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1. INTRODUCTION
In a recent paper [11], the authors proved both a rough analogue of the Fefferman-Phong
regularity theorem for smooth subelliptic self-adjoint operators, and a rough analogue of a
special diagonal case of Hormander’s theorem for sums of squares of smooth vector fields.
For convenience, both of these rough theorems were stated using the classical notion of
weak solution defined in terms of the Sobolev space

HYZ?(Q)={feLl*Q):VfeL*( )}, Qopen CR",

where Vf is here taken in the weak or distribution sense. To illustrate briefly in the
simplest of cases, a function u € H? (2) was said to be a weak solution of

Lu= fin Q, (1)

where L = V'Q (z) V and f € L? (Q), provided

—/ Vo () Q (z) Vu (z) dx = / v(z) f(z)dx (2)
) Q

for all v € Lip. (2), the space of Lipschitz functions with compact closure in 2. Under
additional hypotheses, it was concluded in [11] that after redefinition on a set of measure
zero, the weak solution u was Holder continuous in €2 of some positive order. Using this
classical notion of weak solution, applications were then given in [7], [8], [9] and [11] to
the Monge-Ampére equation via the partial Legendre transform.

In this paper we give the widest possible definition of weak solution that still results
in the Holder regularity conclusion in [11] for these rough theorems. Due to the technical
nature of the hypotheses and conclusions, we defer the rigorous statements of the theorems
(see Theorems 16, 17 and 18 below) until we have first developed the requisite theory of
degenerate Sobolev spaces. We begin with some heuristics. We would like to define a
larger Sobolev space than H'2 () for which the integrals in (2) make sense (exploiting
the fact that @ (x) may degenerate), but for which the calculus necessary for the proof of
regularity continues to hold. One important feature in the classical case is that Lipschitz,
or even smooth, functions are dense in H'? (Q2), and this density permits the transfer of
the required calculus to H'? (). There are thus two natural approaches in the literature
to defining a notion of degenerate Sobolev space. One is denoted H;(’Q where X is a
collection of vector fields, and uses weak derivatives defined via integration by parts, in
which a calculus is problematic, and the other is denoted Wé’Q where Q is a general
quadratic form, and uses strong derivatives defined by taking strong limits of Lipschitz
functions, which inherits a calculus by continuity. Before recalling precise definitions, we
discuss in detail the relative merits of these two approaches.
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Note that the definition of W and H spaces given here and in [11] is reversed from
that given elsewhere in the literature, in particular in [3] and [4]. The degenerate Sobolev
space H ;(’2 defined using weak derivatives has at least two advantages over the degenerate
Sobolev space Wé’Q defined using strong derivatives:

e membership in H}Y’Z is easily decided using the definition of weak derivative, while
membership in Wé’Q is difficult to decide using Cauchy sequences,

e the natural bounded map from H }‘;2 to L? is one-to-one while the corresponding map
from Wé’Q to L? may not be - i.e. derivatives in Wé’2 are not uniquely determined
by the L? component, whereas they are in Hy?,

while the space Wé’z has at least one crucial advantage over H ;(’2:

e there is a calculus available for the elements in Wé’Q that is inherited by continuity
from the calculus for the dense subspace of Lipschitz functions, while such a calculus
is generally problematic in H }(’2.

As a result of this dichotomy between H and W spaces, it becomes an important
question to decide when these two spaces, one defined in terms of weak derivatives and
the other in terms of strong derivatives, actually coincide. As we will see, these spaces
always coincide in dimension n = 1 whenever they are both defined, and we suspect they
will coincide in higher dimensions as well. However, to date it is only known that they
coincide in higher dimensions for a collection of Lipschitz vector fields ([3] and [4]). We
will give two generalizations of this result below, and will also discuss the L? analogues of
these spaces, showing in particular that they may differ when p > 2. Finally, in case the
quadratic forms Q and X are comparable, we show below that Wé’Q is naturally embedded
in H}Y’Q (provided X is such that H}Y’Q can be defined), and as a consequence gradients
are uniquely determined in Wé’2.

Here is an outline of the paper. We first define the weak degenerate Sobolev space H /,1\;2
associated to a collection X = {X };":1 of H}2 (Q) vector fields, and show that Hy> is a

Hilbert space. We then define the strong degenerate Sobolev space Wé’2 associated to a
locally integrable quadratic form Q (x, £), and give the definition of a degenerate Wg-weak
solution to a subelliptic equation. In doing this we define a form-weighted Hilbert space
£? (9, Q) in which live the (not necessarily unique) gradients of functions in Wé’Q. We
then give analogues for Wg-weak solutions of the subellipticity theorems in [11]. These
analogues rely crucially on the definition of strong derivatives in W5~ spaces, as well as
on the identification of gradients Vw as belonging to £2 (£, Q) for w € Wé’Q.

