

Proposition 5.1.6. The space Zc considered in Example 5.1.5 is dense in Z = C1(T,X).

Proof. Let ‖ · ‖n be the family of pseudonorms on X and consider the induced pseudonorms on Z

‖u‖n = sup
t∈T
‖u(t)‖n + sup

t∈T
‖u′(t)‖n.

We shall make the usual assumption that the metrics in X and Z are induced by the pseudonorms
as (cf. Proposition 2.2.13, (2.16) and (4.1))

d(u1, u2) =

∞∑
n=1

2−n min(‖u1 − u2‖n, 1). (5.1)

Given u ∈ Z, ε > 0 and M ∈ N+, we shall construct an element ũ ∈ Zc such that ‖u− ũ‖n < ε
for n = 1, . . . ,M . This will imply that Zc is dense in Z, since we can infer a bound on dZ(u, ũ)
from a bound on the pseudonorms, as per Proposition 2.2.15.

Let v = u′ ∈ C(T,X). As T = [0, T] is compact and v is continuous, it follows that v is uniformly
continuous, so that

∀ε > 0 ∃δ > 0 ∀t, s ∈ T : |t− s| < δ ⇒ dX (v(t), v(s)) < ε; (5.2)

with a bit of effort (cf. Proposition 2.2.15), this property can be reexpressed in terms of the pseudo-
norms as

∀ε > 0 ∀M ∈ N ∃δ > 0 ∀t, s ∈ T ∀n ≤M : |t− s| < δ ⇒ ‖v(t)− v(s)‖n < ε. (5.3)

Therefore, given ε > 0 and M ∈ N, we apply (5.3) and take δ > 0 such that

for any n = 1, . . . ,M and any t, s ∈ T with |t− s| ≤ δ, we have ‖v(t)− v(s)‖n < ε/6. (5.4)

Now take N ∈ N such that 1/N < δ (this N will be used for the ‘step size’ of our approximation)
and take x0, y0, . . . , yN ∈ Xc which approximate u(0), v(0), . . . , v(1). In particular, we require that

for any n = 1, . . . ,M and any j = 0, . . . , N , we have ‖x0 − u(0)‖n, ‖yj − v(j/N)‖n < ε/6; (5.5)

this can be achieved since Xc is dense in X . Now we take ũ, ṽ as the functions constructed in
Example 5.1.5 for the tuple (x0, y0, . . . , yN). We shall show that ũ is the desired approximation of
u.

Fix some t ∈ T and some pseudonorm ‖ · ‖n, 1 ≤ n ≤ M . Let 0 ≤ j ≤ N be such that
t ∈ [j/N, (j + 1)/N]. Since ṽ is linear in that interval, we can write ṽ(t) = yj + (Nt− j)(yj+1 − yj).

105

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Therefore we have the bound

‖ṽ(t)− yj‖n = ‖(Nt− j)(yj+1 − yj)‖ ≤ ‖yj+1 − yj‖n
≤ ‖yj+1 − v((j + 1)/N)‖n + ‖v((j + 1)/N)− v(j/N)‖n + ‖v(j/N)− yj‖n
< ε/6 + ε/6 + ε/6 = ε/2,

where the last inequality is justified by (5.4) and (5.5). We can use this to obtain another bound,

‖v(t)− ṽ(t)‖n ≤ ‖v(t)− v(j/N)‖n + ‖v(j/N)− yj‖n + ‖yj − ṽ(t)‖n
< ε/6 + ε/6 + ε/2 = 5ε/6,

where again the last inequality is justified by (5.4) and (5.5). Since t ∈ T was arbitrary, we can
further conclude that ‖v − ṽ‖n < 5ε/6. We remark that, at this point, we have proven that the
class of piecewise linear functions with endpoints in Xc is a dense subset of C(T,X). (To move from
bounds in the pseudonorms to bounds in the metric, see Proposition 2.2.15).

To get a bound on the approximation of u, we let t ∈ T and notice that

‖u(t)− ũ(t)‖n =

∥∥∥∥u(0) +

∫ t

0

v(s)ds− x0 +

∫ t

0

ṽ(s)ds

∥∥∥∥
n

≤ ‖u(0)− x0‖n +

∫ t

0

‖v(s)− ṽ(s)‖nds

≤ ‖u(0)− x0‖n + ‖v − ṽ‖n
< ε/6 + 5ε/6 = ε,

where the last inequality is justified by (5.5). Since t ∈ T was arbitrary, we conclude that ‖u−ũ‖n < ε
for any n = 1, . . . ,M , which concludes the proof.

Example 5.1.7 (Computability on C1(R)). For the sake of completeness we must also construct a
computability structure on the space Y = C1(R) of continuously differentiable, real-valued functions.
This construction is quite similar to those in Examples 5.1.4 and 5.1.5 and so we shall only sketch
it. The countable dense subset Yc will consist of continuously differentiable, piecewise quadratic
functions. Formally, for each N ∈ N and each tuple (u0, v−N2 , . . . , vN2), we consider functions
u ∈ C1(R), v ∈ C(R) such that

• v(x) = v−N2 for every x ≤ −N and v(x) = vN2 for every x ≥ N ;

• v(j/N) = pj for each j = −N2, . . . , 0, . . . , N2;

• v is piecewise linear on the interval [j/N, (j + 1)/N], for each j = −N2, . . . , 0, . . . , N2 − 1.

• u(x) = u0 +
∫ x

0
v(ξ)dξ.

Following the same lines of reasoning as in the previous examples, we can see that the space
Yc of functions u considered above is a dense countable subset of Y, we can define an enumeration
αY : N → Yc and thus, following the construction of Definition 5.1.2, we obtain a computability
structure on Yc.

106

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

We mention in passing that v is an element of the countable subset Xc defined in Example 5.1.4.
We also remark that other equivalent, constructible approaches could be used, for example, poly-
nomial interpolation (using as data the values u−N2 , . . . , uN2 of u at collocated points), truncated

Taylor series (using as data the values u
(0)
0 , . . . , u

(N)
0 of u and its derivatives at zero), or cubic splines

(using as data the values u−N2 , . . . , uN2 , v−N2 , . . . , vN2 of u and its first derivative at collocated
points).

Example 5.1.8 (Computability on X ×Y). Given computability structures on spaces X ,Y, one
can define a computability structure on the product X × Y as follows. If (Xc, αX) and (Yc, αY) are
enumerated countable dense subsets, we consider (X × Y)c = Xc × Yc as a countable dense subset
of X × Y and define the enumeration αX×Y : N→ X × Y as αX×Y(〈`, r〉) = (αX (`), αY(r)).

We can then apply the construction on Definition 5.1.2 and obtain a set of computable elements
CᾱX×Y on X ×Y. When doing this, we must define a metric on X ×Y, which can be easily induced1

from the metrics on X and Y. The set of computable elements thus constructed can be described
in terms of the computability structures on X and Y; we leave as an exercise to the reader to check
that CᾱX×Y = CᾱX × CᾱY .

The procedure described above can be easily generalized to finite products, i.e. to construct a
computability structure on X1×. . .×XN given computability structures on X1, . . . ,XN . In particular,
one can use a computability structure on X to define a computability structure on XN , for N ∈ N.

Definition 5.1.9 (Tracking function). Let X and Y be complete metric spaces and (Xc, αX),
(Yc, αY) be enumerated countable dense subsets. Let (ΩᾱX , CᾱX , ᾱX) and (ΩᾱY , CᾱY , ᾱY) be the
corresponding computability structures. Let f : X ⇀ Y and ϕ : N⇀ N.

We say that ϕ is a tracking function with respect to (αX , αY), or an (αX , αY)-tracking function,
for f , if for all n ∈ ΩᾱX ,

• if ᾱX (n) ∈ dom f , then n ∈ domϕ and ϕ(n) ∈ ΩᾱY and f(ᾱX (n)) = ᾱY(ϕ(n));

• if ᾱX (n) 6∈ dom f , then n 6∈ domϕ.

X Y

N N

ΩᾱX ΩᾱY

f

ᾱX ᾱY
ϕ

∪ ∪

Figure 5.4: Tracking function.

Definition 5.1.10 (Tracking computability). Let X and Y be complete metric spaces with
computability structures as in Definition 5.1.2. We say that a function f : X ⇀ Y is tracking
computable with respect to (αX , αY), or (αX , αY)-computable, if it has a computable (αX , αY)-
tracking function ϕ : N⇀ N.

1For example, we may take the metric to be one of the following: dX×Y ((x1, y1), (x2, y2)) = dX (x1, x2)+dY (y1, y2);

dX×Y ((x1, y1), (x2, y2)) = max(dX (x1, x2), dY (y1, y2)); dX×Y ((x1, y1), (x2, y2)) =
√

dX (x1, x2)2 + dY (y1, y2)2.
These are all equivalent.

107

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

5.2 Computability of the X -GPAC modules and induced op-
erators

To illustrate the generality of Definitions 5.1.9 and 5.1.10, we proceed to prove that all the basic
modules considered in the X -GPAC (Definition 3.4.2) generate tracking computable functions.

Lemma 5.2.1 (Tracking computability of the X -GPAC basic modules). Let X = C(R),
Y = C1(R), Z = C1(T,X) and W = C1(T,Y), with the computability structures described in
Examples 5.1.4, 5.1.5 and 5.1.7.

1. constants: let g be a computable element in X (that is, g ∈ CᾱX), then the constant stream
u ∈ C1(T,X) given by u(t) = g is a computable element in C1(T,X) (that is, u ∈ CᾱZ);

2. addition: the following function is (αZ×Z , αZ)-computable:

add : C1(T,X)× C1(T,X)→ C1(T,X), given by add(u, v)(t) = u(t) + v(t);

3. multiplication: the following function is (αZ×Z , αZ)-computable:

mult : C1(T,X)× C1(T,X)→ C1(T,X), given by mult(u, v)(t) = u(t)v(t);

4. integration: the following function is (αX×Z×Z , αZ)-computable:

int : X × C1(T,X)× C1(T,X)→ C1(T,X), given by int(g, u, v)(t) = g +

∫ t

0

u(s)v′(s)ds;

5. differentiation: the following function is (αW , αZ)-computable:

diff : C1(T,Y)→ C1(T,X), given by diff(u)(t) = u′(t).

