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1. Introduction

In a recent paper [11], the authors proved both a rough analogue of the Fefferman-Phong
regularity theorem for smooth subelliptic self-adjoint operators, and a rough analogue of a
special diagonal case of Hörmander’s theorem for sums of squares of smooth vector fields.
For convenience, both of these rough theorems were stated using the classical notion of
weak solution defined in terms of the Sobolev space

H1,2 (Ω) =
{
f ∈ L2 (Ω) : ∇f ∈ L2 (Ω)

}
, Ω open ⊂ Rn,

where ∇f is here taken in the weak or distribution sense. To illustrate briefly in the
simplest of cases, a function u ∈ H1,2 (Ω) was said to be a weak solution of

Lu = f in Ω, (1)

where L = ∇′Q (x)∇ and f ∈ L2 (Ω), provided

−
∫

Ω

∇v (x)
′
Q (x)∇u (x) dx =

∫

Ω

v (x) f (x) dx (2)

for all v ∈ Lipc (Ω), the space of Lipschitz functions with compact closure in Ω. Under
additional hypotheses, it was concluded in [11] that after redefinition on a set of measure
zero, the weak solution u was Hölder continuous in Ω of some positive order. Using this
classical notion of weak solution, applications were then given in [7], [8], [9] and [11] to
the Monge-Ampére equation via the partial Legendre transform.

In this paper we give the widest possible definition of weak solution that still results
in the Hölder regularity conclusion in [11] for these rough theorems. Due to the technical
nature of the hypotheses and conclusions, we defer the rigorous statements of the theorems
(see Theorems 16, 17 and 18 below) until we have first developed the requisite theory of
degenerate Sobolev spaces. We begin with some heuristics. We would like to define a
larger Sobolev space than H1,2 (Ω) for which the integrals in (2) make sense (exploiting
the fact that Q (x) may degenerate), but for which the calculus necessary for the proof of
regularity continues to hold. One important feature in the classical case is that Lipschitz,
or even smooth, functions are dense in H1,2 (Ω), and this density permits the transfer of
the required calculus to H1,2 (Ω). There are thus two natural approaches in the literature
to defining a notion of degenerate Sobolev space. One is denoted H1,2

X where X is a
collection of vector fields, and uses weak derivatives defined via integration by parts, in
which a calculus is problematic, and the other is denoted W 1,2

Q where Q is a general
quadratic form, and uses strong derivatives defined by taking strong limits of Lipschitz
functions, which inherits a calculus by continuity. Before recalling precise definitions, we
discuss in detail the relative merits of these two approaches.
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Note that the definition of W and H spaces given here and in [11] is reversed from
that given elsewhere in the literature, in particular in [3] and [4]. The degenerate Sobolev
space H1,2

X defined using weak derivatives has at least two advantages over the degenerate

Sobolev space W 1,2
Q defined using strong derivatives:

• membership in H1,2
X is easily decided using the definition of weak derivative, while

membership in W 1,2
Q is difficult to decide using Cauchy sequences,

• the natural bounded map from H1,2
X to L2 is one-to-one while the corresponding map

from W 1,2
Q to L2 may not be - i.e. derivatives in W 1,2

Q are not uniquely determined

by the L2 component, whereas they are in H1,2
X ,

while the space W 1,2
Q has at least one crucial advantage over H1,2

X :

• there is a calculus available for the elements in W 1,2
Q that is inherited by continuity

from the calculus for the dense subspace of Lipschitz functions, while such a calculus
is generally problematic in H1,2

X .

As a result of this dichotomy between H and W spaces, it becomes an important
question to decide when these two spaces, one defined in terms of weak derivatives and
the other in terms of strong derivatives, actually coincide. As we will see, these spaces
always coincide in dimension n = 1 whenever they are both defined, and we suspect they
will coincide in higher dimensions as well. However, to date it is only known that they
coincide in higher dimensions for a collection of Lipschitz vector fields ([3] and [4]). We
will give two generalizations of this result below, and will also discuss the Lp analogues of
these spaces, showing in particular that they may differ when p > 2. Finally, in case the
quadratic forms Q and X are comparable, we show below that W 1,2

Q is naturally embedded

in H1,2
X (provided X is such that H1,2

X can be defined), and as a consequence gradients

are uniquely determined in W 1,2
Q .

Here is an outline of the paper. We first define the weak degenerate Sobolev space H1,2
X

associated to a collection X = {Xj}mj=1 of H1,2
div (Ω) vector fields, and show that H1,2

X is a

Hilbert space. We then define the strong degenerate Sobolev space W 1,2
Q associated to a

locally integrable quadratic form Q (x, ξ), and give the definition of a degenerate WQ-weak
solution to a subelliptic equation. In doing this we define a form-weighted Hilbert space
L2 (Ω,Q) in which live the (not necessarily unique) gradients of functions in W 1,2

Q . We
then give analogues for WQ-weak solutions of the subellipticity theorems in [11]. These
analogues rely crucially on the definition of strong derivatives in W 1,2

Q spaces, as well as

on the identification of gradients ∇w as belonging to L2 (Ω,Q) for w ∈W 1,2
Q .

As the strong spaces W 1,2
X are naturally imbedded in the weak spaces H1,2

X (here X
denotes both a collection of vector fields and its associated quadratic form), and because of
the dichotomy between H and W spaces discussed above, the question arises of when the
weak and strong spaces H1,2

X and W 1,2
X coincide. In particular these spaces are shown to

always coincide in dimension n = 1. In higher dimensions, it is known that H1,2
X = W 1,2

X
when X is a collection of Lipschitz vector fields. We give two generalizations of this:
when X ∈ H1,2σ′ (Ω) and a Sobolev inequality holds with exponent σ ≥ 1; and when
X ∈ H1,2 (Ω) is comparably Lipschitz off its common zero set Z, and Lipschitz at Z.

Finally, we briefly consider H1,p
X and W 1,p

X for X ∈ H1,p′

div (Ω) and 1 ≤ p < ∞, in part

because they are needed when taking products of elements in H1,2
X or W 1,2

X . Again, it is
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known that H1,p
X = W 1,p

X when the vector fields X are Lipschitz. However, we show that

for p > 2 equality may fail, and in fact when n = 1, we show that H1,p
X = W 1,p

X for all

X ∈ H1,p′

div (Ω) if and only if 1 ≤ p ≤ 2.

2. Weak degenerate Sobolev spaces

Define H1,2
div (Ω) to be the linear space consisting of those Rn-valued functions v such that

v ∈ L2 (Ω) ,

div v = ∇ · v ∈ L2 (Ω) ,

where the divergence above is taken in the sense of distributions. With the inner product

〈v,w〉H1,2
div(Ω) =

∫

Ω

v (x) ·w (x) dx+

∫

Ω

(∇ · v) (x) (∇ ·w) (x) dx, v,w ∈ H1,2
div (Ω) ,

a standard proof shows that H1,2
div (Ω) is complete with respect to the corresponding norm,

and hence H1,2
div (Ω) is a Hilbert space. We have the following counterpart of the calculus

in H1,2 (Ω) with C1
c (Ω) denoting the the space of continuously differentiable functions

with compact support in Ω:

Lemma 1. Suppose v ∈ H1,2
div (Ω) and let {Jε}ε>0 be a smooth Euclidean approximate

identity.

1. Then Jε ∗ v→ v locally in H1,2
div (Ω) as ε→ 0.

2. If ϕ ∈ C1
c (Ω), then ϕv ∈ H1,2

div (Ω) and ∇ · (ϕv) = ϕ∇ · v +∇ϕ · v.

Proof : We follow the analogous proofs for H1,2 (Ω) given in e.g. chapter 7 of [5]. If
K is a compact subset of Ω, then both

Jε ∗ v→ v and ∇ · (Jε ∗ v) = Jε ∗ (∇ · v)→ ∇ · v,

in L2 (K) as ε→ 0+, and this proves the first assertion. The second assertion is a standard
result in distribution theory if ϕ ∈ C∞c (Ω), and to prove the case ϕ ∈ C1

c (Ω), we take a
sequence {ϕk}∞k=1 of smooth functions with compact support converging to ϕ in C1 (Ω),
and let k →∞ in the L2 (Ω) identity ∇ · (ϕkv) = ϕk∇ · v +∇ϕk · v.

Let X = {Xj}mj=1 be a collection of H1,2
div (Ω) vector fields on Ω ⊂ Rn, i.e. Xj (x) =

vj (x) · ∇ where vj ∈ H1,2
div (Ω) for 1 ≤ j ≤ m (in particular this includes Lipschitz vector

fields when Ω is bounded). In analogy with the definition of weak partial derivative
∂
∂x`

= e` ·∇, we say that a locally square integrable function f is the weak derivative Xw

of a locally square integrable function w, where X = v (x) · ∇ and v is in H1,2
div (Ω), if

∫

Ω

fϕ = −
∫

Ω

wX ′ϕ = −
∫

Ω

w∇ · (vϕ) = −
∫

Ω

w {ϕ (∇ · v) + v · ∇ϕ} (3)

for all ϕ ∈ C1
c (Ω). Note that the last integral converges absolutely for v ∈ H1,2

div (Ω).
Clearly the weak derivative Xw is unique if it exists, and of course Xw exists in the weak
sense, and is the L2

loc (Ω) function v (x) · ∇w (x), if w ∈ Liploc (Ω), the space of locally
Lipschitz continuous functions on Ω. Let Xw = (X1w, ...,Xmw).
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We define the degenerate Sobolev space H1,2
X (Ω) as the inner product space consisting

of all w ∈ L2 (Ω) whose weak derivatives Xjw are also in L2 (Ω) with inner product given
by

〈w, v〉X =

∫

Ω

wvdx+

∫

Ω

Xw · X vdx. (4)

Note that
‖w‖2H1,2

X (Ω) = ‖w‖2L2(Ω) + ‖Xw‖2L2(Ω) .

Theorem 2. If X is a collection of H1,2
div (Ω) vector fields on Ω, then H1,2

X (Ω) is a Hilbert
space with the inner product 〈·, ·〉X given in (4).

Proof : We prove completeness in the same way as for the classical space H1,2 (Ω). If
{wk}∞k=1 is Cauchy in H1,2

X (Ω), then {wk}∞k=1 and {Xwk}∞k=1 are Cauchy in L2 (Ω) and
⊕mj=1L

2 (Ω) respectively. Thus there are w, f1, ..., fm ∈ L2 (Ω) such that wk → w and

Xjwk → fj in L2 (Ω) for 1 ≤ j ≤ m. We must now show that fj = Xjw in the weak
sense. Suppose Xj = vj (x) · ∇. Letting k →∞ in the equation

∫

Ω

(Xjwk)ϕdx = −
∫

Ω

wk∇ · (vjϕ) dx, ϕ ∈ C1
c (Ω) ,

yields
∫

Ω
fjϕdx = −

∫
Ω
w∇ · (vjϕ) dx for all ϕ ∈ C1

c (Ω) as required. Thus w ∈ H1,2
X (Ω)

and we now compute that

‖w − wk‖2H1,2
X (Ω) = lim

`→∞
‖w` − wk‖2H1,2

X (Ω) → 0 as k →∞,

since {wk}∞k=1 is Cauchy in H1,2
X (Ω). This proves that wk → w in H1,2

X (Ω).

Remark 3. We can of course define the analogous degenerate Sobolev space of Lp func-

tions with weak derivatives in Lp. Given 1 ≤ p < ∞ and X = v (x) · ∇ in H1,p′

div (Ω),

i.e. v,div v ∈ Lp
′

loc (Ω) in the sense of distributions, we say that f ∈ Lploc (Ω) is the weak
derivative Xw of w ∈ Lploc (Ω) if (3) holds for all ϕ ∈ C1

c (Ω). Note that all of the integrals

in (3) are absolutely convergent for f, w ∈ Lploc (Ω) and v ∈ H1,p′

div (Ω). Given a collection

X = {Xj}mj=1 of H1,p′

div (Ω) vector fields on Ω ⊂ Rn, we define the degenerate Sobolev

space H1,p
X (Ω) to be the linear space consisting of all w ∈ Lp (Ω) whose weak derivatives

Xjw are in Lp (Ω). The space H1,p
X (Ω) becomes a Banach space when equipped with the

norm ‖w‖H1,p
X (Ω) =

{
‖w‖pLp(Ω) + ‖Xw‖pLp(Ω)

} 1
p

.

As mentioned above, the calculus is in general problematic for the degenerate Sobolev
space H1,2

X (Ω). Particular difficulties include the product rule and composition with a
function in C1 (R). Nevertheless, as we now show, multiplication by a compactly sup-
ported continuously differentiable function is well behaved on H1,2

X (Ω) and leads to the

existence of a large supply of compactly supported functions in H1,2
X (Ω). If w ∈ H1,2

X (Ω)

and ψ ∈ C1
c (Ω), then ψw ∈

(
H1,2
X

)
c

(Ω) since X (ψw) = ψXw + (Xψ)w in the weak

sense. Indeed, writing X = v · ∇ with v ∈ H1,2
div (Ω) and ϕ ∈ C1

c (Ω), we have the identity

X ′ (ϕψ) = ∇ · (ψϕv) = ψ∇ · (ϕv) + (ϕv) · ∇ψ = ψX ′ϕ+ ϕXψ,
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in L2 (Ω) where gradients are taken in the distribution sense. Since C∞c (Ω) is dense in
L2 (Ω), we can multiply both sides of the identity by w ∈ L2 (Ω) and integrate over Ω
to obtain equality. Thus we obtain with f = ψXw + (Xψ)w, and using that Xw is the
weak derivative of w,

∫

Ω

fϕ =

∫

Ω

{ψXw + (Xψ)w}ϕ

= −
∫

Ω

wX ′ (ϕψ) +

∫

Ω

ϕwXψ

= −
∫

Ω

w {ψX ′ϕ+ ϕXψ}+

∫

Ω

ϕwXψ

= −
∫

Ω

(ψw)X ′ϕ.

for all ϕ ∈ C1
c (Ω).

We emphasize that without a suitable calculus for our degenerate Sobolev space
H1,2
X (Ω), we are unable to prove a regularity theorem for weak solutions based on H1,2

X (Ω).
This will be rectified in the next section by introducing the degenerate Sobolev spaces
with strong derivatives, and whose definition is given most naturally in the more general
setting of quadratic forms rather than vector fields.

3. Strong degenerate Sobolev spaces and W -weak solutions

Given a locally integrable, nonnegative semidefinite, symmetric quadratic form Q (x, ξ) =
ξ′Q (x) ξ on Ω ⊂ Rn, i.e.