As the strong spaces W;’Q are naturally imbedded in the weak spaces H;f (here X
denotes both a collection of vector fields and its associated quadratic form), and because of
the dichotomy between H and W spaces discussed above, the question arises of when the
weak and strong spaces H}f and W/-,I(’2 coincide. In particular these spaces are shown to
always coincide in dimension n = 1. In higher dimensions, it is known that H ;(’2 = W}f
when X is a collection of Lipschitz vector fields. We give two generalizations of this:
when X € H:20 (Q) and a Sobolev inequality holds with exponent ¢ > 1; and when
X € HY2(Q) is comparably Lipschitz off its common zero set Z, and Lipschitz at Z.

Finally, we briefly consider H3? and W}(’p for X € H 3{5/ () and 1 < p < o0, in part
because they are needed when taking products of elements in H 21(’2 or Wi,’z. Again, it is
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known that H3” = W when the vector fields X are Lipschitz. However, we show that
for p > 2 equality may fail, and in fact when n = 1, we show that Hy? = W* for all
X e Héffj/ () if and only if 1 < p < 2.

2. WEAK DEGENERATE SOBOLEV SPACES
Define H, éi’?, (©) to be the linear space consisting of those R™-valued functions v such that

v ¢ L*(Q),
divv = V.-velL?(Q),

where the divergence above is taken in the sense of distributions. With the inner product

o) ey = [ V@ W@ dnt (Vo) @) (Vew) (@) e, vow e HYE (@),
v Q Q

a standard proof shows that H ;{3 () is complete with respect to the corresponding norm,

and hence H;f, () is a Hilbert space. We have the following counterpart of the calculus

in H2(Q) with C! () denoting the the space of continuously differentiable functions

with compact support in :

Lemma 1. Suppose v € Héf, (Q) and let {J.}
identity.

«>o be a smooth Euclidean approximate

1. Then J. * v — v locally in H&i’f (Q) ase — 0.
2. If p € C1 (), then pv € HY? () and V - (pv) = oV - v + Vg - v.

Proof: We follow the analogous proofs for H'2 (Q) given in e.g. chapter 7 of [5]. If
K is a compact subset of €2, then both

Jexvovand V. (Joxv)=J. % (V-v) = Vv,

in L? (K) as ¢ — 07, and this proves the first assertion. The second assertion is a standard
result in distribution theory if ¢ € C'° (£2), and to prove the case p € CL (Q2), we take a
sequence {(pk},:il of smooth functions with compact support converging to ¢ in C* (Q),
and let k — oo in the L? (Q2) identity V - (¢, v) = ¢,V - v + Vi, - V.

Let X = {Xj};ll be a collection of H}? () vector fields on Q € R”, ie. X;(z) =
v, (z) - V where v; € Héi’f (Q) for 1 < j < m (in particular this includes Lipschitz vector
fields when € is bounded). In analogy with the definition of weak partial derivative

Bi:r:e = e¢- V, we say that a locally square integrable function f is the weak derivative Xw

of a locally square integrable function w, where X = v (z) -V and v is in H, dlif (Q), if

[re==[wxo==[wV-vo) == [wloTv+v-v) @)

Q

for all ¢ € C!(Q). Note that the last integral converges absolutely for v € H, (}i’f Q).
Clearly the weak derivative Xw is unique if it exists, and of course Xw exists in the weak
sense, and is the L?  (Q) function v (z) - Vw (), if w € Lipjoc (), the space of locally
Lipschitz continuous functions on Q. Let XYw = (Xjw, ..., X;yw).
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We define the degenerate Sobolev space H )1{’2 (Q) as the inner product space consisting
of all w € L? (Q) whose weak derivatives X jw are also in L? ({2) with inner product given
by

(w,v)X:/wde—i—/Xw-X_vdx. (4)
Q Q

Note that
2 2 2
||wHH;(’2(Q) = ||w||L2(Q) + HX"UHLZ(Q) :

Theorem 2. If X is a collection of Héi’f (Q) vector fields on 0, then HY? () is a Hilbert
space with the inner product (-,-) . given in (4).

Proof: We prove completeness in the same way as for the classical space H? (Q). If
{wi}32, is Cauchy in Hy? (Q), then {wy};>, and {Xwy};o, are Cauchy in L? (Q) and
@7, L? (Q) respectively. Thus there are w, f1,..., fm € L?(Q) such that wy — w and
Xjwg — fj in L2(Q) for 1 < j < m. We must now show that f; = X;w in the weak
sense. Suppose X; = v, (z) - V. Letting k — oo in the equation

/ (Xjwr) pdx = —/ wiV - (V) de, pE Ccl (),
Q Q

yields [, fjedr = — [ wV - (vjp) dz for all p € O} (Q) as required. Thus w € Hy” ()
and we now compute that

2 . 2
[Jw — wk”H}\;z(Q) = glggo [|we — wkHH}éz(Q) —0as k — oo,

since {wy}o, is Cauchy in Hy” (Q). This proves that wy, — w in Hy? ().