Proof. In this proof, we shall assume for simplicity that T = [0, 1], but the proof carries out with
minor changes for the cases T = [0, T] and T = [0,∞).

Constants: given an element g ∈ Xc, the constant stream u(t) = g is in Zc; in particular, it
is encoded by N = 1 and the tuple (g, 0, 0). Moreover, let n0 ∈ N such that αX (n0) = 0. Then,
given a code c = 〈e,m〉 for an element g ∈ CᾱX , consider the code c′ = 〈e′,m〉 in which {e′}(n) =
〈1, 〈{e}(n), n0, n0〉〉; according to Example 5.1.5, this corresponds to N = 1, x0 = αX ({e}(n)),
y0 = αX (n0) = 0 and y1 = αX (n0) = 0. Then c′ is a code for the desired constant stream, so that
u ∈ CᾱZ .

Refinement: for the next three basic modules, it is useful to prove that a certain operation on
the codes of elements in Zc (hereby called refinement) is computable.

Let n = 〈N, 〈m0,m
′
0, . . . ,m

′
N 〉〉 be a code for a stream u ∈ C1(T,X). By a refinement of n

we mean a natural number n̄ = 〈N̄ , 〈m̄0, m̄
′
0, . . . , m̄

′
N̄
〉〉 such that n̄ is also a code for u and N̄ is

a multiple of N . Intuitively, this means that we are encoding the stream u with additional (yet
redundant) data (see Figure 5.5). We shall see very shortly how the values of m̄0, m̄

′
j must depend

in a straightforward way on the values of m0,m
′
j .

Given a code n = 〈N, 〈m0,m
′
0, . . . ,m

′
N 〉〉 and a positive integer k, we construct a refinement

R(n, k) = 〈N̄ , 〈m̄0, m̄
′
0, . . . , m̄

′
N 〉〉 as follows:

• N̄ = N × k;

108

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

1
N

1

x0

y0

y1

y2

yN

y1/2

y3/2
y5/2

Figure 5.5: A stream u ∈ C1(T,X) with two encodings: one having data (x0, y0, . . . yN) (in blue),
and the other being a refinement with roughly twice as much data (the additional data are in
red). Furthermore, the refined data can be obtained from the original data; in particular, y1/2 =
(y0 + y1)/2, y3/2 = (y1 + y2)/2 and so on.

• m̄0 = m0;

• for j = 0, . . . , N̄ , find 0 ≤ i < N and 0 ≤ ` < k such that j = ki + `; then m̄′j is chosen such

that αX (m̄′j) = k−`
k αX (m′i) + `

kαX (m′i+1).

We note that each of these values can be obtained from n in an effective manner: in particular, the
construction of m̄′j is effective since addition and multiplication by rationals is a tracking computable2

operation in X = C(R).
Next consider n1 = 〈N1, 〈. . .〉〉 and n2 = 〈N2, 〈. . .〉〉 two codes for elements in Zc. We can take

the least common multiple of the step numbers, N̄ = lcm(N1, N2) and then consider a common
refinement, that is, a pair of codes n̄1 = 〈N̄ , 〈. . .〉〉, n̄2 = 〈N̄ , 〈. . .〉〉 such that n̄1, n̄2 are refinements
of n1, n2. We observe that each step in this construction is effective, and thus the map (n1, n2) 7→
(n̄1, n̄2) is computable.

Addition: With the tool of common refinements at our disposal, we can proceed to show that
addition is tracking computable. First notice that, if u1, u2 are streams in Zc given by the same step
number N̄ and data tuples (x1,0, y1,0, . . . , y1,N̄), (x2,0, y2,0, . . . , y2,N̄), then their sum u1 + u2 is a
stream in Zc given by N̄ and the data tuple (x1,0 + x2,0, y1,0 + y2,0, . . . , y1,N̄ + y2,N̄). Since addition
in X is tracking computable, this procedure can be effectivized. Formally, given two codes n1, n2

for elements αZ(n1), αZ(n2) ∈ Zc, we can effectively obtain a code for its sum αZ(n1) + αZ(n2) as
follows:

• build a common refinement n̄1 = 〈N̄ , 〈m1,0,m
′
1,0, . . .m

′
1,N̄
〉〉, n̄2 = 〈N̄ , 〈m2,0,m

′
2,0, . . .m

′
2,N̄
〉〉

of n1, n2;

• take the code n+ = 〈N̄ , 〈m+,0,m
′
+,0, . . .m

′
+,N̄
〉〉, where αX (m+,0) = αX (m1,0)+αX (m2,0) and

so on.

Let addc : (n1, n2) 7→ n+ denote the map that from two codes in Zc gives the code for their
sum. Now let c1 = 〈e1,m1〉, c2 = 〈e2,m2〉 be codes for streams u ∈ Z. In particular, c1, c2 encode
effective Cauchy sequences in Zc converging to computable elements in CᾱZ . We must construct a
code c+ = 〈e+,m+〉 for their sum:

2To see this, the reader may wish to either consult standard texts in computable analysis, such as [Wei00, Chapter
6] or [PER89, Chapter 0], or adapt the current proof to X = C(R), namely, consider refinements in X according to
the coding of Example 5.1.4.

109

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

• take e+ to be a code for the function n 7→ addc({e1}(n), {e2}(n)), that is, the function that
maps each n to a code of the sum α({e1}(n))+α({e2}(n)) (in other words, the Cauchy sequence
encoded by c+ is the termwise addition of the Cauchy sequences encoded by c1 and c2);

• take m+ to be a code for a function {m+} as follows: for a given ν ∈ N, take δ,M, δ′, ν′

with δ ≤ 2−ν/2; 2−M ≤ 2−ν/2; δ′ ≤ δ/2; and 2−ν
′ ≤ δ′2−M . Next define {m+}(ν) =

max({m1}(ν′), {m2}(ν′)) =: N . Now observe that, for m1,m2 ≥ N ,

dZ(α{ei}(m1), α{ei}(m2)) < 2−ν
′
, i = 1, 2 (from Definition 4.2.3), so that

‖α{ei}(m1)− α{ei}(m2)‖n < δ′, i = 1, 2, n = 1, . . .M (from Proposition 2.2.15), so that

‖α{e+}(m1)− α{e+}(m2)‖n < δ, n = 1, . . .M (from triangular inequality), so that

dZ(α{e+}(m1), α{e+}(m2)) < 2−ν (from Proposition 2.2.15).

We conclude that c+ is in fact a code for the effective Cauchy sequence corresponding to the
addition of the sequences given by c1 and c2; in particular, it must converge to the computable
element corresponding to the sum of their limits. Moreover, the entire procedure described above
can be effectivized, so that we can define a computable function φ : (c1, c2) 7→ c+. It follows that φ
is a tracking function for add, so that addition in C1(T,X) is tracking computable.

Multiplication: there are a lot of technical details that go into defining a tracking function for
multiplication. We shall only sketch a proof of this result. In short, there are three ‘levels’ on which
we must approximately compute multiplication.

At the first level, we have to approximate multiplication on X = C(R). Remember that functions
in X are approximated by continuous, piecewise linear, rational functions. These functions are in
turn represented by tuples (x−N2 , . . . , xN2) of rational numbers, and encoded as a single natural
number.

Therefore, let g1 ∼ (x1
−N2 , . . . , x1

N2) and g2 ∼ (x2
−N2 , . . . , x2

N2) be representations of two functions
in Xc, where N specifies a large enough common refinement. We will approximate their product
by the function g× ∼ (x×−N2 , . . . , x

×
N2), whose representation is given by x×j = x1

jx
2
j . Observe that,

while multiplications in the rationals can be done exactly, multiplication over Xc is no longer exact;
in particular, g× is a piecewise linear function whereas the product g1g2 is piecewise quadratic.
Therefore, there is an approximation error, which with some effort can be found to be bounded as

‖g× − g1g2‖N ≤ C sup |x1
j+1 − x1

j | sup |x2
j+1 − x2

j |, (5.6)

for the constant C = 1/4. It is worth noticing that |xij+1−xij | correspond to differences in consecutive
points of the representations of gi. This difference can in principle be effectively bounded by the
value of the discretization size N (but we omit these details).

At the second level, we can now consider multiplication in Zc, where Z = C1(T,X). Let
u1 ∼ (f1

0 , g
1
0 , . . . , g

1
N) and u2 ∼ (f2

0 , g
2
0 , . . . , g

2
N) be two representations of functions in Zc (again,

we take a large enough common refinement value N). Note our notation: we are denoting f i0 :=
ui(0) and gij := u′i(j/N). To approximate their product we recall the product rule for derivatives,
(u1u2)′(t) = u1(t)u′2(t) + u′1(t)u2(t). To compute this expression at collocated values of t, we must
first find the values of f ij := ui(j/N). Since ui are piecewise quadratic, these values can be recursively
obtained by integration using the trapezoid rule,

f ij+1 = f ij +
∆t

2
(gij + gij+1), ∆t =

1

N
. (5.7)

We observe that the values of f ij can be exactly computed over Xc from the representation of ui.

110

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Therefore, we can approximate the product u1u2 by the function u× ∼ (f×0 , g
×
0 , . . . , g

×
N), where

• f×0 is the approximate computation (over Xc) of f1
0 f

2
0 ;

• g×j is the approximate computation (over Xc) of f1
j g

2
j + f2

j g
1
j .

Observe that these computations are performed at the first level, and have corresponding ap-
proximation errors as in (5.6). Once again, multiplication over Zc is not exact; in particular, u× is
piecewise quadratic whereas u1u2 is piecewise quartic. It takes considerably more effort to describe
an effective bound on the approximation error, which will depend on: the approximation error for
the first level; the time step size ∆t = 1/N ; the norms of ‖ui‖m ≈ sup ‖f ij‖m + sup ‖gij‖m; and the

consecutive differences sup ‖f ij+1 − f ij‖m, sup ‖gij+1 − gij‖m. Ultimately, we can bound this error in
an effective way depending on the refinement value N .