∫

L

‖Q (x)‖ dx <∞ for all compact L ⊂ Ω,

where ‖Q‖ is the operator norm on n × n matrices (all norms on a finite dimensional
space are equivalent), we can define the form-weighted vector-valued L2 space L2 (Ω,Q)
as consisting of all measurable Rn-valued functions f (x) = (f1 (x) , ..., fn (x)), x ∈ Ω,
satisfying

‖f‖L2(Ω,Q) =

{∫

Ω

Q (x, f (x)) dx

} 1
2

<∞. (5)

If we identify measurable Rn-valued functions f and g that satisfy ‖f − g‖L2(Ω,Q) = 0,

then (5) defines a norm on the resulting vector space of equivalence classes of measurable
Rn-valued functions. Of course ‖f − g‖L2(Ω,Q) = 0 if f = g off a set of measure zero,

but a characterization of when the norm vanishes requires (10) below, a representation of
the norm as a sum of L2 (λj) norms of components with weights λj (x) the eigenvalues of
Q (x). We now suppose as usual that L2 (Ω,Q) consists of these equivalence classes. Note
that the representative functions in the equivalence classes are Rn-valued everywhere, but
we can and will consider below functions defined only almost everywhere, e.g. gradients
of Lipschitz functions.

Theorem 4. The linear space L2 (Ω,Q) is complete with respect to the norm (5), and is
in fact a Hilbert space with respect to the associated inner product

〈f ,g〉L2(Ω,Q) =

∫

Ω

f (x)
′
Q (x) g (x) dx. (6)
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Before beginning the proof it will be helpful to express the norm (5) in terms of
weighted L2 norms of scalar functions. Let {λj (x)}nj=1 be an enumeration of the eigen-

values of Q (x) arranged in decreasing order,

λj+1 (x) ≤ λj (x) for 1 ≤ j < n, (7)

and let {vj (x)}nj=1 be corresponding orthogonal unit eigenvectors.

Remark 5. The functions λj (x) are uniquely determined by (7) and are Lebesgue mea-
surable since Q (x) is, while the vector functions vj (x) may be chosen to be Lebesgue
measurable. To see these assertions, define lexicographic order � on Rn by declaring

ξ = (ξ1, ..., ξn) � η = (η1, ..., ηn)

if ξk > ηk where k is the least index j such that ξj 6= ηj . Note that every compact subset
E of Rn has a unique element that is maximal with respect to lexicographic order. Indeed,
if Lj (α) is the closed half-plane

{
ξ ∈ Rn : ξj ≥ α

}
, then the unique maximal element ξ

in E satisfies

ξ1 = sup {η1 : E ∩ L1 (η1) 6= φ} , (8)

ξ2 = sup {η2 : E ∩ L1 (ξ1) ∩ L2 (η2) 6= φ} ,
...

where the suprema are attained by the finite intersection property of compact sets.

Now λ1 (x) = sup
{
ξ′Q (x) ξ : ξ ∈ Sn−1

}
is a measurable function of x since we may take

the supremum over a countable dense subset of the sphere Sn−1. We then choose v1 (x)
to be maximal with respect to lexicographic order in the compact set

E1 (x) =
{
ξ ∈ Sn−1 : ξ′Q (x) ξ = λ1 (x)

}
.

This is a measurable function of x since in defining the components of the maximal element
v1 (x) in (8), we may restrict the suprema to be taken over rational numbers. With λj (x)
and vj (x) defined and measurable for 1 ≤ j ≤ k < n, we have by the variational formulas
for eigenvalues (easily obtained by diagonalizing matrices)

λk+1 (x) = sup
{
ξ′Q (x) ξ : ξ ∈ Sn−1, ξ · vj (x) = 0, 1 ≤ j ≤ k

}
,

and we choose vk+1 (x) to be maximal with respect to lexicographic order in the compact
set

Ek+1 (x) =
{
ξ ∈ Sn−1 : ξ′Q (x) ξ = λk+1 (x) , ξ · vj (x) = 0, 1 ≤ j ≤ k

}
.

The measurability of λk+1 and vk+1 follows as above. Note also that λk ∈ L1
loc (Ω).

Then for any f ∈ L2 (Ω,Q) (which we now view as a representative of an equivalence
class) we let fj (x) be the components of f (x) with respect to the basis of eigenvectors
{vj (x)}nj=1, i.e. f (x) =

∑n
j=1 fj (x) vj (x), x ∈ Ω. The key property for us is

Q (x, f (x)) = f (x)
′
Q (x) f (x) =




n∑

j=1

fjvj


 ·




n∑

j=1

fjQvj


 =

n∑

j=1

|fj (x)|2 λj (x) , (9)
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for x ∈ Ω. Let ‖fj‖L2(λj)
=
{∫

Ω
|fj (x)|2 λj (x) dx

} 1
2

denote the norm of fj in the L2

space on Ω with weight λj so that (9) yields

‖f‖2L2(Ω,Q) =
n∑

j=1

‖fj‖2L2(λj)
. (10)

From (10) we have the following characterization of null elements in L2 (Ω,Q).

Remark 6. Two functions f =
∑n
j=1 fjvj and g =

∑n
j=1 gjvj are in the same equiva-

lence class in L2 (Ω,Q) if and only if fj (x) = gj (x) for λj-a.e. x in Ω, 1 ≤ j ≤ n.

We can now mimic the standard proof of completeness of scalar-valued L2.
Proof of Theorem 4: First we show completeness of L2 (Ω,Q). Let

{
fk
}∞
k=1

be a

Cauchy sequence in L2 (Ω,Q), i.e.
∥∥fk − f `

∥∥
L2(Ω,Q)

→ 0 as k, ` → ∞. Choose a rapidly

converging subsequence, which we continue to label
{
fk
}∞
k=1

; i.e.
∑∞
k=1

∥∥fk+1 − fk
∥∥
L2(Ω,Q)

<

∞. Let fk =
∑n
j=1 f

k
j vj for k ≥ 1. Fix j for the moment and define

gj (x) =
∣∣f1
j (x)

∣∣+

∞∑

k=1

∣∣fk+1
j (x)− fkj (x)

∣∣ , x ∈ Ω,

a Lebesgue measurable function from Ω to [0,∞]. From the monotone convergence theo-
rem and Minkowski’s inequality we get

‖gj‖L2(λj)
= lim

`→∞

∥∥∥∥∥
∣∣f1
j

∣∣+
∑̀

k=1

∣∣fk+1
j − fkj

∣∣
∥∥∥∥∥
L2(λj)

≤ lim
`→∞

inf

{
∥∥f1
j

∥∥
L2(λj)

+
∑̀

k=1

∥∥fk+1
j − fkj

∥∥
L2(λj)

}
,

which equals

∥∥f1
j

∥∥
L2(λj)

+
∞∑

k=1

∥∥fk+1
j − fkj

∥∥
L2(λj)

≤
∥∥f1
∥∥
L2(Ω,Q)

+
∞∑

k=1

∥∥fk+1 − fk
∥∥
L2(Ω,Q)

<∞,

where the final inequality follows from (10). This shows by Chebyshev’s inequality that
gj (x) is finite for λj-almost every x ∈ Ω.

Thus the series

f1
j (x) +

∞∑

k=1

(
fk+1
j (x)− fkj (x)

)
(11)

is absolutely convergent for λj-almost every x ∈ Ω. Now use (11) to define

fj (x) =

{
f1
j (x) +

∑∞
k=1

(
fk+1
j (x)− fkj (x)

)
if (11) converges

0 otherwise
.
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Then fj is finite and Lebesgue measurable in Ω, and the set where the series for fj diverges
has λj-measure zero. Thus we have from (10),

∥∥fj − f `j
∥∥
L2(λj)

=

∥∥∥∥∥
∞∑

k=`

(
fk+1
j − fkj

)
∥∥∥∥∥
L2(λj)

(12)

≤
∞∑

k=`

∥∥fk+1
j − fkj

∥∥
L2(λj)

≤
∞∑

k=`

∥∥fk+1 − fk
∥∥
L2(Ω,Q)

→ 0 as `→∞,

and so fj = f `j +
(
fj − f `j

)
∈ L2 (λj) and f `j → fj in L2 (λj).

Now define f (x) =
∑n
j=1 fj (x) vj (x) for x ∈ Ω. We obtain from (10) and (12) that

∥∥f − f `
∥∥2

L2(Ω,Q)
=

∥∥∥∥∥∥

n∑

j=1

(
fj − f `j

)
vj

∥∥∥∥∥∥

2

L2(Ω,Q)

=

n∑

j=1

∥∥fj − f `j
∥∥2

L2(λj)
→ 0 as `→∞.

This shows both that f = f ` +
(
f − f `

)
∈ L2 (Ω,Q) and f ` → f in L2 (Ω,Q).

Standard arguments show that (6) defines an inner product on L2 (Ω,Q) satisfying

‖f‖L2(Ω,Q) =
√
〈f , f〉L2(Ω,Q), and thus L2 (Ω,Q) is a Hilbert space, which by (10) is

isomorphic to ⊕nj=1L
2 (λj) under the map f → (f1, ..., fn). Note that each equivalence

class in L2 (λj) contains a representative which is Lebesgue measurable.

3.1. The strong degenerate Sobolev space W 1,2
Q (Ω). LetQ be a locally integrable

quadratic form on Ω. Define a nonnegative functional ‖w‖Q (possibly infinite) on the
linear space Lip (Ω) by

‖w‖Q =
{
‖w‖2L2(Ω) + ‖∇w‖2L2(Ω,Q)

} 1
2

, w ∈ Lip (Ω) .

We then define the degenerate Sobolev space W 1,2
Q (Ω) as the completion of the linear

space
LipQ (Ω) =

{
w ∈ Lip (Ω) : ‖w‖Q <∞

}
(13)

in the metric d (w, v) = ‖w − v‖Q.

Remark 7. In the case that Q and Ω are bounded, we can equivalently define W 1,2
Q (Ω)

as the completion of C1 (Ω) in the metric d (w, v) = ‖w − v‖Q. Indeed, this follows
immediately from the fact that C1 (Ω) is dense in the classical Sobolev space H1,2 (Ω), so
that given w ∈ Lip (Ω) ⊂ H1,2 (Ω) and ε > 0, we can find v ∈ C1 (Ω) with

‖v − w‖W 1,2
Q (Ω) ≤ C ‖v − w‖H1,2(Ω) < ε.
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By construction W 1,2
Q (Ω) is a Banach space of equivalence classes of Cauchy sequences

in LipQ (Ω). If w= {wk}∞k=1 is a Cauchy sequence of LipQ (Ω) functions, i.e. wk ∈
LipQ (Ω) and

‖wk − w`‖W 1,2
Q (Ω) → 0 as k, `→∞, (14)

then there are elements (depending only on the equivalence class in W 1,2
Q (Ω)) w ∈ L2 (Ω)

and v ∈ L2 (Ω,Q) such that wk → w in L2 (Ω) and ∇wk → v in L2 (Ω,Q). The pair
(w,v) ∈ L2 (Ω) × L2 (Ω,Q) represents the equivalence class containing the Cauchy se-
quence w in the space W 1,2

Q (Ω), and provides a Hilbert space isomorphism from W 1,2
Q (Ω)

to a closed subspace W1,2
Q (Ω) of L2 (Ω) × L2 (Ω,Q) by sending the equivalence class of

w to (w,v). It is this realization W1,2
Q (Ω) of the degenerate Sobolev space W 1,2

Q (Ω) that
we will use most often in the general setting.

However, the vector-valued function v ∈ L2 (Ω,Q) is not in general uniquely deter-
mined by w ∈ L2 (Ω) if (w,v) ∈ W1,2

Q (Ω). In other words, if P is the Hilbert space

projection of L2 (Ω)×L2 (Ω,Q) onto L2 (Ω), then the restriction of P to W1,2
Q (Ω) is not

in general one-to-one. Indeed, as observed in [10], an example in [2] exhibits a quadratic
form Q (x, ξ) = q (x) ξ2, where 0 < q (x) ≤ 1, x ∈ Ω = (0, 1), ξ ∈ R, together with
a sequence {wk}∞k=1 of Lipschitz functions on (0, 1) such that wk → 0 in L2 (0, 1) (in
fact wk → 0 uniformly on (0, 1)) and w′k → 1 in L2 ((0, 1) ,Q) = L2 ((0, 1) , q). In fact,
uniqueness fails for this example in the most spectacular way possible. If ϕ ∈ LipQ (0, 1),
one sees from the calculus for W1,2

Q (Ω) in Lemma 20 below that ϕwk → 0 in L2 (0, 1)

and (ϕwk)
′

= ϕ′wk + ϕw′k → ϕ in L2 ((0, 1) ,Q). Thus (0, ϕ) ∈ W1,2
Q (0, 1) for all

ϕ ∈ LipQ (0, 1), and sinceW1,2
Q (0, 1) is closed, (0, v) ∈ W1,2

Q (0, 1) for all v ∈ L2 ((0, 1) ,Q).

Thus for each element (u, v) ∈ W1,2
Q (0, 1), the fibre above u consists of all of L2 ((0, 1) ,Q).

Note that this defect is not shared by the degenerate Sobolev space H1,2
X (Ω) when

X = {Xj}mj=1 is a collection of H1,2
div (Ω) vector fields on Ω ⊂ Rn, since the weak derivatives

defined in (3) above are unique if they exist.
We will use the notations W1,2

X (Ω) and L2 (Ω,X ) to denote the spaces W1,2
Q (Ω) and

L2 (Ω,Q), respectively, in case the quadratic form Q arises from a collection X of vector

fields, i.e., in case Q(x, ξ) = X (x, ξ) =
∑m
j=1 (vj (x) · ξ)2

where X = {Xj}mj=1 and Xj =
vj (x) · ∇.

Lemma 8. If X is a collection of H1,2
div (Ω) vector fields on Ω ⊂ Rn, then the Hilbert space

projection
P : L2 (Ω)× L2 (Ω,X )→ L2 (Ω)

is one-to-one on W1,2
X (Ω).

Proof : If {wk}∞k=1 ⊂ LipX (Ω) converges to (0,u) ∈ W1,2
X (Ω), then with X (x, ξ) =∑m

j=1 (vj (x) · ξ)2
where Xj = vj (x) · ∇, we have

0 = lim
k→∞

∫

Ω

X (x,u (x)−∇wk (x)) dx = lim
k→∞

∫

Ω




m∑

j=1

|vj (x) · u (x)−Xjwk (x)|2

 dx.

Thus Xjwk → vj ·u in L2 (Ω) for 1 ≤ j ≤ m, and since wk → 0 in L2 (Ω), it follows from
Theorem 2 that vj ·u is the weak derivative Xj0 of 0. Uniqueness of weak derivatives shows
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that vj · u = 0 a.e. for 1 ≤ j ≤ m, and thus u = 0 in L2 (Ω,X ) since
∫

Ω
X (x,u (x)) dx =

∫
Ω

(∑m
j=1 |vj (x) · u (x)|2

)
dx = 0.