Remark 3. We can of course define the analogous degenerate Sobolev space of LP func-
tions with weak derivatives in LP. Given 1 < p < oo and X = v(x)-V in H;i’f/ (Q),
ie. v,divv € Lf;c () in the sense of distributions, we say that f € L} (Q) is the weak
derivative Xw of w € LY (Q) if (3) holds for all o € C} (). Note that all of the integrals
in (3) are absolutely convergent for f,w € L} (Q) and v € Héi’fl (). Given a collection
X = {Xj};."z1 of Hclli’f/ (Q) vector fields on Q@ C R™, we define the degenerate Sobolev
space HyP () to be the linear space consisting of all w € LP () whose weak derivatives
X,w are in L? (). The space H)l(’p (Q) becomes a Banach space when equipped with the

1
norm [[w] .0y = {000y + 1€ 0|00}

As mentioned above, the calculus is in general problematic for the degenerate Sobolev
space H;f (©). Particular difficulties include the product rule and composition with a
function in C* (R). Nevertheless, as we now show, multiplication by a compactly sup-
ported continuously differentiable function is well behaved on H 3 (€2) and leads to the
existence of a large supply of compactly supported functions in H /,1‘;2 Q). fwe H}Y’Q (Q)

and ¢ € C!(Q), then Yw € (H}\f) (Q) since X (Yw) = YpXw + (X¢)w in the weak
sense. Indeed, writing X = v -V with v € Hy;> (Q) and ¢ € C! (), we have the identity

X' (0Y) = V- (Wov) =9V - (ov) + (¢v) - VY = X 0 4+ X,
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in L? () where gradients are taken in the distribution sense. Since C2° () is dense in
L? (), we can multiply both sides of the identity by w € L? () and integrate over
to obtain equality. Thus we obtain with f = ¥ Xw + (Xv) w, and using that Xw is the
weak derivative of w,

/Qfso

Aijw+<XWu&¢

—/QwX’(W)Jr/Q@w)W

—/Qw{de’<p+<pX1/)}+/Q<pr¢
*/Q(lbw)X’w-

for all p € CL(Q).

We emphasize that without a suitable calculus for our degenerate Sobolev space
H > (Q), we are unable to prove a regularity theorem for weak solutions based on H 3 ().
This will be rectified in the next section by introducing the degenerate Sobolev spaces
with strong derivatives, and whose definition is given most naturally in the more general
setting of quadratic forms rather than vector fields.

3. STRONG DEGENERATE SOBOLEV SPACES AND W-WEAK SOLUTIONS

Given a locally integrable, nonnegative semidefinite, symmetric quadratic form Q (z, &) =
£Q ()¢ on Q CR, e

/ |Q (z)|| dz < oo for all compact L C €,
L

where ||@Q]| is the operator norm on n X n matrices (all norms on a finite dimensional
space are equivalent), we can define the form-weighted vector-valued L? space £2 (Q2, Q)
as consisting of all measurable R™-valued functions f (z) = (f1 (z),..., fu (z)), z € Q,
satisfying

flooe={ [ Q@ fani} <. )

If we identify measurable R"-valued functions f and g that satisfy ||f — g|| 2@ = 0
then (5) defines a norm on the resulting vector space of equivalence classes of measurable
R"-valued functions. Of course [[f — gl|;2(q o) = 0 if f = g off a set of measure zero,
but a characterization of when the norm vanishes requires (10) below, a representation of
the norm as a sum of L? (\;) norms of components with weights \; (z) the eigenvalues of
Q (z). We now suppose as usual that £2 (2, Q) consists of these equivalence classes. Note
that the representative functions in the equivalence classes are R"-valued everywhere, but
we can and will consider below functions defined only almost everywhere, e.g. gradients
of Lipschitz functions.

Theorem 4. The linear space L? (2, Q) is complete with respect to the norm (5), and is
in fact a Hilbert space with respect to the associated inner product

€.8) 00 = [ 16 Qg () ds )

Q
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Before beginning the proof it will be helpful to express the norm (5) in terms of
weighted L? norms of scalar functions. Let {); (:c)}?zl be an enumeration of the eigen-
values of @ (z) arranged in decreasing order,

Aj1(x) < Aj(z) for 1 <j < m, (7)
and let {v; (x)};l:l be corresponding orthogonal unit eigenvectors.

Remark 5. The functions A; (x) are uniquely determined by (7) and are Lebesgue mea-
surable since Q) (x) Is, while the vector functions v; (x) may be chosen to be Lebesgue
measurable. To see these assertions, define lexicographic order = on R™ by declaring

6 = (517 7511) e n= (7717 77711)

if §;, >y, where k is the least index j such that {; # n;. Note that every compact subset
FE of R™ has a unique element that is maximal with respect to lexicographic order. Indeed,
if L; (o) is the closed half-plane {§ ER":§; > a}, then the unique maximal element &
in FE satisfies

& = sup{n : ENLi(n) # 6}, (8)
§ = sup{ny: EN L1 (&) N La(ny) # 6},

where the suprema are attained by the finite intersection property of compact sets.