Finally, at the third level we can consider multiplication in Z. Let c1 = 〈e1,m1〉 and c2 = 〈e2,m2〉
be codes for effective Cauchy sequences in Zc converging to a computable element in Z. We wish
to define a code c× = 〈e×,m×〉 for an effective Cauchy sequence converging to their product.
We can take e× to encode the termwise product of the two sequences, so that αZ({e×}(n)) is an
approximation of αZ({e1}(n))αZ({e2}(n)), computed at the second level (described above). We
must also require that later terms in the sequence are computed with higher accuracy. For example,
we require that {e×}(n) is computed using a common refinement of size at least n. The specification
of the modulus of convergence {m×} takes more effort. Given ν, we want to find a value for {m×}(ν)
according to Definition 4.2.3. We sketch the desired procedure:

• let u1,n = αZ({e1}(n)), u2,n = αZ({e2}(n) and u×,n = αZ({e×}(n));

• find an uniform bound (i.e. independent of n) on ‖u1,n‖m and ‖u2,n‖m (possible since these
are effective Cauchy sequences);

• take into account the inequality

‖u1,nu2,n − u1,n′u2,n′‖m ≤ ‖u1,n‖m‖u2,n − u2,n′‖m + ‖u2,n′‖m‖u1,n − u1,n′‖m;

use this to get an effective bound on ‖u1,nu2,n − u1,n′u2,n′‖m;

• take into account the inequality

‖u×,n − u×,n′‖m ≤ ‖u×,n − u1,nu2,n‖m + ‖u1,nu2,n − u1,n′u2,n′‖m + ‖u×,n′ − u1,n′u2,n′‖m;

two of the terms on the right-hand side correspond to the approximation errors from the second
level, whereas the third term can be bounded from the previous step;

• find a large enough value of N such that all three terms in the previous step are small enough
for n, n′ ≥ N ;

• repeat the above steps for pseudonorm indices m = 1, . . . ,M , where Proposition 2.2.15 is taken
into account, to retrieve the desired bound on d(u×,n, u×,n′). Then {m×}(ν) can be taken to
be the largest value of N required.

Integration: The techniques and ideas used for defining a tracking function for multiplication
can be easily adapted into integration as well. Suppose that g ∈ Xc and u, v ∈ ZC . Moreover let
u, v be represented by the tuples of data (f1

0 , g
1
0 , . . . , g

1
N) and (f2

0 , g
2
0 , . . . , g

2
N), respectively, where a

large enough common refinement N is taken. We recall the notation f1
j = u(j/N) for the values

111

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

of u at collocated points, which can be recursively and exactly computed by (5.7). Now let w ∈ Z

be given by w(t) = g +

∫ t

0

u(s)dv(s). Observe that w(0) = g and w′(t) = u(t)v′(t); in particular,

w′(j/N) = f1
j g

2
j . Therefore, we can approximate w by the function w ∼ (f0, g0, . . . , gN) in Zc,

where

• f0 = g;

• gj is the approximate computation (over Xc) of f1
j g

2
j .

Similarly to the previous case, these computations have approximation errors as in (5.6). We also
need to estimate the approximation error between w and w in an effective way depending on the
refinement parameter N . Finally, we extend the computation for codes c0 = 〈e0,m0〉, c1 = 〈e1,m1〉,
c2 = 〈e2,m2〉 of effective Cauchy sequences converging to g, u, v respectively. We define a code
c = 〈e ,m 〉 for an effective Cauchy sequence converging to the integral. We take e to be the code
of a recursive function such that

αZ({e }(n)) is the approximation of int(αX ({e0}(n)), αZ({e1}(n)), αZ({e2}(n))),

computed in a common refinement of size at least n. The specification of the modulus of convergence
is done in a similar way as for multiplication and we omit the details.

Differentiation: The case of differentiation is actually much simpler to treat. First observe
that, if g is a function in Yc represented by (x0, y−N2 , . . . , yN2), then its derivative g′ is a function in
Xc represented by (y−N2 , . . . , yN2). Thus, differentiation in Yc can be exactly computed. Moreover,
if u is a function in Wc represented by (f0, g0, . . . , gN), then its spatial derivative is a function in Zc
represented by (f ′0, g

′
0, . . . , g

′
N) (note that each f0, gj ∈ Y). Thus, differentiation inWc can be exactly

computed as well. Finally, if c = 〈e,m〉 is a code for an effective Cauchy sequence converging to a
computable element inW, we can easily define a code cδ = 〈eδ,mδ〉 for an effective Cauchy sequence
converging to its spatial derivative. Just take eδ such that αZ({eδ}(n)) is the (exact) derivative of
αW({e}(n)) and we can even use the same modulus of convergence, mδ = m. This is because, if
g ∈ W, then for each n

‖g′‖Y,n = sup ‖g′(t)‖X ,n ≤ sup ‖g(t)‖X ,n + sup ‖g′(t)‖X ,n = ‖g‖W,n

and thus dY(u′, v′) ≤ dW (u, v) for any u, v ∈ W.

Remark 5.2.2. It is important to note that our treatment of the differential module is somewhat dif-
ferent from that presented on Chapter 3. We have proven that the total-valued differential functional
of type C1(T, C1(R)) → C1(T, C(R)) is tracking computable. We did not wish to study tracking
computability of the partial-valued differential functional of type C1(T, C(R)) ⇀ C1(T, C(R)), since
this operator is not continuous. As a consequence, the definitions of induced operator and generable
functions will be slightly different in this chapter. These will be given shortly at the start of Section
5.3.

Next we consider the continuous limit module studied in Chapter 4 and show its tracking com-
putability. Note that the limit operation only makes sense when T = [0,∞).

Lemma 5.2.3 (Tracking computability of the continuous limit module). Let X = C(R),
T = [0,∞) and Z = C1(T,X), with the computability structures described in Examples 5.1.4 and
5.1.5. Consider the function

lim : C1(T,X) ⇀ X , given by lim(u) = lim
t→∞

u(t),

112

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

whose domain consists of id-convergent Cauchy streams u ∈ C1(T,X) (cf. Definitions 4.2.3 and
4.2.4). Then lim is (αZ , αX)-computable.

Proof. If un ∈ C1(T,X) is an effective Cauchy sequence converging to a stream u ∈ C1(T,X) which
in turn has an id-convergent limit f ∈ X , then limt→∞ limn→∞ un(t) = f . Thus, a candidate for an
approximation of f would be given by ukn(tn), where tn and kn are large enough natural numbers.
Our goal is to somehow effectivize this line of thought.

Let u ∈ Zc. Since T = [0,∞), a representation of u must be given by (f0, g0, . . . gN2), where each
f0, gj ∈ Xc. Recall that this notation means that f0 = u(0) and gj = u′(j/N) for j = 0, . . . , N2. Our
first observation is that, for any natural number n ∈ N, the value of u(n) can be exactly computed
from a representation of u: in particular,

u(n) =

{
fnN if n ≤ N ;

fN2 + (N − n)gN2 if n ≥ N,

where the functions fj can be exactly computed as in (5.7) (but with ∆t = 1/N2).
Now let c = 〈e,N〉 be a code for an effective Cauchy sequence in Zc converging to a computable

element u ∈ C1(T,X). We want to compute a code c` = 〈e`, N`〉 for an effective Cauchy sequence
in Xc converging to the limit f = lim(u) ∈ X . Let un = αZ({e}(n)) and fn = αX ({e`}(n)). As
mentioned before, we shall construct e` in such a way that

fn = ukn(tn), for suitable choices of kn, tn;

later on, it will be revealed that tn = n+ 1 and kn = {N}(2n+ 7) are the suitable choices.
We desire fn to be an effective Cauchy sequence. Thus let ν ∈ N be given, and we want to find

K such that, for n,m ≥ K one has dX (fn, fm) < 2−ν . By applying the triangular inequality we can
write

dX (fn, fm) ≤ dX (ukn(tn), u(tn)) + dX (u(tn), u(tm)) + dX (u(tm), ukm(tm)).

Since u is an id-convergent Cauchy stream, we can bound the second term of the above sum.
Namely, take τ = ν+ 1, and thus if tn, tm ≥ τ , then dX (u(tn), u(tm)) < 2−τ = 2−ν−1. Next we need
to handle the term dX (ukn(tn), u(tn)), which amounts to finding a suitably large kn.

We shall apply Proposition 2.2.15 to convert between metric and pseudonorms. Let ε, δ,M, δ′, ν′

be constructed as follows: ε = 2−n/4 = 2−n−2, δ = ε/2 = 2−n−3, 2−M = ε/2 (so that M = n + 3),
δ′ = δ2−M = 2−2n−6 and 2−ν

′
= δ′/2 (so that ν′ = 2n+ 7). Finally, take kn = {N}(ν′). If m ≥ kn

we have that dZ(ukn , um) < 2−ν
′
. Since um → u this implies that dZ(ukn , u) ≤ 2−ν

′
< δ′. Applying

Proposition 2.2.15 we conclude that ‖ukn−u‖Z,M < δ. Let tn = n+1 and observe that 0 ≤ tn ≤M .
Therefore,

‖ukn(tn)− u(tn)‖X ,M ≤ sup
0≤t≤M

‖ukn(t)− u(t)‖X ,M

≤ sup
0≤t≤M

‖ukn(t)− u(t)‖X ,M + sup
0≤t≤M

‖u′kn(t)− u′(t)‖X ,M

= ‖ukn − u‖Z,M < δ.

Applying Proposition 2.2.15 once more, we conclude that dX (ukn(tn), u(tn)) < ε = 2−n−2. This
reasoning also proves that dX (ukm(tm), u(tm)) < 2−m−2.

To conclude the bound on dX (fn, fm), let ν ∈ N and n,m ≥ ν. Since tn = n + 1, tm =
m + 1, it follows that tn, tm ≥ ν + 1, and thus dX (u(tn), u(tm)) < 2−ν−1. Also, from our previous
reasoning, it follows that both dX (ukn(tn), u(tn)) and dX (ukm(tm), u(tm)) are less than 2−ν−2. Thus,
dX (fn, fm) < 2−ν−2 + 2−ν−1 + 2−ν−2 = 2−ν , as desired. Therefore, fn is an effective Cauchy

113

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

sequence with modulus of convergence equal to the identity (so that we may take N` to be a code
for {N`}(n) = n).