In particular, this lemma applies to a quadratic form Q when the rows v1 (x) , ...vn (x)

of the matrix
√
Q (x) are in H1,2

div (Ω), since then Q (x, ξ) =
∑m
k=1 |vk (x) · ξ|2.

Remark 9. For 1 ≤ p < ∞ and Q locally integrable, we can also define the analogous
degenerate Sobolev space W 1,p

Q (Ω) with strong derivatives in Lp as the completion of

LipQ,p (Ω) =
{
w ∈ Lip (Ω) : ‖w‖Q,p <∞

}
where

‖w‖Q,p =

(∫

Ω

|w|p +

∫

Ω

[
(∇w)

′
Q (∇w)

] p
2

) 1
p

.

3.2. Comparison of spaces H1,2
X (Ω) and W 1,2

Q (Ω). As mentioned in the introduc-
tion, the question now arises as to the equality of the two degenerate Sobolev spaces
H1,2
X (Ω) and W 1,2

Q (Ω) when X = {Xj}mj=1, Xj = vj (x) · ∇ is a collection of H1,2
div (Ω)

vector fields on Ω ⊂ Rn, and the forms Q (x, ξ) and X (x, ξ) =
∑m
j=1 (vj (x) · ξ)2

are
comparable:

Q (x, ξ) ≈ X (x, ξ) . (15)

Clearly W 1,2
Q (Ω) = W 1,2

X (Ω) when (15) holds. The map j : LipX (Ω) → W 1,2
X (Ω) that

sends w to the constant sequence {w} is an isometry with the norm ‖·‖X on LipX (Ω).
The inverse map i takes j (LipX (Ω)) isometrically onto LipX (Ω) in the Hilbert space
H1,2
X (Ω). Since j (LipX (Ω)) is dense in W 1,2

X (Ω), and H1,2
X (Ω) is complete, the map i

has a unique continuous extension

i : W 1,2
X (Ω)→ H1,2

X (Ω) ,

which is an isometry that we loosely refer to as an inclusion W 1,2
X (Ω) ⊂ H1,2

X (Ω).

As we observed above, gradients of elements in W 1,2
X (Ω) are uniquely determined in

this case, i.e. the projection P above is one-to-one when restricted to W1,2
X (Ω). By

contrast, recall for a moment the counterexample from [2] we described in the previous
subsection. The Lipschitz function 0 is represented by the pair (0, 0) in W1,2

Q (Ω), while
the Cauchy sequence {wk}∞k=1 from the counterexample is represented by the pair (0, 1).
Of course the function q (x) in the quadratic form Q in the counterexample fails to have a
square integrable derivative, which allows for the failure of injectivity of P when restricted
to W1,2

Q (Ω).

In the case when X is a collection of H1,2
div (Ω) vector fields, we showed above that a

pair (w,v) ∈ W1,2
X (Ω) is uniquely determined by its L2 component w. Thus we may here

also realize W 1,2
X (Ω) as a (not necessarily closed) subspace W1,2

X (Ω) of L2 (Ω), and we
may unambiguously write ∇w for the element v ∈ L2 (Ω,X ). As a result, we typically
write (w,∇w) for the element (w,v) ofW1,2

X (Ω), and in this way we see that the gradients

∇w of L2 functions w in W1,2
X (Ω) live in the form-weighted space L2 (Ω,X ). Note that

this form-weighted space, and so also the meaning of ∇w, depends on X .

Remark 10. We have introduced three separate notations for different realizations of
the degenerate space W 1,2

Q (Ω). We write w∈ W 1,2
Q (Ω) to denote an equivalence class

of Cauchy sequences in the definition by completion, (w,v) ∈ W1,2
Q (Ω) to denote the
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L2 (Ω) component w and the L2 (Ω,Q) component v associated with w, and finally in
the case Q = X , we write w ∈ W1,2

X (Ω) to denote the L2 (Ω) component which now
uniquely determines the gradient component. We caution the reader that for an element
w in W 1,2

Q (Ω) represented by (w,v) ∈ W1,2
Q (Ω), we often abuse notation by writing

w in place of w, and ∇w in place of v, with the understanding that ∇w is not in
general uniquely determined by w. In particular, we write w = limk→∞ wk in W 1,2

Q (Ω) if

w= {wk}∞k=1 ∈W
1,2
Q (Ω).

It is a result of Franchi, Serapioni and Serra Cassano [3], and independently Garofalo
and Nhieu [4], that the degenerate Sobolev spaces W 1,2

X (Ω) and H1,2
X (Ω) coincide when

the vector fields X = {Xj}mj=1 are Lipschitz. We show later that H1,2
X (Ω) = W 1,2

X (Ω) if

the vector fields X = {Xj}mj=1 are in

H1,2σ′ (Ω) =
{
v ∈ L2σ′ (Ω) : ∇v ∈ L2σ′ (Ω)

}
,

where 1
σ + 1

σ′ = 1, and σ ≥ 1 is such that the following Sobolev inequality holds:

{∫

ω

|w|2σ
} 1

2σ

≤ Cω
{∫

ω

|w|2 +

∫

ω

|Xw|2
} 1

2

, (16)

for all opens sets ω b Ω and for all w ∈ Lipc (ω). Alternatively, we can relax the regularity
assumption on X to Xj ∈ H1,2

div (Ω) provided X is comparably Lipschitz off its common

zero set Z, and Lipschitz at Z. Moreover, H1,2
X (Ω) = W 1,2

X (Ω) in dimension n = 1

without any restriction on the vector fields other than the assumption X ∈ H1,2
div (Ω),

which is necessary for the definition of H1,2
X (Ω).

Finally, we turn our attention briefly to the case 1 < p < ∞. If X = {Xj}mj=1 ∈
H1,p′

div (Ω) satisfies X (x, ξ) ≈ Q (x, ξ), then

m∑

j=1

|Xjw (x)|p ≈




m∑

j=1

|Xjw (x)|2



p
2

= X (x,∇w (x))
p
2 ≈ Q (x,∇w (x))

p
2

for w ∈ LipQ,p (Ω). Thus ‖w‖Q,p ≈ ‖w‖H1,p
X (Ω) for w ∈ LipQ,p (Ω) and if, as in the case

p = 2 above, we identify LipQ,p (Ω) with the space of corresponding constant sequences in

W 1,p
Q (Ω), then W 1,p

Q (Ω) is isomorphic to the closure of LipQ,p (Ω) in H1,p
X (Ω) (see Remark

3 for the definition of H1,p
X (Ω)). Now it is still true that H1,p

X (Ω) = W 1,p
X (Ω) for X

Lipschitz ([3], [4]), but it may happen that H1,p
X (Ω) 6= W 1,p

X (Ω) for certain X ∈ H1,p′

div (Ω)

when p > 2. In fact we show that in dimension n = 1, H1,p
X (Ω) = W 1,p

X (Ω) for all

X ∈ H1,p′ (Ω) when 1 < p ≤ 2, while for p > 2 in all dimensions, there is for every
p′ ≤ q < p, a vector field X ∈ H1,q (Ω) such that H1,p

X (Ω) 6= W 1,p
X (Ω). See Section 5

below on equality of degenerate Sobolev spaces for all of the results described here.

3.3. WQ-weak solutions of degenerate elliptic equations. Let Ω be a bounded
open subset of Rn. Consider the linear differential operator

L ≡ L+ HR + S′G + F
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in Ω, and the equation
Lu = f + T′g, (17)

where R = {Ri}Ni=1, S = {Si}Ni=1 and T are collections of vector fields subunit with

respect to Q (x) (S = v · ∇ is subunit if (v · ξ)2 ≤ ξ′Qξ), and F , G = {Gi}Ni=1 and

H = {Hi}Ni=1 are bounded measurable functions, and the inhomogeneous data f and g

are in L2 (Ω). Here the juxtaposition of vectors in HR, GS and gT means
∑N
i=1HiRi,∑N

i=1GiSi and
∑N
i=1 giTi respectively, and the prime ′ denotes transpose, so that e.g.

(GS)
′

= S′G and (gT)
′

= T′g.
We now give the definition of a WQ-weak solution u to equation (17). First, for

u ∈W 1,2
Q (Ω) we write (u,∇u) ∈ W1,2

Q (Ω) with the understanding that ∇u is not uniquely
determined by u, i.e. ∇u denotes one of the vector-valued functions in L2 (Ω,Q) for which
(u,∇u) ∈ W1,2

Q (Ω). Then for u,w ∈ W 1,2
Q (Ω) the expression ∇u′Q∇w is well-defined as

an integrable function in Ω since

‖∇u′Q∇w‖L1(Ω) =

∫

Ω

|∇u′ (x)Q (x)∇w (x)| dx

≤
∫

Ω

√
Q (x,∇u (x))

√
Q (x,∇w (x))dx

≤ ‖∇u‖L2(Ω,Q) ‖∇w‖L2(Ω,Q) .

Next we note that if T = a · ∇ is subunit with respect to Q (x) and u ∈ W 1,2
Q (Ω), then

Tu = a · ∇u is well-defined as a square integrable function in Ω since

‖Tu‖2L2(Ω) =

∫

Ω

|a · ∇u (x)|2 dx

≤
∫

Ω

Q (x,∇u (x)) dx

≤ ‖∇u‖L2(Ω,Q) .

We are now ready for the definition of WQ-weak solution. Note that by the discussion
above, all of the integrals appearing below are absolutely convergent for u,w ∈W 1,2

Q (Ω),
vector fields R,S,T subunit with respect to Q, vector functions G,H bounded and f,g ∈
L2 (Ω). We define Lipc (Ω) to consist of the Lipschitz functions with compact support in
Ω.

Definition 11. An element (u,∇u) ∈ W1,2
Q (Ω) is a WQ-weak




solution
subsolution

supersolution


 of (17)

in Ω if

−
∫

(∇u)
′
Q∇w +

∫
(HRu)w +

∫
uGSw +

∫
Fuw




=
≥
≤



∫
fw +

∫
gTw,

for all nonnegative w ∈ Lipc (Ω).

Equivalently, we could test over all nonnegative w ∈
(
W 1,2
Q

)
0

(Ω), the closure of

Lipc (Ω) in W 1,2
Q (Ω); we say that an element (u,∇u) ∈ W1,2

Q (Ω) is nonnegative if u ≥ 0.
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Recall the element (0, 1) in W1,2
Q (0, 1) discussed earlier that arose from the example

in [2]. This element is a WQ-weak solution of the equation d
dxq(x) d

dxu = T ′1 where

T = −q (x) d
dx is a bounded subunit vector field. Indeed, the corresponding integral

equality is

−
∫ (

d

dx
u

)
(x) q (x)

(
d

dx
w

)
(x) dx = −

∫
1 · q (x)

(
d

dx
w

)
(x) dx,

which holds since d
dxu = 1 in L2 ((0, 1) ,Q) for the element u = (0, 1). On the other hand,

the zero element (0, 0) ∈ W1,2
Q (0, 1) is not a weak solution of the equation d

dxq(x) d
dxu =

T ′1.

Remark 12. Alternatively, as is done in [10] for u,w ∈W 1,2
Q (Ω) and T subunit, we can

define
∇u′Q∇w ∈ L1 (Ω) and Tu ∈ L2 (Ω)

solely by reference to Cauchy sequences of elements in LipQ (Ω), without using L2 (Ω,Q).
Let u = limk→∞ uk and w = limk→∞ wk in W 1,2

Q (Ω) where uk, wk ∈ LipQ (Ω). Then
{∇u′kQ∇wk}

∞
k=1 is Cauchy in L1 (Ω) using

∫

Ω

|∇u′kQ∇wk −∇u′`Q∇w`|

≤
∫

Ω

∣∣(∇uk −∇u`)′Q∇wk
∣∣+

∫

Ω

|∇u′`Q (∇wk −∇w`)|

≤
{∫

Ω

Q (x,∇uk (x)−∇u` (x))

} 1
2
{∫

Ω

Q (x,∇wk (x))

} 1
2

+

{∫

Ω

Q (x,∇u` (x))

} 1
2
{∫

Ω

Q (x,∇wk (x)−∇w` (x))

} 1
2

.

It follows that there is a unique element ∇u′Q∇w ∈ L1 (Ω) that satisfies

∇u′Q∇w = lim
k→∞

∇u′kQ∇wk in L1 (Ω) whenever

u = lim
k→∞

uk and w = lim
k→∞

wk in W 1,2
Q (Ω) .

Moreover, if T = a · ∇ is subunit, then {Tuk}∞k=1 is Cauchy in L2 (Ω) using

‖Tuk − Tu`‖2L2(Ω) =

∫

Ω

|a · (∇uk −∇u`) (x)|2 dx

≤
∫

Ω

Q (x,∇uk (x)−∇u` (x)) dx

= ‖uk − u`‖2L2(Ω,Q) .

Thus there is a unique element Tu ∈ L2 (Ω) that satisfies

Tu = lim
k→∞

Tuk in L2 (Ω) whenever u = lim
k→∞

uk in W 1,2
Q (Ω) .
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4. The regularity theorems

In order to state our generalization of Theorem 8 in [11], we recall some notation - see [11]
for more details. A quasimetric d on an open set Ω ⊂ Rn is a finite nonnegative function
on Ω× Ω satisfying

d (x, y) = 0⇐⇒ x = y

d (x, y) ≤ κ (d (x, z) + d (y, z))

for all x, y, z in Ω. The quasimetric balls B (x, r) are defined by

B (x, r) = {y ∈ Ω : d (x, y) < r} , 0 < r <∞.

Provided the quasimetric d (x, y) is Lebesgue measurable in the second variable (so that
the balls are measurable), the upper and lower dimensions, Q∗ and Q∗, of a quasimetric
space with balls B (x, r) are given by

Q∗ = lim sup
r→0

max
x∈Ω

log |B (x, r)|
log r

, (18)

Q∗ = lim inf
r→0

min
x∈Ω

log |B (x, r)|
log r

.

We will require the following containment condition relative to Euclidean balls D (x, r),
which is essentially necessary for the notion of subellipticity of the form Q that is given
in Definition 15 below: there are positive constants C, ε and δ such that

D (x, r) ⊂ B (x,Crε) , x ∈ Ω, 0 < r < δ dist (x, ∂Ω) . (19)

We will also require the doubling condition

|B (x, 2r)| ≤ C |B (x, r)| , x ∈ Ω, 0 < r <∞, (20)

which makes (Ω, d, |·|) into a homogeneous space (more precisely what is called a general
homogeneous space in [11]), and makes Q∗ and Q∗ finite.