Now A (x) = sup {£'Q (z) £ : £ € S"7'} is a measurable function of x since we may take
the supremum over a countable dense subset of the sphere S"~1. We then choose v ()
to be maximal with respect to lexicographic order in the compact set

By (z)={€eS" Q)= (2)}.

This is a measurable function of x since in defining the components of the maximal element
v1 () in (8), we may restrict the suprema to be taken over rational numbers. With \; (z)
and v; (z) defined and measurable for 1 < j < k < n, we have by the variational formulas
for eigenvalues (easily obtained by diagonalizing matrices)

Mot () =sup {€'Q (2) € : £ €S"7H & v () = 0,1 < j <k},

and we choose Vi1 (z) to be maximal with respect to lexicographic order in the compact
set
Epi1(2) ={£€S" 1 :€Q () = Mg (2) € v () = 0,1 < j < k}.
The measurability of A1 and vy, follows as above. Note also that A\, € LlloC Q).
Then for any f € £2 (2, Q) (which we now view as a representative of an equivalence
class) we let f; (z) be the components of f (z) with respect to the basis of eigenvectors
{vi (@)}, Le £(2) =327, fj (2) v (), € Q. The key property for us is

Qe f (@) =£ (@) Q@) (@) = | D_fivs | - | D fQvs | =15 @I X (@), (9)
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1
for x € Q. Let Hfj”w(,\j) = {fQ |f; (z)? Aj () dx}2 denote the norm of f; in the L?
space on § with weight A; so that (9) yields

18172 (0,0) = Z”f]”]ﬂ : (10)

From (10) we have the following characterization of null elements in £2 (2, Q).

Remark 6. Two functions f = 2;21 fjv; and g = 2?21 g;Vv; are in the same equiva-
lence class in £? (Q, Q) if and only if f; (z) = g; (z) for A\j-a.e. zinQ, 1<j <n.

We can now mimic the standard proof of completeness of scalar-valued L?2.
Proof of Theorem 4: First we show completeness of £> (©,Q). Let {fk}k L be a

Cauchy sequence in £2(Q, Q), i.e. ka — ||£2(Q o) 0 as k,/ — oco. Choose a rapidly
converging subsequence, which we continue to label {fk}Zozl; ie. >0, ka‘*‘l —f*
0o. Let fF = Z?Zl ffvj for k£ > 1. Fix j for the moment and define

Hz:z(n,g) <

=@+ |4 @) - fF @), zeq
k=1

a Lebesgue measurable function from € to [0, cc]. From the monotone convergence theo-
rem and Minkowski’s inequality we get

||gj||L2(Aj) = hm H‘f ‘+Z‘fk+1 fk‘

L2 (%)

IN

Im mf{nf oy + 17— 2 )}

k=1
which equals
Hfjluy(xj) + Z HfJHl - kaHLZ(,\j) = Hf1H£2(Q,Q) + Z ka+1 - kaL?(Q,g) <
k=1 k=1

where the final inequality follows from (10). This shows by Chebyshev’s inequality that
g;j () is finite for \j-almost every x € Q.
Thus the series

Fa)+ Y (7 (@)~ ff (@) (11)
k=1
is absolutely convergent for A;-almost every x € (2. Now use (11) to define

1 oo k > .
£ (@) = { gj () +> 0y (fj (x) — fjk (z)) if (11) converges

otherwise
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Then f; is finite and Lebesgue measurable in €2, and the set where the series for f; diverges
has A\;-measure zero. Thus we have from (10),

Yo =)

7

Hfj *ffHLz(,\j) - (12)

[e’e}
k=

L2 (X))

[M]8

£ HkaJrl o ff"Lz()\j)

[M]8

|‘fk+1—fk||ﬁ2m7g)—>0 as £ — oo,

b
I

¢
and so f; = ff + (fj — ff) € L?();) and ff — fj in L2 ();)).

Now define f (z) = Z?:l fj (@) v, (z) for x € Q. We obtain from (10) and (12) that
2

9 n
||f_fz||£2(ﬂ,g) = Z(fj _ff)"j
j=1

£2(2,9)

= ZHfjffinz(Aj)HO as { — oo.
j=1

This shows both that £ = f* + (f — f*) € £2(Q, Q) and f* — f in £*(Q, Q).
Standard arguments show that (6) defines an inner product on £2(Q, Q) satisfying

11l 220,00 = /(F: )22, 0) and thus £2 (9, Q) is a Hilbert space, which by (10) is

isomorphic to 69?:1[/2 (A;) under the map f — (f1,..., fn). Note that each equivalence
class in L? (\;) contains a representative which is Lebesgue measurable.