The construction of tn and kn is effective on n and, as mentioned before, the evaluation of a
function u ∈ Zc at a natural number n ∈ T is also effective (on n and a code for u). Therefore,
αX ({e`}(n)) = fn = ukn(tn) is a computable sequence and c = 〈e,N〉 7→ c` = 〈e`, N`〉 is an effective
procedure. Finally, we have proved that, for all n ∈ N, dX (fn, u(tn)) < 2−n−2; since u(t) → f it
also follows that fn → f , so that c` is indeed a code for an effective Cauchy sequence converging to
lim(u), as desired.

Remark 5.2.4. Recall that, in Chapter 4, we actually defined two variants of the continuous limit
module: the one-input limit module (for id-convergent Cauchy streams) and the two-input limit
module (where the rate of convergence is provided as an input). Clearly, we expect both versions to
be equivalent (in fact, we have shown how to derive the one-input limit module from the two-input
version), and thus it should be possible to prove a variant of Lemma 5.2.3 for the two-input limit
module. However, we won’t provide a direct proof of this result. Instead, the tracking computability
of the two-input limit module will follow from the fact that many algebraic operations preserve
computability, as we shall now see.

Lemma 5.2.5 (Tracking computability of some algebraic operations). The following con-
structs preserve tracking computability.

1. serial composition: if f : X ⇀ Y and g : Y ⇀ Z are tracking computable, so is g◦f : X ⇀ Z,
defined by (g ◦ f)(x) = g(f(x));

2. parallel composition: if f : X1 ⇀ Y1 and g : X2 ⇀ Y2 are tracking computable, so is
f × g : X1 ×X2 ⇀ Y1 × Y2, defined by (f × g)(x1, x2) = (f(x1), g(x2));

3. projection: if f : X ⇀ Y1 ×Y2 is tracking computable, so are f1 : X ⇀ Y1 and f2 : X ⇀ Y2,
defined by (f1(x), f2(x)) = f(x).

4. coupling: if f1 : X ⇀ Y1 and f2 : X ⇀ Y2 are tracking computable, so is f : X ⇀ Y1 × Y2,
defined by f(x) = (f1(x), f2(x)).

Proof. The computability of basic algebraic operations is usually one of the first results to be proven
for a model of computation. For example, in the framework of computable analysis, this is proven in
[PER89, Section 0.4]; and in the framework of type-2 theory of effectivity, this is proven in [Wei00,
Section 2.1].

The proofs are straightforward; we will present the proof of computability for serial composition
as an illustration. Let f : X ⇀ Y and g : Y ⇀ Z be tracking computable, and let F,G : N ⇀ N be
their (computable) tracking functions. Now G◦F is a computable function on the natural numbers;
we shall prove that G ◦ F is a tracking function for g ◦ f (using Definition 5.1.9). Let n ∈ ΩᾱX and
x = ᾱX (n); we must consider two possibilities.

• Suppose that x ∈ dom(g ◦ f); then x ∈ dom f , so we can define y = f(x); and also y ∈
dom g. By tracking computability of f it follows that n ∈ domF and y = ᾱY(F (n)). By
tracking computability of g it follows that F (n) ∈ domG and g(y) = ᾱZ(G(F (n))). Thus
n ∈ dom(G ◦ F) and g ◦ f(ᾱX (n)) = ᾱZ(G ◦ F (n)).

• Suppose that x 6∈ dom(g ◦ f); then either x 6∈ dom f or y = f(x) and y 6∈ dom g. In the first
case, by tracking computability of f it follows that x 6∈ domF . In the second case, tracking
computability of f implies that n ∈ domF and y = ᾱY(F (n)); and tracking computability of
g implies that F (n) 6∈ domG. In either way we have that n 6∈ dom(G ◦ F).

114

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Thus G ◦ F is indeed a tracking function for g ◦ f . We conclude that the serial composition is
tracking computable.

Finally, we can piece all our results together and prove the tracking computability of the induced
operator of an LGPAC.

Theorem 22 (Tracking computability of GPAC induced operators). Let G be an LGPAC
(over X = C(R)) with induced operator Φ : C × I ×M→ M̃×O. Then Φ is tracking computable.

Proof. We begin by writing

Φ(g,uI ,uM) = (ũM ,uO) = (Φ1(inp1), . . . ,ΦN (inpN)); (5.8)

in this notation, N is the number of modules in G and Φi are the corresponding functions. For
example, if the i-th module is an integrator, then inpi is of the form (g, u, v) ∈ X × C1(T,X) ×
C1(T,X), where g, u, v are the corresponding components of g, uI or uM , and Φi = int; similarly
for the other cases.

There is a technical observation we must make at this point. The induced operator is defined
slightly differently from Chapter 3, due to the treatment of differential modules (cf. Remark 5.2.2).
So if the i-th module is a differential, then inpi is a component of uI or uM belonging to the
space C1(T, C1(R)). In other words, the input / mixed spaces may be of the form C1(T, C(R))q1 ×
C1(T, C1(R))q2 , instead of the form C1(T, C(R))q used in Chapter 3 (see in particular Definition
3.4.5). This is the reason for requiring a new symbol M̃ appearing in the description of the induced
operator. We can say that a mixed channel may have a different semantic if it is treated as an input
instead of an output. Owing to the inclusion of C1(R) in C(R), we can say thatM⊆ M̃; moreover,
the inclusion map ι :M⊆ M̃ is continuous and tracking computable.

In any case, we now see that each Φi described in (5.8) is one of the functions considered in
Lemmas 5.2.1 and 5.2.3, and is thus tracking computable. Since Φ can be obtained as the parallel
composition and coupling of the Φi, we can use Lemma 5.2.5 to conclude that it must also be
tracking computable.

5.3 Tracking computability of LGPAC-generable functions

In this section we prove the main result of this chapter. The goal is to find out under which
conditions the function generated by an LGPAC is tracking computable. We recall that, in our
terminology, an LGPAC induces an operator

Φ : C × I ×M⇀ M̃ ×O, Φ(g,uI ,uM) = (ũM ,uO);

for the LGPAC to generate a valid function, we require the fixed point problem to be well-posed,
that is, a map F : (g,uI) 7→ (uM ,uO) exists, is unique and is continuous.

Previously on Chapter 3, we only required F to be a closed operator (not necessarily continuous).
We mentioned that this condition could be strengthened by considering a different topology on
the input space given by the graph norm. In fact, for this chapter we shall do exactly that. In
other words, to each input channel of a differential module we associate the space C1(T, C1(R)) of
streams in C1(R). Under this topology, it turns out that the induced operator becomes continuous.
Therefore, we shall require well-posedness for the generable functions. As the resulting Definition is
sligthly different than that of Definition 3.4.7, we include it here for clarity.

115

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Definition 5.3.1 (Well-posedness and semantics of LGPAC). Let G be an LGPAC and
Φ : C × I ×M→ M̃×O be its induced operator. Let U be an open subset of C × I. We say that
G is well-posed on U if

• (existence) for every (g,uI) ∈ U , there exists (uM ,uO) ∈M×O such that

Φ(g,uI ,uM) = (uM ,uO); (5.9)

• (uniqueness) for every (g,uI) ∈ U , the tuple (uM ,uO) such that (5.9) holds is unique;

• (continuity) the map F : (g,uI) 7→ (uM ,uO), with domain U and codomain M×O, given as
the unique solution of (5.9), is continuous.

Under the above conditions, we say that F is the specification of G, or that G generates F , or
that F is LGPAC-generable.

Our goal is to find conditions on G that imply that F is tracking computable. The idea is to find
F by solving an approximate fixed point problem

Given (g,uI) and ε > 0, find (uM ,uO) such that d(Φ(g,uI ,uM), (uM ,uO)) < ε.

Moreover, from the point of view of tracking computability, we look for desired uM ,uO in the
enumerated, countable dense subset. Then, by using a sequence of ε converging to 0, and under
additional assumptions on F (namely, we will require some notion of effective well-posedness), this
yields a sequence of uM ,uO converging to the desired F (uM ,uO).

Let us now focus on the first step of this construction. Namely, we prove that it is possible to
construct approximate fixed points.

Lemma 5.3.2. Let G be an LGPAC with induced operator Φ : C × I ×M→ M̃×O. Let U be an
open subset of C×I and suppose that G is well-posed on U . Then there exists a procedure (n, `) 7→ m
such that, if n is the code for an element in U , that is, ᾱC×I(n) = (g,uI) ∈ U and ` ∈ N, then m is
the code for an enumerated element in M×O, that is, αM×O(m) = (uM ,uO) ∈ M×O; and also
d(Φ(g,uI ,uM), (uM ,uO)) < 2−`.

Proof. The procedure works as follows. For a given input n, `, let us write (g,uI) = ᾱC×I(n). We
perform the following dovetailing loop for m ∈ N:

1. Find m1,m2 such that αM×O(m) = (αM(m1), αO(m2)). By our construction (see Example
5.1.8), these can be obtained via the pairing bijections. Also, for clarity, let us write uM =
αM(m1), uO = αO(m2).

2. Find n′ such that ᾱC×I×M(n′) = (g,uI ,uM). Observe that uM is an element in the enumer-
ated, countable dense subset ofM, but it can be encoded (as a computable element) by some
〈e1,M1〉, where e1 is a code for the constant function {e1}(n) = m1 and M1 is a code for the
identity function. Then, using the pairing functions, the desired n′ can be obtained.

3. Find m′ = ϕ(n′) = 〈e′,M ′〉, where ϕ is a tracking function for Φ. Here we use the fact that Φ
is tracking computable (Theorem 22). Notice that

ᾱM̃×O(m′) = ᾱM̃×O(ϕ(n′)) = Φ(ᾱC×I×M(n′)) = Φ(g,uI ,uM).

116

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

4. Find m′′ = {e′}({M ′}(` + 2)). Observe that, because {M ′} is a module of convergence
for the (Cauchy) sequence

(
αM̃×O({e′}(n))

)
n
, it follows that for k ≥ {M ′}(` + 2), one

has d(αM̃×O(m′′), αM̃×O({e′}(k))) < 2−`−2. In particular, since ᾱM̃×O(m′) is the limit of

αM̃×O({e′}(n)), then d(ᾱM̃×O(m′), αM̃×O(m′′)) ≤ 2−`−2. For clarity, let us write (ũM , ũO) =
αM̃×O(m′′).