Given an integrable nonnegative semidefinite quadratic form Q (x, ξ) = ξ ′Q (x) ξ,
where Q (x) is a symmetric matrix for each x ∈ Ω, and an Rn-valued function f , we
define

|f (x)|2Q = f (x)
′
Q (x) f (x)

and assume the following Sobolev inequality: there is σ > 1 and δ > 0 such that for all
balls B = B (y, r) with y ∈ Ω, 0 < r < δ dist (y, ∂Ω),

{
1

|B|

∫

B

|w|2σ
} 1

2σ

≤ Cr
{

1

|B|

∫

B

|∇w|2Q
} 1

2

+ C

{
1

|B|

∫

B

|w|2
} 1

2

, (21)

for all (w,∇w) ∈
(
W1,2
Q

)
0

(B), the closure in W1,2
Q (B) of (w,∇w) where w is a Lipschitz

function compactly supported in Ω. Note that the right-hand side of (21) is comparable
to the normalized Q-Sobolev norm

‖w‖∗W 1,2
Q (B) ≡

{
1

|B|

∫

B

(
|r∇w|2Q + |w|2

)} 1
2

. (22)
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The Poincaré inequality we need is: there is C0 ≥ 1 and δ > 0 such that for all balls
B = B (y, r) and B∗ = B (y, C0r) with y ∈ Ω, 0 < C0r < δ dist (y, ∂Ω),

{
1

|B|

∫

B

∣∣∣∣w −
(

1

|B|

∫

B

w

)∣∣∣∣
2
} 1

2

≤ Cr
{

1

|B∗|

∫

B∗
|∇w|2Q

} 1
2

, (23)

for every (w,∇w) ∈ W1,2
Q (B). The following quantity will play the role of ”dimension”

in the sequel:
Q = max {Q∗, 2σ′} ,

where 1
σ + 1

σ′ = 1.
Our next hypothesis (27) is crucial for Moser iteration, and holds automatically with

p = ∞ for the subunit balls K (x, r) associated to Q, if Q (x, ξ) is continuous in x and
(19) holds for the subunit balls, i.e.

D (x, r) ⊂ K (x,Crε) , x ∈ Ω, 0 < r < δ dist (x, ∂Ω) . (24)

Recall that the subunit balls

K (x, r) = {y ∈ Ω : δ (x, y) < r} (25)

are defined using the control metric

δ (x, y) = inf {r > 0 : γ (0) = x,γ (r) = y,γ is Lipschitz and subunit} , (26)

where γ (t), 0 ≤ t ≤ r, is a subunit curve in Ω if (γ ′ (t) · ξ)2 ≤ Q (γ (t) , ξ) for 0 ≤ t ≤ r.
We suppose there are positive constants c, N and δ such that for each ball B (y, r)

with y ∈ Ω, 0 < r < δ dist (y, ∂Ω), there is an accumulating sequence of Lipschitz cutoff
functions

{
ψj
}∞
j=1

on B (y, r) with the following five properties (E b F means that the

closure of E is contained in the interior of F ):





supp ψ1 ⊂ B (y, r) ,
B (y, cr) ⊂

{
x : ψj (x) = 1

}
, j ≥ 1

supp ψj+1 b
{
x : ψj (x) = 1

}
, j ≥ 1

ψj is Lipschitz, j ≥ 1{
1

|B(y,r)|
∫ ∣∣∇ψj

∣∣p
Q dx

} 1
p ≤ Cp

jN

r , j ≥ 1

, (27)

for some p > 2σ′.
We consider the subelliptic equation (17). Since we now have the Sobolev inequality

(21), we can relax the requirements on the coefficients in our degenerate equation (17).
Our hypothesis on the operator coefficients H, G and F is

‖F‖
L
q
2 (Ω)

+ ‖G‖Lq(Ω) + ‖H‖Lq(Ω) ≡ Nq <∞, (28)

for some q > Q. Our hypothesis on the inhomogeneous data f,g is

‖f‖
L
q
2 (Ω)

+ ‖g‖Lq(Ω) ≡ N ′q <∞, (29)

for the same q > Q as in (28). The distinction between Nq and N ′q is made here because
the Hölder continuity exponent α of weak solutions u to (17) will turn out to depend on
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the gaps 1− Q
p and 1− Q

q , where p is as in (27) and q is as in (28) and (29), as well as on

Cp in (27) and Nq in (28), but not on u or N ′q in (29). This is of paramount importance
in applications to nonlinear equations - see e.g. [7].

As in Definition 11 we say that an element (u,∇u) ∈ W1,2
Q (Ω) is a WQ-weak solution

of (17) in Ω if u and ∇u satisfy

−
∫

(∇u)
′
Q∇w +

∫
(HRu)w +

∫
uGSw +

∫
Fuw =

∫
fw +

∫
gTw,

for all w ∈ Lipc (Ω). Note as in [11] that all of the above integrals are absolutely convergent
for u,w ∈ W 1,2

Q (Ω) if we use q > Q ≥ 2σ′ and the fact that (21) implies u,w ∈ L2σ
loc (Ω).

As a consequence we may test the integral inequality above over all w ∈
(
W 1,2
Q

)
0

(Ω), the

closure of Lipc (Ω) in W 1,2
Q (Ω). This is of course needed to implement Moser iteration.

The next definition incorporates the new generality of our regularity theorems by
requiring Hölder continuity for each WQ-weak solution of (17), rather than merely for
each classical weak solution, as was assumed in [11].

Definition 13. Let q ∈ [2,∞]. We say that an operator L = ∇′Q (x)∇ with locally
integrable matrix Q (x) is Lq-subelliptic in Ω if there are positive functions α = α (E, z1)

and C = C (E, z1, z2, z3) defined on P (Ω)× [0,∞) and P (Ω)× [0,∞)
3

respectively (where
P (Ω) is the lattice of compact subsets of Ω), increasing in each variable separately, such
that every WQ-weak solution (u,∇u) of (17) in Ω satisfies, possibly after redefining u on
a set of measure zero,

‖u‖Cα(K) ≤ C, (30)

for

α = α (K,Nq) , (31)

C = C
(
K,Nq, N

′
q, ‖u‖2

)
,

whenever K is a compact subset of Ω, (29) and (28) hold, and R = {Ri}Ni=1, S = {Si}Ni=1

and T = {Ti}Ni=1 are collections of vector fields subunit with respect to Q (x).

Remark 14. The conclusion (30) applies only to the L2 component of (u,∇u) ∈ WQ (Ω),
and says nothing about the associated (nonunique) gradient ∇u.

With the above new definition of an Lq-subelliptic operator in terms of WQ-weak
solutions, the next definition and theorems can be stated exactly as in [11].

Definition 15. Let q ∈ [2,∞]. We say that a locally integrable nonnegative semidefinite
quadratic form Q (x, ξ) is Lq-subelliptic in Ω if every operator L = ∇′B (x)∇ whose
matrix B (x) satisfies

csymQ (x, ξ) ≤ ξ′B (x) ξ ≤ CsymQ (x, ξ) , a.e. x ∈ Ω, ξ ∈ Rn, (32)

for positive constants csym and Csym, is Lq-subelliptic in Ω, and provided the positive
functions α and C in (31) can be chosen to depend only on the constants csym and Csym
in (32) and not on L itself, i.e.

α = αcsym,Csym (K,Nq) ,

C = Ccsym,Csym
(
K,Nq, N

′
q, ‖u‖2

)
.
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Theorem 16. Suppose thatQ (x, ξ) is a locally integrable nonnegative semidefinite quadratic
form in a bounded open set Ω. Let d (x, y) be a symmetric quasimetric in Ω with
d (x, y) ≥ c |x− y| for some c > 0, that is Lebesgue measurable in each variable sepa-
rately, with upper dimension Q∗, and suppose σ > 1. Then Q (x, ξ) is Lq-subelliptic in Ω
for

q > Q ≡ max {Q∗, 2σ′} , 1

σ
+

1

σ′
= 1,

provided that the following hold for the d-balls B (x, r) = {y ∈ Ω : d (x, y) < r}:

1. the doubling condition (20) holds,

2. the containment condition (19) holds,

3. the Sobolev and Poincaré inequalities (21) and (23) hold with the given σ,

4. the “accumulating sequence of Lipschitz cutoff functions” condition (27) holds for
some p > max {2σ′, 4}.

When restricted to the subunit balls K (x, r) in (25) associated with a nonnegative
semidefinite continuous quadratic form in Ω, this theorem yields the following as a corol-
lary since (27) holds automatically with p =∞ in this case - see [11].

Theorem 17. Suppose that Q (x, ξ) is a nonnegative semidefinite continuous quadratic
form in a bounded open set Ω, and suppose that the subunit metric δ (x, y) is finite on
Ω×Ω. Let the corresponding subunit balls K (x, r) have upper dimension Q∗, and suppose
that σ > 1. Then Q (x, ξ) is Lq-subelliptic in Ω for q > Q = max {Q∗, 2σ′} provided that:

1. the doubling condition |K (x, 2r)| ≤ C |K (x, r)| holds for 0 < r <∞,

2. the containment condition (24) holds,

3. the Sobolev and Poincaré inequalities (21) and (23) hold with B (x, r) = K (x, r)
and the given σ.

Theorem 18. The statements of Theorems 12, 17, 20, 23 and 24 in [11] also hold with
the new definition of Lq-subelliptic in terms of WQ-weak solutions.

Proof : The proofs in [11] reduce matters to Theorems 16 and 17 above.

4.1. Proof of regularity. The proof of Theorem 16 proceeds exactly as in Chapter
3 of [11] using analogues for W 1,2

Q (Ω) of the standard calculus for the classical space
W 1,2 (Ω), and upon replacing the vector-valued space L2 (Ω) (more precisely ⊕nk=1L

2 (Ω))

with the form-weighted vector-valued space L2 (Ω,Q). For (u,∇u) ∈ W1,2
Q (Ω), define

u+ = χ{u>0}u and u− = χ{u<0}u so that u± is the composition of t± = tχ(0,∞) (t) with

u. Note that t± fails to be C1 only at the origin. We now prove an analogue of Lemma
1 for W1,2

Q (Ω). A variant of the following lemma also appears in [10] for the calculus in

W 1,2
Q (Ω) defined using Cauchy sequences.

Definition 19. Given α ∈ R, we define
(
W1,2
Q (Ω)

)
α

to be the completion in W1,2
Q (Ω)

of those Lipschitz functions u in Ω such that u− α has compact support in Ω.
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Lemma 20. Suppose (u,∇u) ∈ W1,2
Q (Ω) where Ω is bounded.

1. If ϕ ∈ LipQ (Ω) and Q is bounded, then (ϕu, ϕ∇u+ u∇ϕ) ∈ W1,2
Q (Ω).

2. If f ∈ C1 (R) with f ′ ∈ L∞ (R), then (f ◦ u, (f ′ ◦ u)∇u) ∈ W1,2
Q (Ω). Also, if u (x) ≥

a > b and f ∈ C1 (b,∞) with f ′ ∈ L∞ (b,∞), then (f ◦ u, (f ′ ◦ u)∇u) ∈ W1,2
Q (Ω).

3. Both
(
u+, χ{u>0}∇u

)
and

(
u−, χ{u<0}∇u

)
are in W1,2

Q (Ω). Moreover, if u ∈
(
W1,2
Q

)
α

(Ω) and α ≥ 0, then
(
u+, χ{u>0}∇u

)
∈
(
W1,2
Q

)
α

(Ω) and
(
u−, χ{u<0}∇u

)
∈

(
W1,2
Q

)
0

(Ω) - the opposite holds if α < 0.

In the case that gradients are uniquely determined in W 1,2
Q (Ω), we have

∇ (ϕu) = ϕ∇u+ u∇ϕ, (33)

∇ (f ◦ u) = (f ′ ◦ u)∇u,
∇u+ = χ{u>0}∇u,
∇u− = χ{u<0}∇u,

in L2 (Ω,Q).
Proof : There is a sequence {um} ⊂ LipQ (Ω) such that um → u in L2 (Ω) and

∇um → ∇u in L2 (Ω,Q) (we remind the reader that ∇u is not uniquely determined by
u, but rather by the Cauchy sequence {um}). Then ϕum ∈ LipQ (Ω), and supressing
dependence on x we compute that

∫

Ω

|ϕum − ϕu|2 ≤ ‖ϕ‖2∞
∫

Ω

|um − u|2 → 0 as m→∞;

∫

Ω

Q (∇ (ϕum)− {ϕ∇u+ u∇ϕ}) =

∫

Ω

Q (ϕ {∇um −∇u}+ {u− um}∇ϕ)

≤ 2 ‖ϕ‖2∞
∫

Ω

Q (∇um −∇u) + 2 ‖Q (∇ϕ)‖∞
∫

Ω

|um − u|2

tends to 0 as m→∞, which proves assertion 1.
Moreover, f ◦ um ∈ LipQ (Ω) and

∫

Ω

|f (um)− f (u)|2 ≤ ‖f ′‖2∞
∫

Ω

|um − u|2 → 0 as m→∞;

∫

Ω

Q (f ′ (um)∇um − f ′ (u)∇u) ≤ 2 ‖f ′‖2∞
∫

Ω

Q (∇um −∇u)

+2

∫

Ω

|f ′ (um)− f ′ (u)|2Q (∇u)

also tends to 0 as m→∞ upon applying the dominated convergence theorem to the last
integral using the continuity of f ′ and assuming, as we may by passing to a subsequence,
that um → u a.e. in Ω. This shows that f ◦ um → f ◦ u in L2 (Ω), and ∇ (f ◦ um) =
(f ′ ◦ um)∇um → (f ′ ◦ u)∇u in L2 (Ω,Q), and completes the proof of the first statement
in assertion 2. The second statement in the assertion follows upon applying the first
statement to f̃ ∈ C1 (R) with f̃ ′ ∈ L∞ (R), where f̃ agrees with f on

(
a+b

2 ,∞
)
.
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Now suppose that (u,∇u) ∈ W1,2
Q (Ω). For ε > 0 define

fε (u) =

{ √
u2 + ε2 − ε if u > 0

0 if u ≤ 0
. (34)

By assertion 2 we have using f ′ε (0) = 0,

∇ (fε ◦ u) = (f ′ε ◦ u)∇u = χ{u>0}
u√

u2 + ε2
∇u

in L2 (Ω,Q) for each ε > 0. Letting ε → 0 we obtain fε ◦ u → u+ in L2 (Ω) and
∇ (fε ◦ u)→ χ{u>0}∇u in L2 (Ω,Q) by the monotone convergence theorem. Thus we ob-

tain
(
u+, χ{u>0}∇u

)
∈ W1,2

Q (Ω) since W1,2
Q (Ω) is closed in L2 (Ω)×L2 (Ω,Q). Similarly

(
u−, χ{u<0}∇u

)
∈ W1,2

Q (Ω).