3.1. The strong degenerate Sobolev space Wé’Q (). Let Q be alocally integrable
quadratic form on €. Define a nonnegative functional [|w||4 (possibly infinite) on the
linear space Lip () by

1
2 2 2 .
lullg = {lwlfe@ + IVolia@e ) weLin(@).

We then define the degenerate Sobolev space Wé’z (Q) as the completion of the linear
space
Lipg () = {w € Lip () : Hw||g < oo} (13)

in the metric d (w,v) = [[w — v 5.
Remark 7. In the case that Q and ) are bounded, we can equivalently define Wé’Q Q)
as the completion of C' () in the metric d(w,v) = ||w—wv|l4. Indeed, this follows

immediately from the fact that C* (Q) is dense in the classical Sobolev space H'? (2), so
that given w € Lip (Q) C H?(Q) and ¢ > 0, we can find v € C! (Q) with

[Ch w||wé’2(n) S Cllv —wlgr2q) <€
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By construction Wé’z (Q) is a Banach space of equivalence classes of Cauchy sequences
in Lipg (). If w= {wi},, is a Cauchy sequence of Lipg (€2) functions, i.e. wy €
Lipg () and

[lwy — ’LU@HWé,z(Q) —0 ask,{— oo, (14)

then there are elements (depending only on the equivalence class in W%Q () we L*(Q)
and v € £2(Q, Q) such that wy — w in L? () and Vw, — v in £2 (2, Q). The pair
(w,v) € L?(2) x L% (2, Q) represents the equivalence class containing the Cauchy se-
quence W in the space Wé’Q (Q), and provides a Hilbert space isomorphism from Wé’Q (Q)
to a closed subspace WIQ’2 () of L?(Q) x L£2(2, Q) by sending the equivalence class of
W to (w, v). It is this realization W1Q’2 () of the degenerate Sobolev space Wé’Q () that
we will use most often in the general setting.

However, the vector-valued function v € £2 (2, Q) is not in general uniquely deter-
mined by w € L?(Q) if (w,v) € ng,z (©). In other words, if P is the Hilbert space
projection of L% (Q) x £2 (2, Q) onto L? (), then the restriction of P to ng’z () is not
in general one-to-one. Indeed, as observed in [10], an example in [2] exhibits a quadratic
form Q (x,€) = q(z) &%, where 0 < q(z) < 1,z € Q = (0,1), £ € R, together with
a sequence {wy}y—, of Lipschitz functions on (0,1) such that wy — 0 in L?(0,1) (in
fact wy — 0 uniformly on (0,1)) and w), — 1 in £2((0,1),Q) = L?((0,1),q). In fact,
uniqueness fails for this example in the most spectacular way possible. If ¢ € Lipg (0, 1),
one sees from the calculus for W1Q’2 () in Lemma 20 below that gwy, — 0 in L2 (0,1)
and (pwy) = @wg + pw, — ¢ in £2((0,1),Q). Thus (0,p) € W1Q’2 (0,1) for all
¢ € Lipg (0,1), and since W5 (0, 1) is closed, (0,v) € W5 (0,1) for allv € £2((0,1), Q).
Thus for each element (u,v) € ng’2 (0,1), the fibre above u consists of all of £? ((0,1), Q).

Note that this defect is not shared by the degenerate Sobolev space H;gz () when
X ={X; };n:1 is a collection of H éi’f (€2) vector fields on 2 C R™, since the weak derivatives
defined in (3) above are unique if they exist.

We will use the notations ngz (2) and £2 (2, X) to denote the spaces W1Q’2 (©) and
L2 (9, Q), respectively, in case the quadratic form Q arises from a collection X of vector
ﬁelgisj i.g.7 in case Q(z,§) = X(x,§) = 372, (v (v) €)% where X = {X5}7, and X =
vi(x)- .

Lemma 8. If X is a collection of Hy;> (Q) vector fields on Q C R”, then the Hilbert space
projection
P:L*(Q) x L2(Q,X) — L* (D)

is one-to-one on W}C’Q Q).

Proof: If {wy}7, C Lipx (Q) converges to (0,u) € W3* (), then with X (z,£) =
Z;”:l (v (z) - €)? where X, =v;(z)-V, we have

0= lim [ X(z,u(z)— Vwg (z))de = lim ; Z [v; (z) - u(z) — X;jwg ()] | da.
j=1

k—oo Jo k—o00

Thus X;wg — vj-uin L? (Q) for 1 < j < m, and since wy, — 0 in L? (2), it follows from
Theorem 2 that v;-u is the weak derivative X ;0 of 0. Uniqueness of weak derivatives shows
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that v;-u=0a.e. for 1 <j <m, and thus u=0in £* (Q, X) since [, X (z,u(x))dx =

m 2
fQ (Zj:l |Vj (1’) -u (x)| ) dxr = 0.
In particular, this lemma applies to a quadratic form Q when the rows vy (z),...v, (z)
of the matrix \/Q (z) are in Héi’f (Q), since then Q (z,£) = Y1, [vi (z) ¢