5. Check if d(αM̃×O(m′′), αM×O(m)) < 2−`−1; if yes, then break the loop and return m. Observe
that the distance function is tracking computable (to get a close enough approximation, a
truncated sum on (5.1) is enough) and it must be evaluated on M̃×O, which is feasible since
the inclusion M ↪→ M̃ is tracking computable.

Observe that, for some values of m, the corresponding execution of the loop may not terminate.
This may happen if ᾱC×I×M(n′) (constructed on step 2) is not an element in the domain of Φ,
so that ϕ(n′) is a divergent computation, or if d(αM̃×O(m′′), αM×O(m)) is exactly 2−`−1 (equality
may not be a computable predicate). However, if a certain value of m happens to pass our test,
then that value satisfies the desired property: indeed,

d(Φ(g,uI ,uM), (uM ,uO)) ≤ d(Φ(g,uI ,uM), (ũM , ũO)) + d((ũM , ũO), (uM ,uO))

= d(ᾱM̃×O(m′), αM̃×O(m′′)) + d(αM̃×O(m′′), αM×O(m))

< 2−`−2 + 2−`−1 = 2−`.

Moreover, such a value of m can always be found by our algorithm, and to prove this we use
the well-posedness of G. Given n such that (g,uI) = ᾱC×I(n) ∈ U , we know by well-posedness
of G that there exists (a unique) (uMX ,u

O
X) ∈ M × O with Φ(g,uI ,uMX) = (uMX ,u

O
X), and thus

d(Φ(g,uI ,uMX), (uMX ,u
O
X)) = 0. Now the left hand side of this equality is a continuous expression in

uMX ,u
O
X (since Φ and d are continuous), and thus there exists δ > 0 such that for any uM ,uO ∈M×O

one has
if d((uMX ,u

O
X), (uM ,uO)) < δ then d(Φ(g,uI ,uM), (uM ,uO)) < 2−`−2.

By density of the enumerated subset, there exists m ∈ N such that αM×O(m) = (uM ,uO)
with d((uMX ,u

O
X), (uM ,uO)) < δ, and thus d(F (g,uI ,uM), (uM ,uO)) < 2−`−2, or in other words,

d(ᾱM̃×O(m′), αM×O(m)) < 2−`−2. Moreover, the value of m′′, computed on step 4, will be such

that d(ᾱM̃×O(m′), αM̃×O(m′′)) ≤ 2−`−2, and a simple application of the triangle inequality yields

that d(αM̃×O(m′′), αM×O(m)) < 2−`−1, so the condition on step 5 is met. Thus the dovetailing
loop will effectively succeed in finding a valid m.

We have shown that it is possible to find approximate fixed points of the induced operator. In
the next step, we try to show that approximate fixed points are in fact ‘close’ to exact fixed points,
which is by no means a trivial statement (rather, there is extensive research on this problem; see
for example [KL03, KL10]). Intuitively, we want to establish conditions on the induced operator Φ
(and the corresponding solution functional F) that effectively ensure the following: for each ε there
is δ such that

if d(Φ(g,uI ,uM), (uM ,uO)) < δ, then d(F (g,uI), (uM ,uO)) < ε.

From a topological point of view, this can be established under some compactness conditions.
Let us slightly rephrase our framework, writing

U = C × I; V =M×O;

117

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

y

z
z = y

Φ(x0, y)

y0 = F (x0)

Figure 5.6: Approximate fixed points vs approximations of the exact fixed point. The intuition is as
follows; assume that the fixed point equation Φ(x, y) = y has a solution operator y = F (x) which is
continuous. Then, in a compact neighborhood of (x, y), approximate fixed points are ‘close’ to the
exact fixed point.

Ψ : U × V ⇀ R+
0 given by

Ψ(g,uI ,uM ,uO) = d(Φ(g,uI ,uM), (uM ,uO)). (5.10)

With this notation, well-posedness of the LGPAC ensures that there is a unique and continuous
function F : U ⇀ V with some open domain dom(F) = U0 ⊆ U such that Ψ(u, F (u)) = 0 for all
u ∈ U0. Then we have the following statement.

Lemma 5.3.3. Let U, V be metric spaces and Ψ : U × V ⇀ R+
0 a continuous function. Let U0, V0

be compact subsets of U, V and suppose that the equation Ψ(u, v) = 0 has a unique solution v ∈ V0

for each u ∈ U0. Moreover, suppose that the solution v = F (u) depends continuously on u. Then

for all ε > 0 there exists δ > 0 such that for all u ∈ U0, v ∈ V0, Ψ(u, v) < δ ⇒ d(F (u), v) < ε.
(5.11)

Proof. First we prove a weaker version of (5.11), namely that

for all u ∈ U0, ε > 0, there exists δ > 0 such that for all v ∈ V0, Ψ(u, v) < δ ⇒ d(F (u), v) < ε.
(5.12)

We do this by contradiction. Assume that there exist u ∈ U0 and ε > 0 such that, for all δ > 0
there exists v ∈ V0 with

Ψ(u, v) < δ but d(F (u), v) ≥ ε;

consider a sequence vn ∈ V0 such that Ψ(u, vn) < 1
n and d(F (u), vn) ≥ ε. Since V0 is (sequentially)

compact, there is v∗ ∈ V0 and a converging subsequence vnk
→ v∗. Then, by continuity of Ψ, we

get Ψ(u, v∗) = 0, so that v∗ = F (u) (by uniqueness of solutions); however, by continuity of d, we
get d(F (u), v∗) ≥ ε, which is a contradiction. This proves (5.12).

For the stronger version, let us fix ε > 0. For each u ∈ U0, let δ1(u) be such that for any v ∈ V0,

Ψ(u, v) < δ1(u)⇒ d(F (u), v) < ε/2.

118

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Since F is continuous, for each u ∈ U0 there is also δ2(u) such that for any u′ ∈ U0,

d(u, u′) < δ2(u)⇒ d(F (u), F (u′)) < ε/2.

Next we prove the following claim: for each u ∈ U0 there is δ3(u) such that for any u′ ∈ U0 and
v ∈ V0,

d(u, u′) < δ3(u)⇒ d(Ψ(u, v),Ψ(u′, v)) <
δ1(u)

2
; (5.13)

notice how δ3 depends on u only (i.e. is a uniform bound in v ∈ V0). The claim can be proven by a
compactness argument on V0. Indeed, fix u ∈ U0. Since Ψ is continuous, for each v ∈ V0 there exist
δ4(u, v), δ5(u, v), δ6(u, v) such that for any u′ ∈ U0 and v′ ∈ V0,

d(u, u′) < δ4(u, v) and d(v, v′) < δ5(u, v)⇒ d(Ψ(u, v),Ψ(u′, v′)) <
δ1(u)

4
;

d(v, v′) < δ6(u, v)⇒ d(Ψ(u, v),Ψ(u, v′)) <
δ1(u)

4
.

Let δ7(u, v) = min(δ5(u, v), δ6(u, v)) and cover V0 with balls V0 =
⋃
v∈V0

Bδ7(u,v)(v). By compact-

ness, we can cover V0 with only a finite number of balls Bδ7(u,vi)(vi), i = 1, . . . , N .
Let δ3(u) = min

1≤i≤N
δ4(u, vi), which will satisfy the claim (5.13). To see this, let u′ ∈ U0 be such

that d(u, u′) < δ3(u). Let also v ∈ V0 and take vi such that d(v, vi) < δ7(u, vi). Then

d(u, u′) < δ4(u, vi) and d(v, vi) < δ5(u, vi) and d(v, vi) < δ6(u, vi), thus

d(Ψ(u, vi),Ψ(u′, v)) <
δ1(u)

4
and d(Ψ(u, v),Ψ(u, vi)) <

δ1(u)

4
, and so

d(Ψ(u, v),Ψ(u′, v)) <
δ1(u)

2
;

this proves the claim.

Continuing the proof, let δ8(u) = min(δ2(u), δ3(u)) and cover U0 with balls U0 =
⋃
u∈U0

Bδ8(u)(u).

By compactness, we can cover U0 with only a finite number of balls Bδ8(uj)(uj), j = 1, . . . ,M .

Let δ = min
1≤j≤M

δ1(uj)

2
, which will satisfy the desired property (5.11). To see this, let u ∈ U0 and

v ∈ V0 be such that Ψ(u, v) < δ. Take uj such that d(u, uj) < δ8(uj). We have that

d(u, uj) < δ2(uj) and d(u, uj) < δ3(uj) and Ψ(u, v) <
δ1(uj)

2
, thus

d(F (u), F (uj)) < ε/2 and d(Ψ(u, v),Ψ(uj , v)) <
δ1(uj)

2
and Ψ(u, v) <

δ1(uj)

2
, so that

d(F (u), F (uj)) < ε/2 and Ψ(uj , v) ≤ Ψ(u, v) + d(Ψ(u, v),Ψ(uj , v)) < δ1(uj), therefore

d(F (u), F (uj)) < ε/2 and d(F (uj), v) < ε/2, and so

d(F (u), v) < ε;

this concludes the proof.

119

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

The above result shows that, in principle, solutions of the ‘approximate fixed point problem’
can provide approximations to solutions of the ‘exact fixed point problem’. However, from the
point of view of tracking computability, one would need to effectivize the proof of Lemma 5.3.3.
Potentially, this may be doable by showing that, given modulus of continuity for F , Φ and Ψ,
one could effectively produce a ‘modulus of approximability’ representative of the relation between
ε and δ in (5.11). We would also require other additional effectivity properties with respect to
the compactness assumptions (for example, a computable compact representation of U, V , and a
dependence of the modulus of approximability on a representation of U0, V0). This could prove to
be a quite cumbersome task and indeed we shall not pursue this direction. Our approach shall be to
define a notion that captures this effective construction and use it as an assumption towards proving
our main theorem.