Now we turn to the final statement in assertion 3. Let (u,∇u) ∈
(
W1,2
Q

)
α

(Ω). Suppose

first that α = 0, and let {uk}∞k=1 be a sequence in Lipc (Ω), the space of compactly

supported Lipschitz functions in Ω, that converges to (u,∇u) ∈
(
W1,2
Q

)
0

(Ω). Since

fε (0) = 0, we see that fε ◦ uk ∈ Lipc (Ω) and so

fε ◦ u = lim
k→∞

fε ◦ uk ∈
(
W1,2
Q

)
0

(Ω) , 0 < ε < 1.

It now follows that
(
u+, χ{u>0}∇u

)
= lim
ε→0

fε ◦ u ∈
(
W1,2
Q

)
0

(Ω) .

If α < 0 and {uk}∞k=1 is a sequence in Lipc (Ω) such that uk + α converges to (u,∇u),

then (uk + α)+ ∈ Lipc (Ω) and it follows that
(
u+, χ{u>0}∇u

)
∈
(
W1,2
Q

)
0

(Ω).

Now suppose that α > 0. We must left translate the functions fε to satisfy fε (α) = α.
Thus we define

fαε (u) = fε (u+ t (α, ε)) , u ∈ R,
where t (α, ε) is the unique positive number satisfying

√
(α+ t (α, ε))

2
+ ε2 − ε = fε (α+ t (α, ε)) = α.

If {uk − α}∞k=1 is a sequence in Lipc (Ω) such that {uk}∞k=1 converges to (u,∇u) ∈(
W1,2
Q

)
α

(Ω), then since fαε (α) = α, we see that

fαε ◦ u = lim
k→∞

fαε ◦ uk ∈
(
W1,2
Q

)
α

(Ω) , 0 < ε < 1.

Since t (α, ε) → 0 as ε → 0, we also have that limε→0 f
α
ε (u) = u+ in L2 (Ω) and

∇ (fαε ◦ u) → χ{u>0}∇u in L2 (Ω,Q) by the monotone convergence theorem. Thus it
follows that (

u+, χ{u>0}∇u
)

= lim
ε→0

fαε ◦ u ∈
(
W1,2
Q

)
α

(Ω) ,

since
(
W1,2
Q

)
α

(Ω) is a closed set in L2 (Ω)× L2 (Ω,Q).
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Similarly
(
u−, χ{u<0}∇u

)
∈
(
W1,2
Q

)
α

(Ω) for α < 0 and
(
u−, χ{u<0}∇u

)
∈
(
W1,2
Q

)
0

(Ω)

for α ≥ 0, and this completes the proof of Lemma 20.

We will also need an extension of part 2 of Lemma 20 to include f ∈ C1
pw (R) with

f ′ ∈ L∞ (R), where C1
pw (R) is the space of piecewise continuously differentiable functions

on R, i.e. f is continuous, f ′ has at most finitely many discontinuities Df ′ and f ′ has
two-handed limits at each point in Df ′ . The immediate difficulty is that f ′◦u is undefined
on the set where u takes values in Df ′ , which can lead to problems if this set has positive
measure. This motivates the following definition.

Definition 21. We say that an element (u,∇u) ∈ W1,2
Q (Ω) is regular if

∥∥∥χ{u=α}∇u
∥∥∥
L2(Ω,Q)

= 0 for all α ∈ R. (35)

One way out of the difficulty mentioned above is to simply assume that Q (x, ξ) ≈
X (x, ξ) where X = {Xj}mj=1 is a collection ofH1,2

div (Ω) vector fields, since then the elements

in W 1,2
Q (Ω) are necessarily regular in the sense of (35), as we now show.

Corollary 22. Suppose that Q (x, ξ) is comparable to the quadratic form X (x, ξ) asso-
ciated to a collection X = {Xj}mj=1 of H1,2

div (Ω) vector fields in a bounded open set Ω.

Then ∇u is uniquely determined in L2 (Ω,Q) and every u ∈W 1,2
Q (Ω) is regular, i.e. (35)

holds.

Proof : As observed earlier, W 1,2
Q (Ω) is embedded in H1,2

X (Ω) under these conditions,

and it follows that Xu is uniquely determined in L2 (Ω) if u ∈ W 1,2
Q (Ω), hence by the

comparability ofQ and X , that∇u is uniquely determined in L2 (Ω,Q). Since u = u++u−
in L2 (Ω), uniqueness of gradients shows that ∇u = ∇u++∇u− = χ{u6=0}∇u in L2 (Ω,Q).

Thus ∇u vanishes on the set where u is zero, i.e.
∥∥∥χ{u=0}∇u

∥∥∥
L2(Ω,Q)

= 0. Applying this

argument to u− α for constants α ∈ R yields (35).

However, there is another way around this difficulty that does not require we suppose
the weak solution u is regular. Instead, we use the following proposition that shows for
every (u,v) ∈ W1,2

Q (Ω) there is a natural choice of w ∈ L2 (Ω,Q) such that (u,w) ∈
W1,2
Q (Ω) and (u,w) satisfies (35).

Proposition 23. Suppose that (u,∇u) ∈ W1,2
Q (Ω) (respectively

(
W1,2
Q

)
0

(Ω)) where Ω

is bounded, and let

Ru = {α ∈ R : u = α on a set of positive measure} .

With∇regu = χ{x∈Ω:u(x)/∈Ru}∇u we have (u,∇regu) ∈ W1,2
Q (Ω) (respectively

(
W1,2
Q

)
0

(Ω))

and (u,∇regu) satisfies (35).

We caution the reader that ∇regu depends on both u and ∇u, i.e., ∇regu is not the
result of an operation on u alone.
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If in addition the Sobolev inequality (21) and the Poincaré inequality (23) hold, we
may of course restrict ∇u to ∇regu in the right side of both inequalities. Note that ∇regu
is essentially the smallest of the gradients that when paired with u belong to W1,2

Q (Ω).

Proof : The set Ru is at most countable so we can enumerate it as {αj}∞j=1 (the

case when Ru is finite is easier). If α1 = 0, then assertion 3 of Lemma 20 shows

that
(
u, χ{u6=0}∇u

)
=
(
u+, χ{u>0}∇u

)
+
(
u−, χ{u<0}∇u

)
∈ W1,2

Q (Ω). In general, as

(u− α1,∇u) ∈ W1,2
Q (Ω),

(
u− α1, χ{u6=α1}∇u

)
=
(

(u− α1)+ , χ{u>α1}∇u
)

+
(

(u− α1)− , χ{u<α1}∇u
)
∈ W1,2

Q (Ω) ,

so that
(
u, χ{u6=α1}∇u

)
=
(
u− α1, χ{u6=α1}∇u

)
+ (α1, 0) ∈ W1,2

Q (Ω), and by induction,

(
u, χ{u6=α1,...αk}∇u

)
∈ W1,2

Q (Ω) , 1 ≤ k <∞.

Now let k → ∞ and note that χ{u6=α1,...αk}∇u → χ{x∈Ω:u(x)/∈Ru}∇u = ∇regu pointwise.

We then obtain that χ{u6=α1,...αk}∇u→ ∇regu in L2 (Ω,Q) by the dominated convergence

theorem. Thus (u,∇regu) ∈ W1,2
Q (Ω) since W1,2

Q (Ω) is closed, and we trivially have that
(u,∇regu) satisfies (35).

The case when (u,∇u) ∈
(
W1,2
Q

)
0

(Ω) is handled in the same way using the final

statement in assertion 3 of Lemma 20. Indeed, for α1 ≥ 0, we have (u− α1,∇u) ∈(
W1,2
Q

)
−α1

(Ω) and then

(
(u− α1)+ , χ{u>α1}∇u

)
∈

(
W1,2
Q

)
0

(Ω) ,
(

(u− α1)− , χ{u<α1}∇u
)
∈

(
W1,2
Q

)
−α1

(Ω) ,

and so
(
u− α1, χ{u6=α1}∇u

)
=

(
(u− α1)+ ,∇ (u− α1)+

)
+
(
(u− α1)− ,∇ (u− α1)−

)

∈
(
W1,2
Q

)
0

(Ω) +
(
W1,2
Q

)
−α1

(Ω) =
(
W1,2
Q

)
−α1

(Ω) .

Thus
(
u, χ{u6=α1}∇u

)
=

(
u− α1, χ{u6=α1}∇u

)
+ (α1, 0)

∈
(
W1,2
Q

)
−α1

(Ω) +
(
W1,2
Q

)
α1

(Ω) =
(
W1,2
Q

)
0

(Ω) .

The argument is similar for α1 < 0, and we can now proceed by induction as before.

Corollary 24. Suppose (u,∇u) ∈ W1,2
Q (Ω) with Ω bounded and that either f ∈ C1

pw (R)
with f ′ ∈ L∞ (R), or u (x) ≥ a > b and f ∈ C1

pw (b,∞) with f ′ ∈ L∞ (b,∞), then

(f ◦ u, (f ′ ◦ u)∇regu) ∈ W1,2
Q (Ω) .



Degenerate Sobolev Spaces and Regularity of Subelliptic Equations 22

Remark 25. In the situation of Corollary 22, we thus have ∇u = ∇regu and ∇ (f ◦ u) =
(f ′ ◦ u)∇u.

Proof : Choose a sequence {gk}∞k=1 in C1 (R) with uniformly bounded derivatives that
converges uniformly to f on R and such that g′k converges pointwise and boundedly to f ′

on the set where f ′ is continuous. By Proposition 23, (u,∇regu) ∈ W1,2
Q (Ω), and from

assertion 2 of Lemma 20 applied to (u,∇regu) we obtain that

(gk ◦ u, g′k (u)∇regu) ∈ W1,2
Q (Ω) , 1 ≤ k <∞.

Now we let k →∞ and note that

g′k (u)∇regu→ f ′ (u)∇regu

pointwise a.e. upon recalling that if u is constant on a set of positive measure, then
∇regu is zero on that set. Again, it follows from the dominated convergence theorem that
g′k (u)∇regu→ f ′ (u)∇regu in L2 (Ω,Q). Since we also have gk ◦ u→ f (u) in L2 (Ω), we

conclude that (f (u) , f ′ (u)∇regu) is in W1,2
Q (Ω).

The following corollary is needed explicitly to prove the analogue of (113) in chapter
3 of [11] - see the discussion below. In fact, as we indicate in more detail below, this
corollary together with Lemma 20, Proposition 23 and Corollary 24 suffice for all the
calculus needed in the proof given in chapter 3 of [11].

For 1 ≤ p < ∞ we define Lp (Ω,Q) to consist of the measurable Rn-valued functions
f such that

‖f‖Lp(Ω,Q) =

(∫

Ω

(f ′Qf)
p
2

) 1
p

<∞,

and if we identify f and g for which ‖f − g‖Lp(Ω,Q) = 0, then Lp (Ω,Q) is a normed linear

space. From (9) we obtain

‖f‖Lp(Ω,Q) =



∫

Ω




n∑

j=1

|fj |2 λj




p
2




1
p

≈
n∑

j=1

‖fj‖
Lp
(
λ
p
2
j

) ,

and the standard proof of completeness of Lp (µ) together with our proof of Theorem 4
above, now shows that Lp (Ω,Q) is complete and hence a Banach space for 1 ≤ p <∞.

Definition 26. We define W1,p
Q (Ω) to be the closure of LipQ (Ω) in Lp (Ω) × Lp (Ω,Q)

where LipQ (Ω) is embedded into the product space by sending w to (w,∇w).

Corollary 27. Suppose both Ω andQ are bounded and that (u,∇u) , (v,∇v) ∈ W1,2
Q (Ω).

Then
(uv, u∇v + v∇u) ∈ W1,1

Q (Ω) .

Proof : Let {vm} ⊂ LipQ (Ω) satisfy vm → v in L2 (Ω) and ∇vm → ∇v in L2 (Ω,Q).
Then by part 1 of Lemma 20 with ϕ = vm we have

(uvm, u∇vm + vm∇u) ∈ W1,2
Q (Ω) .
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Now we let m→∞ and use

‖uvm − uv‖L1(Ω) ≤ ‖u‖L2(Ω) ‖vm − v‖L2(Ω)

and

‖(u∇vm + vm∇u)− (u∇v + v∇u)‖L1(Ω,Q)

≤
∫

Ω

u |Q (∇vm −∇v)| 12 +

∫

Ω

|vm − v| |Q (∇u)| 12

≤ ‖u‖L2(Ω) ‖∇vm −∇v‖L2(Ω,Q) + ‖vm − v‖L2(Ω) ‖∇u‖L2(Ω,Q)

to obtain (uv, u∇v + v∇u) ∈ W1,1
Q (Ω).

We are indebted to S. Rodney for pointing out to us his treatment of products of
Cauchy sequences in [10], which motivated the definition of products in W 1,2

Q (Ω) that is
used in the second bullet item below.

Adapting the classical proof. We end this subsection with some remarks on
adapting the proof in chapter 3 of [11] to the situation at hand here.

In the special case that X ∈ H1,2σ′ (Ω) and (16) holds for some σ ≥ 1, then Proposition
29 below shows that W 1,p

X (Ω) = H1,p
X (Ω) for 1 ≤ p < 2σ′. Thus for u, v ∈ H1,2

X (Ω),

Corollary 27 yields uv ∈ H1,1
X (Ω). As a result we obtain the following

Claim 28. Suppose X ∈ H1,2σ′ (Ω), σ ≥ 1, and that X and Ω are bounded. If u, v, uv ∈
H1,2
X (Ω) and if u ∈ L∞ (Ω), then v∇u ∈ L2 (Ω,X ).

Indeed, the corollary yields ∇ (uv) = u∇v + v∇u in L1 (Ω,X ). By assumption both
∇v and ∇ (uv) are in L2 (Ω,X ) and u is bounded, so we conclude that both ∇ (uv) and
u∇v are in L2 (Ω,X ), hence v∇u ∈ L2 (Ω,X ).

We can now obtain the required analogue of (113) on page 56 of [11] in this case. Using
the notation of [11] we recall that (113) asserts wh′′ (u)∇u ∈ L2 (Ω) if u ∈ W 1,2 (Ω) and
w is in the test function space (see (110) in [11]),

M [u;h] =
{
w ∈W 1,2

0 (Ω) : w ≥ 0 and h′ (u)w ∈W 1,2
0 (Ω)

}
,

where h is admissible for u, i.e. there is an interval I containing the range of u such that
h ∈ C1 (I) ∩ C2

pw (I) is positive and monotone on I and

|h′ (t)| , |h′′ (t)| , |th′′ (t)| ≤ C, t ∈ I.