Remark 9. For 1 < p < oo and Q locally integrable, we can also define the analogous
degenerate Sobolev space Wé’p () with strong derivatives in LP as the completion of

Lipgp, () = {w € Lip(Q) : [Jwllg, < oo} where
g, = [ o+ [ 10wy Qwu) ) |

3.2. Comparison of spaces H;(’z () and Wé’g (). As mentioned in the introduc-
tion, the question now arises as to the equality of the two degenerate Sobolev spaces
HY?(Q) and W5? (Q) when X = {X;}2,, Xj = vj(2) - Vis a collection of Hy2 (Q)
vector fields on Q C R", and the forms Q(z,§) and X (z,§) = 3372, (v (z)- ¢)? are
comparable:

M)

Q(x, &) = X (z,8). (15)

Clearly Wé’z Q) = W}f (©) when (15) holds. The map j : Lipx () — W}{’Q (©) that
sends w to the constant sequence {w} is an isometry with the norm |-, on Lipy (Q).
The inverse map i takes j (Lipy (€2)) isometrically onto Lipx () in the Hilbert space
HY? (). Since j (Lipx (Q)) is dense in Wy? (Q), and HY? () is complete, the map i
has a unique continuous extension

i Wy (Q) — HY (),

which is an isometry that we loosely refer to as an inclusion W}(’Q Q) C H}c’z ().

As we observed above, gradients of elements in W}f (©2) are uniquely determined in
this case, i.e. the projection P above is one-to-one when restricted to W)lf (). By
contrast, recall for a moment the counterexample from [2] we described in the previous
subsection. The Lipschitz function 0 is represented by the pair (0,0) in W1Q’2 (), while
the Cauchy sequence {wy},-, from the counterexample is represented by the pair (0,1).
Of course the function ¢ (z) in the quadratic form Q in the counterexample fails to have a
square integrable derivative, which allows for the failure of injectivity of P when restricted
to VVlQ’2 ().

In the case when X is a collection of H;i’z (Q) vector fields, we showed above that a
pair (w,v) € W;(’Q () is uniquely determined by its L? component w. Thus we may here
also realize W;(’Q (©) as a (not necessarily closed) subspace W;(’Q () of L? (), and we
may unambiguously write Vw for the element v € £2 (€, X). As a result, we typically
write (w, Vw) for the element (w, v) of W7 (), and in this way we see that the gradients
Vw of L? functions w in W;f () live in the form-weighted space £2 (2, X'). Note that
this form-weighted space, and so also the meaning of Vw, depends on X.

Remark 10. We have introduced three separate notations for different realizations of
the degenerate space Wé’Q (). We write we Wé’Q (Q) to denote an equivalence class

of Cauchy sequences in the definition by completion, (w,v) € ng’Q (Q) to denote the
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L? () component w and the £?(Q, Q) component v associated with W, and finally in
the case Q = X, we write w € W;(’Q () to denote the L*(Q2) component which now
uniquely determines the gradient component. We caution the reader that for an element
W in Wé’2 (Q) represented by (w,v) € Wé’2 (Q), we often abuse notation by writing
w in place of W, and Vw in place of v, with the understanding that Vw is not in
general uniquely determined by w. In particular, we write w = lim_, o, wy in Wé’Q (Q) if
w= {wp}pe, € W52 ().

It is a result of Franchi, Serapioni and Serra Cassano [3], and independently Garofalo
and Nhieu [4], that the degenerate Sobolev spaces W* () and Hy” () coincide when
the vector fields X = {Xj};.nzl are Lipschitz. We show later that Hy” (Q) = Wy? (Q) if
the vector fields X' = {X;}"", are in

20 Q) = {1} e > (Q):Voue ¥ (Q)} )

where % + % =1, and o > 1 is such that the following Sobolev inequality holds:

1

{/MIwIQ"}% <O, {/wlw|2+/w|xw|2};, (16)

for all opens sets w € Q and for all w € Lip, (w). Alternatively, we can relax the regularity
assumption on X to X; € Hy> (Q) provided X is comparably Lipschitz off its common
zero set Z, and Lipschitz at Z. Moreover, H;(’2 Q) = W}(’Q (©) in dimension n = 1
without any restriction on the vector fields other than the assumption X € H 3{3 (Q),
which is necessary for the definition of H 3> ().