Definition 5.3.4 (Effective local reversibility and effective local behaviour). Let G, Φ, U
be as in Definition 5.3.1, with G well-posed on U . Let F be the specification of G, having domain
U . Let Ψ be as in (5.10). Let u0, v0 be computable elements of U and F (U), respectively, and ε1, ε2
be computable reals. Let U0 = B̄ε1(u0) and V0 = B̄ε2(v0) be the corresponding computable closed
neighborhoods of u0, v0. Suppose further that

• U0 ⊆ U = dom(F);

• F (U0) ⊆ V0;

• there is an effective modulus of convergence N : N→ N such that

for all ν > 0, for all u ∈ U0, v ∈ V0, Ψ(u, v) < 2−N(ν) ⇒ d(F (u), v) < 2−ν . (5.14)

Under all these conditions, we say that the well-posedness of G is effectively locally reversible on
U0, or that F is effectively locally well-behaved on U0.

Theorem 23 (Tracking computability of LGPAC generable functions). Let F be LGPAC-
generable with domain U . Let U0 ⊆ U be a computable closed neighborhood such that F is effectively
locally well-behaved on U0. Then the restriction of F to U0 is a tracking computable function.

Proof. Given a code c = 〈e,N〉 of an element u ∈ U0, we wish to construct a code ϕ(c) = 〈e′, N ′〉 of
F (u). Consider an LGPAC that generates F , with induced operator Φ : C ×I ×M⇀ M̃×O. The
code ϕ(n) shall be constructed with N ′ being a code for the identity function and e′ being a code for
a sequence {e′}(n) as follows. Let M be the effective modulus of convergence witnessing the local
reversibility of F and let γ be the procedure (n, `) 7→ m that produces approximate fixed points of
F , as in Lemma 5.3.2. Then we define {e′}(n) = γ(c,M(n+ 1)), which is an effective construction
in n.

Clearly, the procedure c 7→ 〈e′, N ′〉 is effective, so all we need to show is that this choice of e′ is
correct. For any code c of an element u ∈ U0 (that is, u = ᾱC×I(c)) and any n ∈ N, we know that
γ does terminate on input (c,M(n + 1)). Let vn = αM×O({e′}(n)) = αM×O(γ(c,M(n + 1))). By
construction of γ we know that Ψ(u, vn) < 2−M(n+1). Then, by (5.14) we know that d(F (u), vn) <
2−n−1. Thus vn → F (u). Moreover, vn is a fast Cauchy sequence, for if k1, k2 ≥ n, then

d(vk1 , vk2) ≤ d(F (u), vk1) + d(F (u), vk2) < 2−k1−1 + 2−k2−2 ≤ 2−n.

Therefore

ᾱM×O(ϕ(c)) = ᾱM×O(〈e′, N ′〉) = lim
n→∞

α({e′}(n)) = lim
n→∞

vn = F (u) = F (ᾱC×I(c)),

120

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

so that ϕ is indeed a tracking function for F . We conclude that F �U0 is tracking computable.

5.4 Discussion

In this chapter we combined the two ideas of Chapters 3 and 4 into a more expressive GPAC
with both the differential model and the continuous limit module (which we still call LGPAC). In
order to ensure that the GPAC-generable functions be continuous, we had to make a slight technical
change from the X -GPAC presented in Chapter 3. In particular, we had to consider a version of
the differential operator with domain consisting of continuously differentiable functions. In this way,
well-posedness is restored as the necessary set of criteria for the GPAC semantics. One could adapt
the definition of X -GPAC from Chapter 3 to be consistent with the version in this chapter, but since
the equational specification stays unchanged, the characterization would be the same as obtained in
Theorem 17 (in terms of solutions to systems of PDAEs).

The main goal of this chapter was to connect our model with the notion of tracking computability,
a paradigm of digital computation on the reals. We can state our original plan in terms of a conjecture
as follows.

Conjecture A function is LGPAC-generable if and only if it is tracking computable.

Unfortunately, we were only able to prove one direction of this equivalence, namely that LGPAC-
generable functions are tracking computable. Moreover, we had to introduce an extra assumption
which we called effective local reversibility. This assumption allows us to use approximate fixed points
to obtain approximations of the exact fixed point. The question of whether this condition can be
relaxed remains an open problem. The main difficulty lies in finding an algorithm that produces
approximations to the function generated by a well-posed GPAC. We can argue that this difficulty
is a consequence of considering functions of more than one variable (and thus, essentially, dealing
with systems of PDEs); in the case of functions of one variable (and systems of ODEs), standard
results in analysis (e.g. the Picard-Lindelöf Theorem, [CL55]) allow us to consider iterative methods
to obtain such fixed points.

The other direction, i.e. proving that tracking computable functions are LGPAC-generable,
remains in the uncharted territory and a major open problem. We conjecture that this can be
established and provide some ideas and suggestions for a possible approach in the next chapter.

121

Chapter 6

Conclusion and further work

In this thesis we studied a model of analog computation which combines the Shannon GPAC with
the analog networks of Tucker and Zucker. The main difference from the models originally proposed
by Shannon, Tucker and Zucker is that we consider streams carrying values on a general space
X . While there have been many attempts to generalize the Shannon GPAC to functions of more
than one variable (notably Rubel’s EAC [Rub93] and Bournez, Graça and Pouly’s multidimensional
GPAC [Pou15, BGP16]), the idea of changing the channel type is, to the best of our knowledge,
novel with respect to the existing literature.

We have presented two different ways to increase the expressive power of the Shannon GPAC,
by including a differential module (Chapter 3), a limit module (Chapter 4) or both (Chapter 5). We
can represent these extensions as in Figure 6.1. In this chapter we shall address some open problems
that are left to future research.

Shannon
GPAC
[Sha41]

Multityped
X -GPAC
(Ch. 3)

X -GPAC
with ∂x
(Ch. 3)

X -GPAC
with lim

(LGPAC, Ch. 4)

X -GPAC
with ∂x
with lim

(LGPAC, Ch. 5)

Figure 6.1: Different GPAC models; arrows indicate increase of expressive power.

6.1 Composition of functions

One can wonder if the two extensions presented in this thesis are comparable; say, could we
derive the differential module from the limit module or vice versa? We now briefly address this

122

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

question. First of all, we can easily argue that the limit module cannot be derived from the other
modules. The reason is that, as a consequence of Theorem 17, every X -GPAC-generable function
must satisfy a system of partial differential algebraic functions, and thus present some smoothness;
in particular, X -GPAC-generable functions are at least continuously differentiable. On the other
hand, the limit module allows us to obtain non-differentiable functions. The most basic example is
the absolute value function x 7→ |x|. To see that the absolute value is LGPAC-generable, we first
see that max(x, 0) can be expressed as a limit,

lim
t→∞

x
tanh(tx) + 1

2
=

{
x if x ≥ 0
0 if x ≤ 0

= max(x, 0).

Since tanh is LGPAC-generable (in particular, it is differentially algebraic and thus Shannon
GPAC-generable), we get that max(x, 0) can be otained using a continuous limit module (after
finding a suitable rate of convergence T). Finally, the absolute value can simply be obtained as
|x| = max(x,−x) = 2 max(x, 0)− x.

As an intermediate step in the above reasoning, we have argued that max(x, 0) is LGPAC-
generable. We can go one step further and consider a composition with a general function u ∈ C(R),
in order to conclude that u 7→ max(u, 0) is an LGPAC-generable operation. Finally, if u1, u2 ∈ C(R)
are LGPAC-generable, then so is max(u1, u2), thanks to the relation max(u1, u2) = max(u1−u2, 0)+
u2. Thus we get that max : X 2 → X is another example of an LGPAC-generable operation which is
not differentiable.

Let us now discuss the reverse direction, i.e. whether the differential module can be derived in
the LGPAC model. Intuitively, we expect it to be so, since derivatives can be expressed as limits;
in fact, the derivate is defined as the limit

du

dx
= lim
h→0

u(x+ h)− u(x)

h
.

There are two obstacles in order to finish this line of thought. First, one has to convert lim
h→0

into

a limit of the form lim
t→∞

; this may be possible via a change of variables h 7→ t. However one may

need to make sure to capture both directional limits h → 0− and h → 0+, otherwise one may get
left and right derivatives instead. Second, one has to think about the term u(x + h) appearing on
the definition of derivative, and whether it can be obtained from the basic modules; in other words,
is the operation (t, u) 7→ u(t+ ·) LGPAC-generable? It may be necessary to introduce some type of
composition module into this framework, and so we leave this task to further work.

6.2 Boundary value problems and eigenvalue problems

At the end of Chapter 3, we briefly discussed the possibility of considering general Sobolev spaces
such as X = Cp(Ω) or X = Hp(Ω) in the definition of the X -GPAC. We also motivated this idea by
affirming that it could allow us to make interesting connections with the field of partial differential
equations, where such spaces are ubiquitous. We now briefly expand on this point, by looking at
other types of problems arising in the study of PDEs, and seeing how they could be applied to the
GPAC model.

We begin with boundary value problems. In these problems, we are looking for a function u
satisfying some behaviour in a domain Ω, and with prescribed boundary data on ∂Ω. In this thesis,
we have focused on time evolution problems (Definition 2.1.3) and therefore a possible approach
consists in expressing boundary value problems in that framework.

123

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

Example 6.2.1 (Poisson equation with boundary conditions). A typical boundary value
problem is given by the Poisson equation. Let Ω ⊆ Rn be a bounded domain with a suitably smooth
boundary, say Ω = [0, 1]n. Then we may wish to study the following problem: given functions f, g
defined on Ω and ∂Ω, find u ∈ C2(Ω) such that{

∆u = f in Ω;
u = g on ∂Ω;

(6.1)

where ∆ = ∂2
x1

+ . . .+ ∂2
xn

denotes the Laplace operator.
We do not wish to provide a rigorous treatment of this equation, which is done extensively in

standard textbooks such as [Eva98, Fol95]. In order to express solutions to this equation in the GPAC
framework, we recall that the Poisson equation is used to describe a variety of physical phenomena;
in particular, it appears in the study of heat conduction in describing steady-state solutions. In
other words, a solution u to (6.1) can be obtained from a solution to the (non-homogeneous) heat
equation ∂tv = ∆v − f in T× Ω;

v = g on T× ∂Ω;
v = 0 at t = 0,

(6.2)

by taking u = lim
t→∞

v. Since (6.2) describes a time evolution problem, it can in princible be tractable

by the techniques presented in this thesis (see in particular Example 3.6.9 where we defined an X -
GPAC for the heat equation). Since in this case we are considering n spatial dimensions, we would
have to adapt our X -GPAC construction and consider n differential modules, computing ∂x1

, . . . , ∂xn
.