Now suppose that u ∈ H1,2
X (Ω) and w is in the analogous test function space

MX [u;h] =
{
w ∈

(
H1,2
X

)
0

(Ω) : w ≥ 0 and h′ (u)w ∈
(
H1,2
X

)
0

(Ω)
}
,

where h is admissible for u. We first observe that

h′ ◦ u ∈ H1,2
X (Ω) with ∇ (h′ ◦ u) = h′′ (u)∇u. (36)

Indeed h′ ∈ C1
pw (I) with h′′ bounded, and Corollary 24 shows that (h′ ◦ u, (h′′ ◦ u)∇regu) ∈

W1,2
X (Ω). Since gradients are unique in H1,2

X = W1,2
X (Ω), we have ∇regu = ∇u, which
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completes the proof of (36). If we now apply the claim above with u, v replaced by h′◦u,w
we obtain that wh′′ (u)∇u = w∇ (h′ ◦ u) ∈ L2 (Ω,X ), the required analogue of (113).

In the general case of a bounded quadratic form Q, we still obtain the above conclu-
sions, but we need to take care in defining the composition h′ ◦ u, as well as in defining
what we mean by the product of two elements (u,∇u) and (v,∇v) inW1,2

Q (Ω). We define

h′ ◦ u to be the element (h′ (u) , h′′ (u)∇regu) ∈ W1,2
Q (Ω) given by Corollary 24, i.e. we

take ∇h′ (u) to be the element h′′ (u)∇regu in L2 (Ω,Q). Motivated by the approach
using Cauchy sequences in [10], we define the product of (u,∇u) and (v,∇v) to be the
pair (uv, u∇v + v∇u), which lies in W1,1

Q (Ω) by Corollary 27. If in the claim above we

replace X by Q and the assumption uv ∈ H1,2
X (Ω) by (uv, u∇v + v∇u) ∈ W1,2

Q (Ω), we
again conclude by taking differences that v∇u ∈ L2 (Ω,Q). We now define the space of
test functions MQ [u;h] by

MQ [u;h] =
{
w ∈

(
W 1,2
Q

)
0

(Ω) : w ≥ 0 and h′ (u)w ∈
(
W 1,2
Q

)
0

(Ω)
}

with the following two understandings:

• h′ (u) refers to the pair (h′ (u) , h′′ (u)∇regu) ∈ W1,2
Q (Ω), and

• if u,v∈ W 1,2
Q are represented by the pairs (u,∇u) , (v,∇v) ∈ W1,2

Q (Ω) then the

product uv is represented by the pair (uv, u∇v + v∇u) ∈ W1,1
Q (Ω).

The appropriate analogue of (113) now holds here as well. Since the compositions
h ◦ u appearing in [11] satisfy the hypotheses of assertion 2 of Lemma 20, the proof in
[11] now carries over to prove Theorem 16 here if we simply interpret h′′ (u) everywhere
as χ{x∈Ω:u(x)/∈Ru}h

′′ (u) where Ru is the set of values u takes on with positive measure as
in Proposition 23.

More precisely, we have the following analogue of (112) in [11]:

−
∫
∇wB∇ (h ◦ u) = −

∫
∇ [wh′ (u)]B∇u+

∫
wχ{x∈Ω:u(x)/∈Ru}h

′′ (u) [∇u]B [∇u] ,

To see this we use ∇ (h ◦ u) = h′ (u)∇u from assertion 2 of Lemma 20 together with the
two bullet items above.

Then to obtain the analogue of (114) with χ{x∈Ω:u(x)/∈Ru}h
′′ (u) in place of h′′ (u), we

use ∫

Ω

ϕTv = −
∫

Ω

vT ′ϕ

for v ∈W 1,2
Q (Ω), ϕ ∈ Lipc (Ω) and T subunit - this in turn is true by approximation of v

by Lipschitz functions using Remark 12.
Then (115) uses only (111) and ∇ (h ◦ u) = h′ (u)∇u, and (116) follows directly from

(111), (114) and (115). This shows that with ũ = h ◦ u we have the following analogue of
(117) in [11]:

L̃ũ = f̃ + T′g̃ + χ{x∈Ω:u(x)/∈Ru}h
′′ (u) [∇u]B [∇u] + Φ (37)

in the MQ [u;h]-weak sense where Φ = χ{x∈Ω:u(x)/∈Ru}h
′′ (u) {(Tu) g − (Su) (Gu)} and

L̃, f̃ and g̃ are as on page 58 of [11]. The meaning of equation (37) in theMQ [u;h]-weak
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sense is that if we multiply both sides by w ∈ MQ [u;h], and then integrate by parts
formally in the appropriate integrals, the resulting integrals are absolutely convergent
and equality of the two sides holds. Finally, in Subsection 3.2 of [11] we revert to using
equation (99) there instead of (116) or (117) there, and the reader can verify that the
argument in Subsection 3.2 also carries over with χ{x∈Ω:u(x)/∈Ru}h

′′ (u) in place of h′′ (u).
We should also point out that the remaining arguments in chapter 3 of [11] do not use any
calculus for the functions u+ = max {u, 0} and u− = min {u, 0}, only pointwise estimates.

Recall from Corollary 22 that when the quadratic form Q (x, ξ) is comparable to the
form X (x, ξ) associated to a collection X of H1,2

div (Ω) vector fields, the gradient ∇u of

u ∈W1,2
Q (Ω) is uniquely determined as an element in the form-weighted space L2 (Ω,Q),

and moreover elements in W1,2
Q (Ω) are regular, i.e. (35) holds. In this case, the proof in

Chapter 3 of [11] applies verbatim to WQ-weak solutions u ∈ L2 (Ω) with ∇u ∈ L2 (Ω,Q)
provided (u,∇u) ∈ W1,2

Q (Ω).

5. Equality of degenerate Sobolev spaces

We prove equality of degenerate H and W Sobolev spaces for H1,2 (Ω) vector fields X in
three situations:

1. when the vector fields X are in H1,2σ′ (Ω) and satisfy the Sobolev inequality (16)
for the same σ ≥ 1.

2. when the vector fields X are in H1,2 (Ω), are comparably Lipschitz off their common
zero set Z (see (41) below), and Lipschitz at Z, i.e. |vj (x)| ≤ Cdist (x, Z).

3. when the dimension n = 1 and the vector fields X are in H1,2 (Ω).

For convenience we will state and prove our results for 1 ≤ p <∞ when appropriate.
We begin by considering the first situation in the following subsection.

5.1. The Sobolev inequality. The following proposition is proved in [3] and [4] in
the case when the vector fields X = {X1, ..., Xm} are Lipschitz continuous in Ω. Recall
that

H1,p (Ω) = {v ∈ Lp (Ω) : ∇v ∈ Lp (Ω)} ,
and consider the following Lp − Lq analogue of (16):

{∫

ω

|w|q
} 1
q

≤ Cp,q,ω
{∫

ω

|w|p +

∫

ω

|Xw|p
} 1
p

, (38)

for all opens sets ω b Ω and for all w ∈ Lipc (ω). Note that (38) typically holds in a
stronger form in the presence of a subrepresentation inequality in a homogeneous space
with 1

q = 1
p − 1

D , where D is the doubling exponent for the metric balls - see e.g. Propo-

sition 74 in [11]. Inequalities (16) and (38) coincide when q = 2σ, p = 2 and D = 2σ ′.
Below we give an example of vector fields X satisfying the hypotheses of Proposition 29,
but with X (x, ξ) not comparable to any quadratic form arising from Lipschitz vector
fields.

Proposition 29. Suppose that X = {X1, ..., Xm} is a collection of H1,D (Ω) vector fields
in Ω satisfying (38) with 1

q = 1
p − 1

D for some 1 ≤ p < D. Then W 1,p
X (Ω) = H1,p

X (Ω);

moreover, Jε ∗ ϕf → ϕf in H1,p
X (Ω) as ε → 0 for every f ∈ H1,p

X (Ω), ϕ ∈ C∞c (Ω) and
any smooth compactly supported Euclidean approximate identity {Jε}0<ε<1.
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Remark 30. In general however, convolution of elements in H1,p
X (Ω) is not sufficient for

proving local density of Lip (Ω) when X is not Lipschitz. See the subsection on examples
below.

Proof : The proof is a straightforward modification of that of Theorem .5 in [4],
where our spaces W 1,p

X (Ω) and H1,p
X (Ω) are denoted S1,p (Ω) and L1,p (Ω) respectively.

In fact, it is only in Proposition .7 where the argument in [4] must be essentially changed
to accommodate our assumptions, namely that X ∈ H1,D (Ω) and that (38) holds with
1
q = 1

p − 1
D , in place of the assumption in [4] that X is Lipschitz. Indeed, Proposition .7

is applied with f = w ∈ L1,p (Ω) = H1,p
X (Ω), and since by (38) we now have f ∈ Lqloc (Ω),

the analogue of Proposition .7 given below will complete the argument in [4]. We will use
the notation in [4]: J is a smooth function compactly supported in the unit ball B in Rn,
Jε (x) = ε−nJ

(
ε−1x

)
, and

J̃jε (x) = [Xj , Jε] = XjJε − JεXj

is the commutator of Xj and Jε. Lemma .6 in [4] shows that

J̃jεf (x) =

∫

B

f (x+ εh)Kj
ε (x, h) dh,

where

Kj
ε (x, h) =

1

ε

n∑

k=1

∂

∂hk

{[
bjk (x+ εh)− bjk (x)

]
J (h)

}

and Xj =
∑n
k=1 b

j
k (x) ∂

∂xk
for 1 ≤ j ≤ m. Here is the required analogue of Proposition .7

in [4].

Proposition 31. Let X ∈ H1,D (Ω). Then for any f ∈ Lqloc (Ω) with 1
q = 1

p − 1
D and

ω b Ω we have
lim
ε→0

∥∥∥J̃jεf
∥∥∥
Lp(ω)

= 0, 1 ≤ j ≤ m. (39)

Proof : To see (39), fix j and let J̃ε, Kε and bk denote J̃jε , Kj
ε and bjk. By hypothesis

bk ∈ H1,D (Ω). We have

∥∥∥J̃jεf
∥∥∥
Lp(ω)

= sup
‖g‖

Lp
′
(ω)

=1

∣∣∣∣
∫

ω

J̃jεf (x) g (x) dx

∣∣∣∣ .

For ‖g‖Lp′ (ω) = 1 we compute using
∫
B
Kε (x, h) dh = 0, Hölder’s inequality and 1 =

1
q + 1

D + 1
p′ that

∣∣∣∣
∫

ω

J̃εf (x) g (x) dx

∣∣∣∣ =

∣∣∣∣
∫

ω

{∫

B

f (x+ εh)Kε (x, h) dh

}
g (x) dx

∣∣∣∣

=

∣∣∣∣
∫

ω

{∫

B

[f (x+ εh)− f (x)]Kε (x, h) dh

}
g (x) dx

∣∣∣∣

≤
{∫

ω

∫

B

|f (x+ εh)− f (x)|q dhdx
} 1
q
{∫

ω

∫

B

|Kε (x, h)|D dhdx
} 1
D

,



Degenerate Sobolev Spaces and Regularity of Subelliptic Equations 27

which tends to 0 as ε→ 0 since f ∈ Lqloc (Ω), translation is continuous in Lqloc (Ω), and

∫

ω

∫

B

|Kε (x, h)|D dhdx ≤ C <∞ (40)

holds with C independent of ε < d (∂Ω, ω). Indeed, to see (40) we write

Kε (x, h) =

n∑

k=1

∂bk
∂xk

(x+ εh) J (h) +
1

ε

n∑

k=1

[bk (x+ εh)− bk (x)]
∂J

∂hk
(h)

= Iε (x, h) + IIε (x, h) .

Now {∫

ω

∫

B

|Iε (x, h)|D dhdx
} 1
D

≤
∥∥∥∥∥
n∑

k=1

∂bk
∂xk

∥∥∥∥∥
LD(Ω)

‖J‖LD(B) <∞

since ε < d (∂Ω, ω) and bk ∈ H1,D (Ω). Using

bk (x+ εh)− bk (x) =

∫ 1

0

εh · ∇bk (x+ εht) dt,

we also have

{∫

ω

∫

B

|IIε (x, h)|D dhdx
} 1
D

=





∫

ω

∫

B

∣∣∣∣∣
n∑

k=1

[∫ 1

0

h · ∇bk (x+ εht) dt

]
∂J

∂hk
(h)

∣∣∣∣∣

D

dhdx





1
D

≤
n∑

k=1

{∫

B

{∫ 1

0

∫

ω

|∇bk (x+ εht)|D dxdt
} ∣∣∣∣

∂J

∂hk
(h)h

∣∣∣∣
D

dh

} 1
D

≤
n∑

k=1

‖∇bk‖LD(Ω)

∥∥∥∥
∂J

∂hk
(h)h

∥∥∥∥
LD(B)

<∞.

This completes the proof of (40) and hence of the proposition.
Now we can show that Jε ∗ f → f locally in H1,p

X (Ω) as ε→ 0 for every f ∈ H1,p
X (Ω).

Indeed,

‖Xj (Jεf)−Xjf‖Lp(ω) =
∥∥∥
(
JεXj + J̃jε

)
f −Xjf

∥∥∥
Lp(ω)

≤ ‖Jε (Xjf)−Xjf‖Lp(ω)+
∥∥∥J̃jεf

∥∥∥
Lp(ω)

tends to 0 as ε → 0 for each 1 ≤ j ≤ m, and obviously ‖Jεf − f‖Lp(ω) → 0 as ε → 0.

With this accomplished we can now obtain the global result W 1,p
X (Ω) = H1,p

X (Ω) using a
partition of unity argument as in [4].

5.2. Comparably Lipschitz off the common zero set. Now we turn to our second
generalization of the H = W theorem in [3] and [4]. This time we assume that the vector
fields X = {X1, ..., Xm} are merely in H1,2 (Ω), but are comparably Lipschitz off their
common zero set Z: for each open set ω b Ω \ Z there is a positive constant cω and a
collection of Lipschitz vector fields Fω = {F1, ..., Fp}, p = p (ω), defined in ω such that

cωFω (x, ξ) ≤ X (x, ξ) ≤ 1

cω
Fω (x, ξ) , ξ ∈ Rn, x ∈ ω b Ω \ Z, (41)
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where Z =
⋂m
j=1 Zj and Zj = {x ∈ Ω : vj (x) = 0} is the zero set of the vector field

Xj (x) = vj (x) · ∇. We prove that H1,2
X = W 1,2

X provided that in addition the vector
fields X are ”Lipschitz at their common zero set”, i.e.

|vj (x)| ≤ Cdist (x, Z) , x ∈ Ω, 1 ≤ j ≤ m. (42)

Note in particular that (41) holds with Fω =
{

∂
∂xj

}n
j=1

if the vector fields X ∈ H1,2
div (Ω)

are elliptic off their common zero set Z: for each compact subset L of Ω \ Z there is a
positive constant cL such that

cL |ξ|2 ≤ X (x, ξ) =

m∑

j=1

(vj (x) · ξ)2 ≤ 1

cL
|ξ|2 , ξ ∈ Rn, x ∈ L. (43)

We also mention a weakening of the hypothesis (41); namely that the vector fields Fω
need not be Lipschitz in ω, but merely satisfy the hypotheses of Proposition 29 in ω, i.e.
Fω ∈ H1,2σ′ (ω) and (16) holds with the same σ for all compactly supported open subsets
of ω. Finally, in the subsection on examples below, we give an example of a collection
Y = {Y1, Y2, Y3} of three H1,2 (D) vector fields in the unit disk D satisfying (43) and
(42), but for which there is no collection X = {X1, ...Xm} of Lipschitz vector fields whose
quadratic form X (x, ξ) is comparable to Y (x, ξ), thus demonstrating that Theorem 32
isn’t a consequence of the Lipschitz result in [3] and [4].