Finally, we turn our attention briefly to the case 1 < p < co. If X = {Xj};n:l €

HYY (Q) satisfies X (2,€) ~ Q(,£), then

2

Zlij(x)lp ~ Z|ij(x)|2 = X (2, Vo (2))* ~ Q(x, Vu (z))

(NS}

for w € Lipgp (7). Thus [lw||g , ~ ||w||H;(,p(Q) for w € Lipg , () and if, as in the case
p = 2 above, we identify Lipg , (£2) with the space of corresponding constant sequences in
Wép (), then Wép () is isomorphic to the closure of Lipg ,, () in Hy” (Q) (see Remark
3 for the definition of HY? (Q)). Now it is still true that Hy? (Q) = WP (Q) for X
Lipschitz ([3], [4]), but it may happen that Hy” () # Wa" () for certain X € H;i’f/’/ (Q)
when p > 2. In fact we show that in dimension n = 1, Hy” (Q) = Wx* (Q) for all
X e HY (Q) when 1 < p < 2, while for p > 2 in all dimensions, there is for every
P < q < p,a vector field X € HY (Q) such that Hy" (Q) # WP (Q). See Section 5
below on equality of degenerate Sobolev spaces for all of the results described here.

3.3. Wy-weak solutions of degenerate elliptic equations. Let {2 be a bounded
open subset of R™. Consider the linear differential operator

L=L+HR+S'G+F
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in , and the equation
Lu=f+Tg, (17)
where R = {R;}X,, S = {S;})¥, and T are collections of vector fields subunit with
respect to Q (z) (S = v - V is subunit if (v-¢)? < £Q¢), and F, G = {Gi}fvzl and
H = {Hl}f\;l are bounded measurable functions, and the inhomogeneous data f and g
are in L? (). Here the juxtaposition of vectors in HR, GS and gT means vazl H;R;,
Z?;l G;S; and sz\; g;T; respectively, and the prime ' denotes transpose, so that e.g.
(GS)' = S'G and (gT)" = T'g.
We now give the definition of a Wg-weak solution u to equation (17). First, for
u € Wé’2 (Q) we write (u, Vu) € ng’Q () with the understanding that Vu is not uniquely
determined by u, i.e. Vu denotes one of the vector-valued functions in £2 (Q, Q) for which
(u,Vu) € Wé’2 (©). Then for u,w € Wé’Q (Q) the expression Vu'QVw is well-defined as

an integrable function in {2 since
IVwQVulyg = [ V0 (@)Q (@) Vo (a)] da

/Q \/Q (z,Vu (x))\/Q (z, Vw (z))dx

HVUHLQ((LQ) vaHﬁQ(Q7Q) .

IN

IN

Next we note that if T = a - V is subunit with respect to @ (z) and u € Wé’Q (Q), then
Tu = a- Vu is well-defined as a square integrable function in {2 since

1Tl = / la- Vu (2)]? de

IN

Q(z,Vu(z))dx
Q

IA

”vu“L?(Q,Q) :

We are now ready for the definition of Wg-weak solution. Note that by the discussion
above, all of the integrals appearing below are absolutely convergent for u,w € Wé’Q (Q),
vector fields R, S, T subunit with respect to @, vector functions G, H bounded and f, g €
L? (Q). We define Lip,. () to consist of the Lipschitz functions with compact support in
Q.

solution
Definition 11. An element (u, Vu) € ng’z (Q) is a Wg-weak subsolution of (17)
supersolution

/fw+/gTw,

in Q if

_/(VU)/QVUJ—I—/(HRu)w+/uGSw+/Fuw

IANTV

for all nonnegative w € Lip. (Q2).

Equivalently, we could test over all nonnegative w € (Wéz) (Q), the closure of
0
Lip. (Q) in Wé’Q (Q); we say that an element (u, Vu) € Wé’z (2) is nonnegative if u > 0.



DEGENERATE SOBOLEV SPACES AND REGULARITY OF SUBELLIPTIC EQUATIONS 13

Recall the element (0,1) in Wéﬁ (0,1) discussed earlier that arose from the example

in [2]. This element is a Wg-weak solution of the equation -Lq(z)Lu = T'1 where
T = —q(x) % is a bounded subunit vector field. Indeed, the corresponding integral

equality is

_/ (%u) (2) 4 (2) (%w) (x) do = —/1~q(a:) (%w) (x) dz,

which holds since %u =1in £2((0,1), Q) for the element u = (0,1). On the other hand,
the zero element (0,0) € Wé’Q (0,1) is not a weak solution of the equation -Lg(z)-Ly =

dx
T'1.

Remark 12. Alternatively, as is done in [10] for u,w € Wé’Q () and T subunit, we can
define
Vu/'QVw € L' (Q) and Tu € L*(Q)

solely by reference to Cauchy sequences of elements in Lipg (§2), without using £? (22, Q).
Let v = limy_,oo up and w = limy_ oo Wy In Wé’2 (Q) where ug,wy € Lipg (). Then
{Vu,QVwy},- | is Cauchy in L* (Q) using

/ |Vu, QVwy, — VuyQVuwy|
Q

< / [(Vuy, — Vw)/QVwk’ +/ [VupQ (Vwy, — Vwy)|
Q Q ) A
< {Ag<x,Vuk<x>—Vue<x>>}§{/ﬂ@(:c,wk(x))}g