In any case, we can sketch a program to treat boundary value problems in our framework as follows:

• represent the solution of the boundary value problem as the steady-state of a time evolution
problem;

• represent the solution of the time evolution problem as the specification of an X -GPAC;

• obtain the solution of the boundary value problem by using a continuous limit module.

Example 6.2.2 (Shooting method). Another possible approach for reducing a boundary value
problem to an initial value problem, called the shooting method , is given as follows. Let Ω = [0, 1]
and consider the problem of finding u ∈ C2(Ω) such that

u′′(t) = f(t, u, u′), u(0) = u0, u(1) = u1. (6.3)

The idea is to instead consider the initial value problem (depending on a parameter x)

u′′(t) = f(t, u, u′), u(0) = u0, u′(0) = x, (6.4)

and find a suitable x such that u(1) = u1. We can use a GPAC to generate solutions to (6.4). We
also need to be able to compute the solution at the final time. Assuming u is continuous we get
u(1) = limt→1− u(t) and thus this can be achieved with a limit module. We can enforce the final
condition with a feedback loop, repeating the technique from Chapter 3. Hence this approach may
also be used to obtain solutions to one-dimensional boundary value problems.

Finally, we can look at eigenvalue problems; for example, suppose we have a linear operator
L : X ⇀ X . We wish to find values λ ∈ R such that there exists a non-zero u ∈ X with Lu = λu. A
typical example in PDEs concerns the study of the eigenvalues of the Laplacian, say in a bounded
domain Ω,

124

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

X -GPAC

C([0,∞),X)

LGPAC

X

limits

initial constants

Figure 6.2: Recursive definition of a hierarchy of GPAC-generable functions.

{
∆u = λu in Ω;
u = 0 on ∂Ω.

In order to reason about eigenvalue problems, one can first consider them as boundary value
problems or initial value problems, and then apply the abovementioned techniques. To deal with the
parameter λ one can simply include it in the network as an additional channel. A technical obstacle
concerns well-posedness, since solutions need not be unique; there may be multiple eigenvalues, and
for each eigenvalue λ the eigenfunctions form a space of dimension at least one (and thus they are
infinite). If the eigenvalues form a discrete set we can in principle narrow the search in a small
compact neighborhood in order to have a unique eigenvalue. To deal with the eigenfunctions we can
try to enforce, say, an extra condition on the norm of the solution (assuming X is a normed space).
Of course, this would raise another question on how to compute norms with a GPAC. We leave this
treatment to future work.

6.3 A hierarchy of LGPAC-generable functions

In Chapter 4 we introduced limit modules and arrived at a model which we called LGPAC. As
we have seen, the limit module is an operation of type C(T,X) → X whose output is of ‘one arity
less’ than the input. This can be seen as the reverse of the integrator module, whose initial constant
g ∈ X is of ‘one arity less’ than the output in C(T,X). This suggests one possible way of defining a
hierarchy of ‘computable functions’ on X , which we sketch as follows (see also Figure 6.2):

1. assume X = C(R) and take the subset X0 ⊆ X of Shannon GPAC-generable functions (ignore
momentarily the fact that C(R) = C(R,R) is not the same as the class C1(T,R) appearing
in the Shannon GPAC of Chapter 3); in this way, X0 corresponds to the class of differentially
algebraic real functions as proven by Shannon and others;

2. using X0 as a class of ‘valid initial constants’ for integration in an X -GPAC, define a class of
X -GPAC-generable functions in C([0,∞),X);

3. using continuous limit modules (that is, the LGPAC framework), define a subclass X1 ⊆ X of
valid limits of the X -GPAC-generable functions from the previous step; observe that this new
class contains the gamma and Riemann zeta function, so X1 is strictly larger than X0;

4. the procedure can be iterated to get a hierarchy X0 ⊆ X1 ⊆ X2 ⊆ . . . ⊆ X of ‘computable
functions’ on X .

We leave as an open problem the task of defining this hierarchy precisely and studying its
properties. For example, deciding whether the hierarchy is closed under limits (we conjecture it is);

whether it collapses at some level n; and whether the union
⋃
n∈N
Xn has a simple characterization.

125

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

We would also hope that the union be different from X , in order to have a non-trivial model of
computation.

6.4 Equivalence with tracking computability

At the end of Chapter 5 we formulated the following conjecture relating LGPAC-generability
and tracking computability

Conjecture A function is LGPAC-generable if and only if it is tracking computable.

There is a large volume of research and literature dedicated to the task of defining a continuous
counterpart to the Church-Turing thesis, and an important step towards that goal consists in estab-
lishing equivalence results between various models of computation in continuous spaces. Looking
at the above conjecture from that point of view, we consider this to be the most relevant open
problem among those presented in this thesis. Some efforts were made in Chapter 5, specifically in
the direction ‘LGPAC-generable implies tracking computable’, and we now provide some ideas and
suggestions for a possible approach in the reverse direction.

The main idea is to somehow simulate the behavior of a Turing machine (or any other discrete
model of computation) in an analog network. Indeed, there is some literature related to this task,
such as the papers [BCGH07] and [CMC00]. In the first paper, the authors provide a way to
represent: the state of a Turing machine computation (i.e. the machine state and the tape contents)
as a real number; the transition function as a continuous function of type R→ R; and the discrete
evolution of a Turing machine as the continuous evolution of a dynamical system. In the second
paper, the authors show that a class of functions (which consists of GPAC-generable functions
augmented with the functions θk from (6.5)) is closed under the same function constructs used to
define primitive recursive functions. This class of functions consists of GPAC-generable functions
augmented with the functions θk given by

θk(x) = xk for x ≥ 0; θk(x) = 0 for x ≤ 0, (6.5)

which play a fundamental role in [CMC00] as functions which “...check inequalities in a differentiable
way, since θk is (k − 1)-times differentiable...”

In that paper, these are used to define special ‘clock functions’, which in turn are used to prove
closure under iterations. With some care, their techniques may be adaptable to our framework.

We hope that in tackling these problems new insights can be acquired about the power of analog
networks, and in particular the GPAC, as a model of analog computability.

126

Bibliography

[Abe65] Niels Henrik Abel. Solution de quelques problèmes à l’aide d’intégrales définies. In
Ludwig Sylow and Sophus Lie, editors, Oeuvres complètes d’Abel, volume I, pages 11–27.
Johnson, New York, 1965. Reprint of the Nouvelle éd., Christiania, 1881.

[BCGH06] Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça, and Emmanuel Hainry. The
general purpose analog computer and computable analysis are two equivalent paradigms
of analog computation. In Jin-yi Cai, S. Barry Cooper, and Angsheng Li, editors, Theory
and Applications of Models of Computation, Third International Conference, TAMC
2006, Beijing, China, May 15-20, 2006, Proceedings, volume 3959 of Lecture Notes in
Computer Science, pages 631–643. Springer, 2006.

[BCGH07] Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça, and Emmanuel Hainry. Poly-
nomial differential equations compute all real computable functions on computable com-
pact intervals. Journal of Complexity, 23(3):317–335, 2007.

[BGP16] Olivier Bournez, Daniel Graça, and Amaury Pouly. On the functions generated by the
general purpose analog computer. submitted on 21 Jan 2016, arXiv:1602.00546, 2016.

[Bré11] Häım Brézis. Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Universitext. Springer-Verlag New York, 2011.

[Bus31] Vannevar Bush. The differential analyzer. a new machine for solving differential equa-
tions. Journal of the Franklin Institute, 212(4):447–488, 1931.

[Cau42] Augustin Cauchy. Mémoire sur l’emploi du calcul des limites dans l’intégration des
équations aux dérivées partielles. Comptes rendus hebdomadaires des séances, 15:25–58,
1842.

[CH53] R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 2. Interscience
Publishers, Inc., 1953.

[CL55] Earl A. Coddington and Norman Levinson. Theory of Ordinary Differential Equations.
McGraw-Hill, 1955.

[CMC00] Manuel Campagnolo, Cris Moore, and José Félix Costa. Iteration, inequalities, and
differentiability in analog computers. Journal of Complexity, 16(4):642–660, 2000.

[CMC02] Manuel Campagnolo, Cris Moore, and José Félix Costa. An analog characterization of
the Grzegorczyk hierarchy. Journal of Complexity, 18(4):977–1000, 2002.

[ES98] Yu V. Egorov and Mikhail A. Shubin. Foundations of the classical theory of partial
differential equations. Springer-Verlag, 1998.

127

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

[Eva98] Lawrence C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, Rhode Island, 1998.

[Fol95] Gerald B. Folland. Introduction to Partial Differential Equations. Princeton University
Press, 1995.

[GC03] Daniel Graça and José Félix Costa. Analog computers and recursive functions over the
reals. Journal of Complexity, 19(5):644–664, 2003.

[Gra04] Daniel Graça. Some recent developments on shannon’s general purpose analog computer.
Mathematical Logic Quarterly, 50(4–5):473–485, 2004.

[Grz55] A. Grzegorczyk. Computable functions. Fundamenta Mathematicae, 42:168–202, 1955.

[Grz57] A. Grzegorczyk. On the defintions of computable real continuous functions. Fundamenta
Mathematicae, 44:61–71, 1957.

[Had52] Jacques Hadamard. Lectures on Cauchy’s problem in linear partial differential equations.
Dover, 1952.

[Har50] Douglas R. Hartree. Calculating instruments and machines. Cambridge University Press,
1950.

[Höl86] Otto Hölder. Ueber die eigenschaft der gammafunction keiner algebraischen differential-
gleichung zu genügen. Mathematische Annalen, 28(1):1–13, 1886.

[Hol96] Per A. Holst. Svein Rosseland and the Oslo Analyzer. IEEE Annals of the History of
Computing, 18(4):16–26, 1996.