Theorem 32. Suppose that X = {X1, ..., Xm} is an H1,2 (Ω) collection of vector fields
in Ω ⊂ Rn such that X is comparably Lipschitz off its common zero set and satisfies (42).
Then H1,2

X (Ω) = W 1,2
X (Ω).

Proof : Let Z =
⋂
m
j=1Zj where Zj is the zero set of the vector field Xj = vj · ∇. For

δ ≥ 0 define the sets Pδ by

Pδ = {x ∈ Ω : dist (x, Z) > δ} .
We can construct smooth functions ηδ with 0 ≤ ηδ ≤ 1, and a positive constant C such
that

ηδ = 1 on P2δ,

supp (ηδ) ⊂ Pδ,

|∇ηδ| ≤ Cδ−1.

Let J be a smooth nonnegative function of integral one supported in the unit ball B of
Rn, and as usual define

Jε (x) = ε−nJ
(
ε−1x

)
, x ∈ Rn, ε > 0.

Let f ∈ H1,2
X (Ω) and δ > 0. Write

f = gδ + b+ hδ

where

gδ = ηδf,

b = χZf,

hδ = χP0
(1− ηδ) f.

We will prove the following three assertions:
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1. Xj (gδ ∗ Jε) → Xjgδ in L2 (K) as ε → 0 for each compact set K ⊂ Ω, 0 < δ <
dist (K,Ωc), 1 ≤ j ≤ m, and

2. Xj ([χZ (b ∗ Jσ)] ∗ Jε)→ 0 in L2 (K) as ε→ 0 for each compact set K ⊂ Ω, 0 < σ <
1
2dist (K,Ωc), 1 ≤ j ≤ m, and

3. ‖hδ‖L2(Ω) + ‖Xjhδ‖L2(Ω) → 0 as δ → 0 for each 1 ≤ j ≤ m.

First we complete the demonstration of the theorem assuming these three assertions.
In fact we now claim

lim sup
ε→0
‖f − (gδ + χZ (b ∗ Jσ)) ∗ Jε‖H1,2

X (ω) → 0 as σ and δ → 0, (44)

for all open sets ω b Ω. With LipX (ω) as defined in (13), we have (gδ + χZ (b ∗ Jσ))∗Jε ∈
LipX (ω). It now follows easily that H1,2

X ,loc (Ω) = W 1,2
X ,loc (Ω) (as usual Bloc (Ω) denotes

those functions f on Ω such that ϕf ∈ B (Ω) for all ϕ ∈ C∞c (Ω)). A standard partition
of unity argument ([6]; see also [4]) now shows that H1,2

X (Ω) = W 1,2
X (Ω). To see (44) we

set bσ = χZ (b ∗ Jσ) on ω and use

f − (gδ + bσ) ∗ Jε = gδ + b+ hδ − (gδ + bσ) ∗ Jε
= {(gδ + bσ)− (gδ + bσ) ∗ Jε}+ hδ + b− bσ,

to compute that

‖f − (gδ + bσ) ∗ Jε‖L2(ω) ≤ ‖(gδ + bσ)− (gδ + bσ) ∗ Jε‖L2(ω) (45)

+ ‖hδ‖L2(Ω) + ‖b− bσ‖L2(Z∩ω) ,

and since gδ + bσ ∈ L2 (ω′) with ω b ω′ b Ω, we obtain

lim sup
ε→0
‖f − (gδ + bσ) ∗ Jε‖L2(ω) ≤ ‖hδ‖L2(Ω) + ‖b− bσ‖L2(Z∩ω) .

To estimate the L2 norm of the derivatives we note that

Xjf = Xj (gδ + hδ) (46)

in the weak sense in Ω since
∫
ϕXjf = −

∫
f {∇ · (ϕvj)} = −

∫
χP0

f {∇ · (ϕvj)} = −
∫

(gδ + hδ) {∇ · (ϕvj)} ,

for ϕ ∈ C1
c (Ω), where the first equality is the definition of Xjf , and the second equality

follows from P0 = Ω \ Z, the identity

∇ · (ϕvj) = ϕdiv vj +∇ϕ · vj
in Lemma 1, and the fact that div vj = 0 a.e. in the set Zj where vj vanishes, which in
turn holds since vj ∈ H1,2 (Ω) (see Lemma 7.7 in [5]). The third equality uses∇·(ϕvj) = 0
a.e. in Z. Thus we compute

‖Xj {f − (gδ + bσ) ∗ Jε}‖L2(ω) = ‖Xj {(gδ + hδ)− (gδ + bσ) ∗ Jε}‖L2(ω) (47)

≤ ‖Xj {gδ − gδ ∗ Jε}‖L2(ω) + ‖Xjhδ‖L2(Ω)

+ ‖Xj {bσ ∗ Jε}‖L2(ω) .
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Now the first and third terms on the right side of (47) tend to 0 as ε→ 0 by assertions 1
and 2 above. Thus we have

lim sup
ε→0
‖f − (gδ + bσ) ∗ Jε‖H1,2

X (ω) ≤ lim sup
ε→0
‖f − (gδ + bσ) ∗ Jε‖L2(ω) (48)

+ lim sup
ε→0
‖Xj {f − (gδ + bσ) ∗ Jε}‖L2(ω)

≤ ‖hδ‖L2(Ω) + ‖b− b ∗ Jσ‖L2(Z∩ω) + ‖Xjhδ‖L2(Ω) .

The right-hand side of (48) tends to 0 as σ and δ → 0 upon using b ∈ L2 (Ω) and assertion
3. This completes the proof of (44).

So it remains to prove assertions 1, 2 and 3. Choose K ⊂ ω′ b Ω. We obtain assertion
1 immediately from the final statement of Proposition 29 applied to the open set Ω \ Z
together with assumption (41). Assertion 2 follows from the inequality |vj | ≤ Cε on
P0 \ Pε, which is in turn a consequence of (42). Indeed, using this with the estimate

|[∇Jε] ∗ [χZ (b ∗ Jσ)] (x)| ≤ ‖∇Jε‖L1 ‖b ∗ Jσ‖L∞(Z∩ω′) ≤ C
1

ε
‖b ∗ Jσ‖L∞(Z∩ω′) ,

we have since the support of [χZ (b ∗ Jσ)] ∗ Jε is outside Pε,

∫

K

|Xj ([χZ (b ∗ Jσ)] ∗ Jε)|2 =

∫

K∩P0

|vj · ∇ ([χZ (b ∗ Jσ)] ∗ Jε)|2

=

∫

K∩(P0\Pε)
|vj · ([∇Jε] ∗ [χZ (b ∗ Jσ)])|2

≤
∫

K∩(P0\Pε)
|vj (x)|2 C

2

ε2
‖b ∗ Jσ‖2L∞(Z∩ω′) dx

≤ C2 ‖b ∗ Jσ‖2L∞(Z∩ω′) |P0 \ Pε| .

The quantity |P0 \ Pε| tends to 0 as ε → 0 since
⋂
ε>0

(P0 \ Pε) = φ, and this establishes

assertion 2. Since Xjb = 0 in the weak sense by (46), we have

Xjhδ = Xj (b+ hδ) = Xj (f − gδ) = Xj {(1− ηδ) f} .

Also (42) and supp ∇ηδ ⊂ Pδ \ P2δ imply |vj | |∇ηδ| ≤ C. Assertion 3 now follows from

∫

Ω

|hδ|2 +

∫

Ω

|Xjhδ|2 =

∫

P0

|(1− ηδ) f |2 +

∫

Ω

|vj · ∇ {(1− ηδ) f}|2

≤ C

∫

P0

{
(1− ηδ)2

+ |vj |2 |∇ηδ|2
}
|f |2 + C

∫

P0

|(1− ηδ)|2 |vj · ∇f |2

≤ C

∫

P0\P2δ

(
|f |2 + |Xjf |2

)
,

which tends to 0 as δ → 0 since
⋂
δ>0 (P0 \ P2δ) = φ.

5.3. One dimension. When n = 1 and the vector fields X = {X1, ..., Xm} are in
H1,2 (Ω) (which coincides with H1,2

div (Ω) in one dimension), Ω ⊂ R, we always have

H1,2
X (Ω) = W 1,2

X (Ω).
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Theorem 33. H1,2
X (Ω) = W 1,2

X (Ω) if X = {X1, ..., Xm} ∈ H1,2 (Ω), Ω ⊂ R.

Proof : We suppose for convenience that there is only one vector field X = v d
dx , and

that the open set Ω is a bounded interval - the proof in the general case is similar. The
crucial consequence of X ∈ H1,2 (Ω) that is used in the approximation scheme is the lip 1

2
estimate

|v (y)− v (x)| =
∣∣∣∣
∫ y

x

v′ (t) dt

∣∣∣∣ ≤
(∫ y

x

|v′ (t)|2 dt
) 1

2

|x− y| 12 . (49)

Let Z = {x ∈ Ω : v (x) = 0} and write

Ω \ Z =
·∪
∞
n=1In =

·∪
∞
n=1 (an, bn) ,

where
·∪ denotes a pairwise disjoint union. We also define Pδ = {x ∈ Ω : dist (x, Z) > δ}

for δ ≥ 0 as in the previous subsubsection. Note that P0 = Ω \ Z.
Now suppose f ∈ H1,2

X (Ω) and ε > 0 are given. We will complete the proof by
constructing g ∈ Lip (Ω) such that

‖f − g‖2H1,2
X (Ω) = ‖f − g‖2L2(Ω) + ‖f ′ − g′‖2L2(Ω,v2) < Cε. (50)

First we choose ϕ ∈ C∞c (Ω) such that

‖f − ϕ‖2L2(Ω) < ε. (51)

Then since ∩δ>0 (P0 \ Pδ) = φ, we can choose δ > 0 so that

∫

P0\Pδ
|f (x)|2 dx < ε (52)

∫

(Pδ)
c

|f ′ (x)|2 v (x)
2
dx =

∫

P0\Pδ
|Xf (x)|2 dx < ε,

∫

(Pδ)
c

|ϕ′ (x)|2 v (x)
2
dx =

∫

P0\Pδ
|Xϕ (x)|2 dx < ε.

Now since limn→∞ |In| = 0, there are only finitely many of the intervals In that intersect

Pδ: enumerate them as {In}Nn=1 and set G = ∪Nn=1In. Note that Pδ ⊂ G.
We now define g in the set Ω\G by g = ϕ. To define g in the interval In = (an, bn) we

proceed as follows. Suppose that both of the endpoints an and bn lie in Z (the case that
one or both lie in ∂Ω is similar). Since (an, bn) intersects Pδ and an, bn ∈ Z we thus have
an < an + δ < bn− δ < bn. Since v is positive on (an, bn), f is continuous on (an, bn) and
we can choose a point xn ∈

(
an + δ

2 , an + δ
)

such that

f (xn) =
2

δ

∫ an+δ

an+ δ
2

f (t) dt,

and similarly choose yn ∈
(
bn − δ, bn − δ

2

)
such that

f (yn) =
2

δ

∫ bn− δ2

bn−δ
f (t) dt.
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Now define

hn (t) =





f (xn) for an < t ≤ xn
f (t) for xn < t < yn
f (yn) for yn ≤ t < bn

.

Clearly hn ∈ L2 (In). We also have h′n = f ′χ(xn,yn) ∈ L2 (In) since f ′ ∈ L2
(
Ω, v2

)
and v

is positive on (xn, yn), the support of h′n. Thus with J as in the previous subsubsection,
we can choose 0 < σ < δ

4 independent of 1 ≤ n ≤ N so small that (for the purpose of
defining the convolution hn ∗ Jσ we extend hn to be continuous and constant outside In),

‖hn ∗ Jσ − hn‖2L2(In) <
ε

N
, (53)

‖h′n ∗ Jσ − h′n‖
2
L2(In) <

ε

N
.

The function hn ∗ Jσ is smooth in In and since σ < δ
4 , it is constant on the intervals(

an, an + δ
4

)
and

(
bn − δ

4 , bn
)
, taking the values f (xn) and f (yn) there respectively. The

only reason we cannot define g to be hn ∗ Jσ on In is that hn ∗ Jσ does not match ϕ at
the endpoints an and bn. So we will modify hn ∗ Jσ near the endpoints to match ϕ there
by adding a small piecewise affine perturbation ψn, and use the lip 1

2 estimate (49) on v
to control the L2

(
v2
)

norm of the derivative of the perturbation. Here are the details.

For 0 < τ < δ
4 to be chosen momentarily, we define ψn to be the piecewise affine function

on [an, bn] whose graph joins the four points (an, ϕ (an)− f (xn)), (an + τ , 0),(bn − τ , 0)
and (bn, ϕ (bn)− f (yn)) in succession. Using (49) and an, bn ∈ Z we have for 1 ≤ n ≤ N ,

∫

In

∣∣ψ′n
∣∣2 v2 =

∫ an+τ

an

|ϕ (an)− f (xn)|2
τ2

v (t)
2
dt (54)

+

∫ bn

bn−τ

|ϕ (bn)− f (yn)|2
τ2

v (t)
2
dt

≤ |ϕ (an)− f (xn)|2
τ2

(∫ an+τ

an

|v′|2
)
τ

∫ an+τ

an

dt

+
|ϕ (bn)− f (yn)|2

τ2

(∫ bn

bn−τ
|v′|2

)
τ

∫ bn

bn−τ
dt

≤ |ϕ (an)− f (xn)|2
∫ an+τ

an

|v′|2 + |ϕ (bn)− f (yn)|2
∫ bn

bn−τ
|v′|2 < ε

N

if τ > 0 is chosen sufficiently small. We also choose τ > 0 small enough to ensure
{
|ϕ (an)− f (xn)|2 + |ϕ (bn)− f (yn)|2

}
τ <

ε

N
, 1 ≤ n ≤ N. (55)

Then we set g = hn ∗ Jσ + ψn on In, for 1 ≤ n ≤ N . Altogether we have

g (t) =

{
ϕ (t) for t ∈ Ω \G

hn ∗ Jσ (t) + ψn (t) for t ∈ In, 1 ≤ n ≤ N .