[Jam12] Nick D. James. Fixed Points in Analog Network Models. PhD thesis, McMaster Univer-
sity, 2012.

[Joh96] Magnus Johansson. Early analog computers in Sweden - with examples from Chalmers
University of Technology and the Swedish aerospace industry. IEEE Annals of the His-
tory of Computing, 18(4):27–33, 1996.

[JZ13] Nick D. James and Jeffery I. Zucker. A class of contracting stream operators. The
Computer Journal, 56:15–33, 2013.

[KL03] Ulrich Kohlenbach and Branimir Lambov. Bounds on iterations of asymptotically quasi-
nonexpansive mappings. BRICS Report Series, 10(51), 2003.

[KL10] Ulrich Kohlenbach and Laurentiu Leuştean. Asymptotically nonexpansive mappings
in uniformly convex hyperbolic spaces. Journal of the European Mathematical Society,
12(1):71–92, 2010.

[Kle55] Stephen Kleene. Arithmetical predicates and function quantifiers. Transactions of the
American Mathematical Society, 79:312–340, 1955.

[Ko91] Ker-I Ko. Complexity Theory of Real Functions. Birkäuser, 1991.

[Kow75] Sophie Kowalevski. Zur theorie der partiellen differentialgleichung. Journal für die reine
und angewandte Mathematik, 80:1–32, 1875.

128

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

[Lac55a] D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou
plusieurs variables réelles i. Comptes Rendus des Séances d l’Académie des Sciences,
Paris, 240:2478–2480, 1955.

[Lac55b] D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs
variables réelles ii. Comptes Rendus des Séances d l’Académie des Sciences, Paris,
241:13–14, 1955.

[Lac55c] D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs
variables réelles iii. Comptes Rendus des Séances d l’Académie des Sciences, Paris,
241:151–153, 1955.

[LR87] Leonard Lipshitz and Lee Rubel. A differentially algebraic replacement theorem. Pro-
ceedings of the American Mathematical Society, 99(2):367–372, 1987.

[MC04] Jerzy Mycka and José Félix Costa. Real recursive functions and their hierarchy. Journal
of Complexity, 20(6):835–857, 2004.

[Mil08] Jonathan W. Mills. The nature of the extended analog computer. Physica D Nonlinear
Phenomena, 237(9):1235–1256, 2008.

[Moo96] Cris Moore. Recursion theory on the reals and continuous-time computation. Theoretical
Computer Science, 162(1):23–44, 1996.

[OLBC10] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark. NIST
Handbook of Mathematical Functions. Cambridge University Press, 2010.

[Paz83] A. Pazy. Semi-groups of linear operators and applications to partial differential equations.
Number 44 in Applied Math. Sciences. Springer, New York, 1983.

[PE74] Marian Pour-El. Abstract computability and its relations to the general purpose analog
computer. Transactions of the American Mathematical Society, 199:1–28, 1974.

[PER79] Marian Pour-El and Ian Richards. A computable ordinary differential equation which
possesses no computable solution. Annals of Mathematical Logic, 17:61–90, 1979.

[PER89] Marian Pour-El and Ian Richards. Computability in Analysis and Physics. Springer-
Verlag, 1989.

[Pla20] Giovanni Antonio Amedeo Plana. Sur une nouvelle expression analytique des nombres
bernoulliens, propre à exprimer en termes finis la formule générale pour la sommation
des suites. Mem. Accad. Sci. Torino, 1(25):403–418, 1820.

[Pou15] Amaury Pouly. Continuous models of computation: from computability to complexity.
PhD thesis, École Polytechnique and Universidade do Algarve, 2015.

[Rau91] Jeffrey Rauch. Partial Differential Equations, volume 128 of Graduate Texts in Mathe-
matics. Springer-Verlag New York, 1991.

[RR06] Michael Renardy and Robert C. Rogers. An introduction to partial differential equations,
volume 13. Springer-Verlag New York, second edition, 2006.

[RS80] Michael Reed and Barry Simon. Methods of modern mathematical physics: Functional
analysis. Academic Press, Inc, 1980.

129

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

[Rub93] Lee A. Rubel. The extended analog computer. Advances in Applied Mathematics,
14(1):39–50, 1993.

[Rud76] Walter Rudin. Principles of Mathematical Analysis. International Series in Pure and
Applied Mathematics. McGraw-Hill, 3 edition, 1976.

[Rud91] Walter Rudin. Functional Analysis. International Series in Pure and Applied Mathe-
matics. McGraw-Hill, 2 edition, 1991.

[Sha41] Claude Shannon. Mathematical theory of the differential analyser. Journal Mathematical
Physics, 20:337–354, 1941.

[SHT99] Viggo Stoltenberg-Hansen and John Tucker. Concrete models of computation for topo-
logical algebras. Theoretical Computer Science, 219:347–378, 1999.

[Sma93] James S. Small. General-purpose electronic analog computing: 1945-1965. IEEE Annals
of the History of Computing, 15(2):8–18, 1993.

[TT80] William Thompson and Peter G. Tait. Treatise on Natural Philosophy, volume 1. Cam-
bridge University Press, 2nd edition, 1880. Part I.

[Tur36] Alan Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42:230–265, 1936.

[TZ00] John V. Tucker and Jeffery I. Zucker. Computable functions and semicomputable sets on
many sorted algebras. In Samson Abramsky, Dov Gabbay, and Tom Maibaum, editors,
Handbook of Logic for Computer Science, volume V of University Series in Mathematics,
pages 317–523. Oxford University Press, 2000.

[TZ04] John V. Tucker and Jeffery I. Zucker. Abstract versus concrete computation on metric
partial algebras. ACM Transactions on Computational Logic, 5:611–668, 2004.

[TZ05] John V. Tucker and Jeffery I. Zucker. Computable total functions, algebraic specifications
and dynamical systems. Journal of Algebraic and Logic Programming, 62:71–108, 2005.

[TZ07] John V. Tucker and Jeffery I. Zucker. Computability of analog networks. Theoretical
Computer Science, 371:115–146, 2007.

[TZ11] John V. Tucker and Jeffery I. Zucker. Continuity of operators on continuous and discrete
time streams. Theoretical Computer Science, 412:3378–3403, 2011.

[TZ14] John V. Tucker and Jeffery I. Zucker. Computability of operators on continuous and
discrete time streams. Computability, 3:9–44, 2014.

[Wei00] Klaus Weihrauch. Computable Analysis — An Introduction. Texts in Theoretical Com-
puter Science. Springer-Verlag Berlin Heidelberg, 2000.

130

Index

C([0, 1]), 6
C(Ω), 53
C(R), 11, 55, 102
C(T, C∞(R)), 12
C1(R), 106
C1(T,R), 43
C1(T,X), 55, 104
C∞([0, 1]), 11
C∞(Ω), 53
C∞(R), 11
Ck(Ω), 53
H∞(Ω), 54
Hk(Ω), 53
L2(Ω), 53
R, 102
S(R), 12
X , 5, 52

analog network, 7

composition
parallel, 47
serial, 47

computability structure, 102
computable element, 102
contractible channel, 79
contraction

inequality, 9, 21, 28, 32
map, 7

convergence, 88

effective local behaviour, 120
effective local reversibility, 120
enumeration, 102

partial, 102
equation

fixed point, 58
heat, 37, 70
normal form, 48, 61
partial differential algebraic, 65

feedback, 44
finite time solution, 7
fixed point, 7, 58

approximate, 116
Fourier

coefficients, 26
series, 26
transform, 26

function
absolutely integrable, 26
bounding, 14
cosine, 78
differentially algebraic, 51
entire, 23
gamma, 51, 93
GPAC-generable, 46, 60, 116
NFS-generable, 62
partial-valued, 5
PDAS-generable, 66
projection, 62
Riemann zeta, 98
sine, 78
square-integrable, 26
stream, 5
tracking, 107
tracking computable, 107
uniformly entire, 24

Gaussian wave, 32
GPAC

X -GPAC, 57
constant space, 44, 57
contraction-free, 79
induced operator, 44, 57
input space, 44, 57
mixed space, 44, 57
output space, 44, 57
quasi-well-posed, 58
reducible, 78
Shannon, 44

131

Ph.D. Thesis - Diogo Poças McMaster University- Mathematics and Statistics

specification, 46, 60, 116
well-posed, 46, 116

induced topology, 11

Jacobian, 66

linear time, 46

module
X -GPAC, 56
X -module, 72
adder, 43, 56, 72, 76
basic, 43, 56, 72
constant, 43, 56, 72
derived, 77
differential, 56
initial evaluator, 74
integral-matrix, 48
integrator, 43, 56
inverter, 74, 90
limit, 88
multiplier, 43, 56, 72, 74, 76
Shannon, 43
streamer, 75

modulus of convergence, 87, 91, 102

norm, 10

operator
bounded, 6
closed, 55
contracting, 80
derivative, 6
exponential, 8
extension, 6
induced, 44, 57
Laplacian, 17
unbounded, 6

point separability, 11
problem

time evolution, 7
pseudonorm, 10

refinement, 108

section, 7
sequence

Cauchy, 87

effective Cauchy, 88, 102
Fréchet Cauchy, 91

series
absolutely convergent, 18

shooting method, 124
space

Banach, 5
complete, 11
constant, 44, 57
domain, 52
Fréchet, 11
input, 44, 57
mixed, 44, 57
output, 44, 57
Schwarz, 12
separable, 102

stream
Cauchy, 87
effective Cauchy, 88
Fréchet Cauchy, 91
nilpotent, 17

system
normal form, 61
partial differential algebraic, 65
quasi-well-posed, 61, 65
solution, 62, 66
spring-mass-damper, 82

Theorem
Banach fixed point, 7
Cauchy-Kowalevski, 20
computability

gamma function, 97
Riemann zeta function, 99

fixed point
convergence, 22–25, 29, 33, 37, 38
existence, 17, 29, 37
existence and uniqueness, 9, 33, 38

Hahn-Banach, 6
simulation, 51, 70, 78, 79
Sobolev embedding, 54
tracking computability, 115, 120

time slowdown, 90
time speedup, 90

uncurrying, 52

valid code, 102

132