Clearly g ∈ Lip (Ω) and we have

f − g = (f − ϕ)χΩ\G +

N∑

n=1

(f − hn)χIn +

N∑

n=1

(hn − hn ∗ Jσ)χIn −
N∑

n=1

ψn. (56)
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We now use (56) to compute ‖f − g‖L2(Ω) and ‖Xf −Xg‖L2(Ω) as follows:

‖f − g‖2L2(Ω) . ‖f − ϕ‖2L2(Ω) +

N∑

n=1

∫ bn

an

|f − hn|2

+

N∑

n=1

∫ bn

an

|hn − hn ∗ Jσ|2 +

N∑

n=1

∫ bn

an

|ψn|2

= I + II + III + IV,

where I < ε by (51),

II ≤
N∑

n=1





∫ xn

an

∣∣∣∣∣f −
2

δ

∫ an+δ

an+ δ
2

f

∣∣∣∣∣

2

+

∫ bn

yn

∣∣∣∣∣f −
2

δ

∫ bn− δ2

bn−δ
f

∣∣∣∣∣

2




≤ C
N∑

n=1

{∫ xn

an

|f |2 +
2 (xn − an)

δ

∫ an+δ

an+ δ
2

|f |2 +

∫ bn

yn

|f |2 +
2 (bn − yn)

δ

∫ bn− δ2

bn−δ
|f |2

}

≤ C

∫

P0\Pδ
|f |2 < Cε

by the first line in (52), III <
∑N
n=1

ε
N = ε by the first line in (53), and

IV ≤
N∑

n=1

{
|ϕ (an)− f (xn)|2 + |ϕ (bn)− f (yn)|2

}
τ <

N∑

n=1

ε

N
= ε

by (55).
Using (56) again, together with Pδ ⊂ G, the derivatives are estimated by

‖Xf −Xg‖2L2(Ω) ≤
∫

(Pδ)
c

|Xf |2 +

∫

(Pδ)
c

|Xϕ|2 +

N∑

n=1

∫ bn

an

|Xf −Xhn|2

+
N∑

n=1

∫ bn

an

|X (hn − hn ∗ Jσ)|2 +
N∑

n=1

∫ bn

an

|Xψn|2

= V + V I + V II + V III + IX,

where V + V I < 2ε by the second two lines in (52),

V II =

N∑

n=1

{∫ xn

an

|Xf |2 +

∫ bn

yn

|Xf |2
}
≤
∫

(Pδ)
c

|Xf |2 < ε

by the second line in (52),

V III ≤ C ‖v‖2L∞(Ω)

N∑

n=1

∫ bn

an

|h′n − h′n ∗ Jσ|
2 ≤ C ‖v‖2L∞(Ω)

N∑

n=1

ε

N
= C ′ε

by the second line in (53), and finally IX ≤ ∑N
n=1

ε
N = ε by (54). This completes the

proof of (50), and hence that of Theorem 33.
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Remark 34. Theorem 33 generalizes to show that H1,p
X (Ω) = W 1,p

X (Ω) for 1 < p ≤ 2

provided n = 1 and the vector fields X are in H1,p′ (Ω). Here H1,p
X (Ω) and W 1,p

X (Ω) are
defined as in Remarks 3 and 9 above. In fact, only inequality (54) of the proof of Theorem
33 is affected for p 6= 2, and now becomes

∫

In

∣∣ψ′n
∣∣p vp ≤ τ2−p |ϕ (an)− f (xn)|p

(∫ an+τ

an

|v′|p
′
)p−1

(57)

+τ2−p |ϕ (bn)− f (yn)|p
(∫ bn

bn−τ
|v′|p

′
)p−1

.

For 1 < p ≤ 2, the right side of (57) tends to 0 as τ → 0, and the proof of Theorem
33 shows that H1,p

X (Ω) = W 1,p
X (Ω). However, when p > 2 the right side of (57) need

not tend to 0 as τ → 0, resulting in examples for which H1,p
X (Ω) 6= W 1,p

X (Ω), even when
X ∈ H1,q (Ω) for all q < p. See the subsection on examples below.

5.4. Examples. We first give an example of a collection Y = {Y1, Y2, Y3} of three
H1,2 (D) vector fields in the unit disk D such that Y is elliptic off its common zero set and
satisfies (42), but for which there is no collection X = {X1, ...Xm} of Lipschitz vector
fields whose quadratic form X (x, ξ) is comparable to Y (x, ξ). This shows that Theorem
32 is not included in the known theorems in [3] and [4].

Example 35. Identify x = (x1, x2) ∈ R2 with x = x1 + ix2 = reiθ ∈ C, and define
C-valued functions w1,w2,w3 by

w1 (x) = e−r
−2

, w2 (x) = ie−r
−2

, w3 (x) = xeir
−α

= rei(θ+r
−α),

so that Yj (x) = wj (x) · ∇ is given by

Y1 (x) = e−r
−2 ∂

∂x1
,

Y2 (x) = e−r
−2 ∂

∂x2
,

Y3 (x) = r cos
(
θ + r−α

) ∂

∂x1
+ r sin

(
θ + r−α

) ∂

∂x2
.

The vectors w1 and w2 are smooth, and w3 ∈ H1,2 (D) for−∞ < α < 1 since ∂
∂r (r cos (θ + r−α)) =

O (1 + r−α) and 1
r
∂
∂θ (r cos (θ + r−α)) = O (1), etc., but w3 is Lipschitz only for α ≤ 0

(and also with r−α replaced by log r). Conditions (43) and (42) hold with Z = {0} for all
α.

However, if X = {X1, ...Xm} is a collection of vector fields Xj = vj · ∇ satisfying

X (x, ξ) ≈ Y (x, ξ) ≡
3∑

j=1

(wj (x) · ξ)2
= e−2r−2 |ξ|2 +

{
Re
(
rei(θ+r

−α)ξ
)}2

,

then for ξ = e1 and x = (r, 0), which is denoted r ∈ C, we have

m∑

j=1

(vj (r) · e1)
2

= X (r, e1) ≈ e−2r−2

+ r2 cos2
(
r−α

)
, (58)
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shows that X cannot be Lipschitz if α > 0. Indeed, if X is Lipschitz, then

|X (r + s, e1)−X (r, e1)| =

∣∣∣∣∣∣

m∑

j=1

{
(vj (r + s) · e1)

2 − (vj (r) · e1)
2
}
∣∣∣∣∣∣

(59)

≤ C |s|
m∑

j=1

|vj (r + s) · e1 + vj (r) · e1|

≤ C |s| (r + |s|) ,

since X (x, e1) ≤ CY (x, e1) ≤ Cr2. On the other hand, if we choose 0 < r0 <
1
10 so that

cos
(
r−α0

)
= 0, and then take s0 > 0 such that (r0 + s0)

−α
= r−α0 − π

2 , we have

π

2
rα0 = 1−

(
1 +

s0

r0

)−α
≈ 1−

(
1− αs0

r0

)
= α

s0

r0
,

and so
s0 ≈

π

2α
r1+α
0 .

But (58) and cos
(
r−α0

)
= 0 yield

X (r0, e1) ≤ Ce−2r−2
0 ,

X (r0 + s0, e1) ≥ c (r0 + s0)
2
,

and so we have

X (r0 + s0, e1)−X (r0, e1) ≥ c (r0 + s0)
2 − Ce−2r−2

0 ≈ r2
0 � r2+α

0 ≈ s0 (r0 + s0) ,

contradicting (59).

We observe that the above argument yields a single vector field that is comparably
Lipschitz, instead of elliptic, off its zero set:

Example 36. The single vector field Y = {Y3} is comparably Lipschitz off its zero set
and satisfies (42) in D, while by the argument above, Y (x, ξ) fails to be comparable to
X (x, ξ) for any collection X = {X1, ...Xm} of Lipschitz vector fields in D.

Next we give an example of nonvanishing and non-Lipschitz vector fields that satisfy
the hypotheses of Proposition 29.

Example 37. Let α and β be positive rational fractions with even numerators and odd
denominators, and suppose

1 > α >

√
5− 1

2
, 1 > β >

1 + α

2 + α
.

Set D = 2 +α. We claim that the vector fields X = {X,Y } defined in the unit disk D by

X =
∂

∂x
+ yβ

∂

∂y
and Y =

∂

∂x
+ xα

∂

∂y
,
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are in H1,D (D) and satisfy (38) for 1
q = 1

p − 1
D (they are Lipschitz only for α, β ≥ 1).

The integral curves for X are given by

γ (t) = (t, 0) and γa (t) =
(
t, [(1− β) (t− a)]

1
1−β
)
,

together with concatenations of γa1
, γ and γa2

that join on the x-axis. The integral curves
for Y are given by

δb (t) =

(
t, b+

t1+α

1 + α

)
.

Note that both of the exponents 1
1−β and 1 + α are fractions with odd denominator by

our assumptions on α and β. The hypothesis β > 1+α
2+α implies that 1 + α < 1

1−β , and a

long and tedious calculation using γa and δb then shows that the control balls B ((x, y) , r)
associated with X have doubling constant D = 2 + α, i.e.

|B ((x, y) , r)| ≤ C
(r
s

)2+α

|B ((x, y) , s)| ,

for all 0 < s ≤ r ≤ 1 and (x, y) ∈ D. Using the integral curves γa and δb we can establish
the subrepresentation inequality (186) in [11], and then Proposition 74 of [11] yields the
Sobolev inequality (38) with D = 2 + α. Now X ∈ H1,D (D) provided α, β > 1− 1

D , and

this follows from D = 2 + α, α >
√

5−1
2 and β > 1+α

2+α . Finally, arguing as in the first
example, we can show that X (x, ξ) is not comparable to any quadratic form arising from
Lipschitz vector fields.

Convolution of elements in H1,2
X (Ω) is not in general sufficient for proving density of

Lip (Ω) when X is not Lipschitz. Here is an example in dimension n = 1.

Example 38. If

vβ (x) = (x+)
β

=

{
0 if −1 < x ≤ 0
xβ if 0 < x < 1

,

on Ω ≡ (−1, 1), then vβ ∈ H1,2 (Ω) for all β > 1
2 , yet for Xβ = vβ

d
dx , the convolutions

f ∗ Jε → f in H1,2
Xβ (−1, 1) for all f ∈ H1,2

Xβ (−1, 1) if and only if β ≥ 1. Indeed, fα (x) =

(x−)
−α ∈ H1,2

Xβ (−1, 1) provided α < 1
2 since vβ

d
dxfα = 0 in the weak sense. Assuming

J ≥ 0 one then computes that for 2ε < x < 3ε,

(Jε ∗ fα)
′
(x) = Jε ∗ f ′α (x) = α

∫ ε

−ε

(
(x− t)−

)−α−1
ε−1J

(
ε−1t

)
dt ≥ cε−α−1,

for α > 0, and hence

‖fα − Jε ∗ fα‖2H1,2
Xβ

(Ω) ≥
∥∥f ′α − (Jε ∗ fα)

′∥∥2

L2(Ω,v2
β)

≥
∫ 3ε

2ε

∣∣(Jε ∗ fα)
′
(x)
∣∣2 vβ (x)

2
dx

≥
(
cε−α−1

)2 ∫ 3ε

2ε

x2βdx = cε2(β−α)−1

tends to ∞ as ε→ 0 if α > β − 1
2 . Thus given 1

2 < β < 1, we can choose α > 0 satisfying

β − 1
2 < α < 1

2 so that fα ∈ H1,2
Xβ (Ω) and Jε ∗ fα 9 fα locally in H1,2

Xβ (Ω).
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Now we give examples in all dimensions of vector fields X in H1,p′ (Ω) for which
H1,p
X (Ω) 6= W 1,p

X (Ω), p > 2 - compare Remark 34.

Example 39. For every p > 2 and n ≥ 1 there is a vector field X ∈ H1,p′ (Ω) for
which H1,p

X (Ω) 6= W 1,p
X (Ω), X = {X}, and moreover, we can even take X ∈ H1,q (Ω) for

p′ ≤ q < p. To see this in dimension n = 1, fix 1
p ≤ 1

q′ < β < 1
p′ and let X = |x|β d

dx for

x ∈ Ω ≡ (−1, 1). Then X ∈ H1,q (Ω) since β > 1
q′ . Set u (x) = sgn (x) so that Xu = 0

in the weak sense and u ∈ H1,p
X (Ω). Now we observe that if w ∈ Lip (Ω) ∩ H1,p

X (Ω) =
LipX ,p (Ω), then β < 1

p′ yields the Poincaré inequality:

∫

Ω

|w (x)− w (0)|p dx =

∫ 1

−1

∣∣∣∣
∫ x

0

w′ (t) dt

∣∣∣∣
p

dx =

∫ 1

−1

∣∣∣∣
∫ x

0

|t|−β (Xw) (t) dt

∣∣∣∣
p

dx

≤
∫ 1

−1

∣∣∣∣
∫ x

0

|t|−βp
′
dt

∣∣∣∣
p−1 ∣∣∣∣

∫ x

0

|(Xw) (t)|p dt
∣∣∣∣ dx

≤ Cp,β

∫ 1

−1

∣∣∣∣
∫ x

0

|(Xw) (t)|p dt
∣∣∣∣ dx ≤ Cp,β

∫

Ω

|(Xw) (t)|p dt.

From this and Xu = 0 we easily see that u /∈W 1,p
X (Ω). Indeed, if w ∈ LipX ,p (Ω), then

C
1
p

p,β ‖X (w − u)‖Lp(Ω) = C
1
p

p,β ‖Xw‖Lp(Ω)

≥ ‖w − w (0)‖Lp(Ω)

≥ ‖u− w (0)‖Lp(Ω) − ‖w − u‖Lp(Ω)

≥ 1− ‖w − u‖Lp(Ω)

shows that ‖w − u‖H1,p
X (Ω) ≥ cp,β > 0 for all w ∈ LipX ,p (Ω), hence u is not in the closure

W 1,p
X (Ω) of LipX ,p (Ω) in H1,p

X (Ω). This example immediately lifts to higher dimensions
by introducing extra variables and then multiplying the function u by an appropriate
smooth cutoff function.

Remark 40. Note that the existence of a Poincaré inequality as above prohibits sgn (x)
from belonging to W 1,p

X (Ω). On the other hand sgn (x) belongs to H1,p
X (Ω) if X vanishes

on the y-axis. The above example shows that both phenomena can occur simultaneously
if p > 2.
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