+9 ] Q@ Vu(2)) : Q(x, Vwy, (z) — Vwe (x)) : :
¥ FU |

It follows that there is a unique element Vu'QVw € L' (Q) that satisfies

Vu'QVw = klim Vu,,QVwy, in L' () whenever
= i = i in W5*(Q).
U JHm and w JHm wy, in W5 (Q)

Moreover, if T = a -V is subunit, then {T'uy},- , is Cauchy in L? (Q) using

Tu = Turlfay = [ Ja- (Vun = Vue) () do
Q

IN

/ Q (z, Vuy, () — Vuy (z)) dz
Q

2
= ur - W”LZ‘(Q,Q) :
Thus there is a unique element Tu € L? () that satisfies

Tu = klim Tuy, in L* () whenever u = klim ug in Wé’Q Q).
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4. 'THE REGULARITY THEOREMS

In order to state our generalization of Theorem 8 in [11], we recall some notation - see [11]
for more details. A quasimetric d on an open set 2 C R"™ is a finite nonnegative function
on ) x € satisfying

d(z,y) = 0<=z=y
d(z,y) < r(d(z,2)+d(y,2))

for all z,y, z in Q. The quasimetric balls B (x,r) are defined by
B(z,r)={yeQ:d(x,y)<r}, 0<r<oo.

Provided the quasimetric d (z,y) is Lebesgue measurable in the second variable (so that
the balls are measurable), the upper and lower dimensions, @* and Q., of a quasimetric
space with balls B (z,r) are given by

log |B
Q" = limsup max w, (18)
0 TEQ logr
log |B
Q. = lim inf min w.
r—0 29 logr

We will require the following containment condition relative to Euclidean balls D (x,r),
which is essentially necessary for the notion of subellipticity of the form Q that is given
in Definition 15 below: there are positive constants C, € and § such that

D(z,r) C B(z,Cr®), 2€Q,0<r<ddist(z,00). (19)
We will also require the doubling condition
|B (z,2r)| < C|B(x,7)], 2€,0<r< o0, (20)

which makes (£2,d, |-|) into a homogeneous space (more precisely what is called a general
homogeneous space in [11]), and makes Q* and @, finite.

Given an integrable nonnegative semidefinite quadratic form Q (z,¢) = ¢'Q ()¢,
where @ (z) is a symmetric matrix for each x € 2, and an R"-valued function f, we
define

£ (2)[g = £ (2) Q(2)f ()

and assume the following Sobolev inequality: there is ¢ > 1 and § > 0 such that for all
balls B = B (y,r) with y € Q, 0 < r < 0 dist (y, 09),

I L 2}5 {1/ 2}%
— <ori— [ v TiYeP , 21
{B/B“" } < T{|B| Vel B/, (1)

for all (w, Vw) € (ng’z)o (B), the closure in WIQ’2 (B) of (w, Vw) where w is a Lipschitz

function compactly supported in Q. Note that the right-hand side of (21) is comparable
to the normalized Q-Sobolev norm

x 1 ?
||w||Wé,z(B) = {E/B (\TVUJ|2Q + |w|2)} ) (22)
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The Poincaré inequality we need is: there is Cy > 1 and § > 0 such that for all balls
B =B (y,r) and B* = B (y,Cor) with y € Q, 0 < Cor < 6 dist (y,00),

(b Gl ) sl fomee)’s o

for every (w,Vw) € WSQ (B). The following quantity will play the role of ”dimension”
in the sequel:

D=

Q = max{Q*, 20"},

1, 1 _
where St = 1.

Our next hypothesis (27) is crucial for Moser iteration, and holds automatically with
p = oo for the subunit balls K (z,r) associated to Q, if Q(x,&) is continuous in z and
(19) holds for the subunit balls, i.e.

D(z,r) C K(z,Cr), x€Q,0<r<ddist(z,00). (24)
Recall that the subunit balls
K(z,r)={yeQ:d(z,y) <r} (25)
are defined using the control metric
d(x,y) =inf{r > 0:~v(0) = x,v(r) =y, is Lipschitz and subunit} , (26)

where v (), 0 <t <7, is a subunit curve in Q if (v ()-€)*> < Q(y(t),€) for 0 < ¢ < r.
We suppose there are positive constants ¢, N and ¢ such that for each ball B (y,r)

with y € Q, 0 < r < § dist (y,09), there is an accumulating sequence of Lipschitz cutoff

functions {wj }jil on B (y,r) with the following five properties (E € F means that the

closure of F is contained in the interior of F'):

supp ¥y C B(y, r),
B (y,cr) c {z:y;(@)=1}, j>1
SUPP Yy c {oid;@=1}, j21 (27)
V; s szschzt j>1"
1
1 P P .
{\B(y’_rn f\v%"gdw} < G, ji>1

for some p > 20’.

We consider the subelliptic equation (17). Since we now have the Sobolev inequality
(21), we can relax the requirements on the coefficients in our degenerate equation (17).
Our hypothesis on the operator coefficients H, G and F' is

1]l TGl Loy + H| fo(q) = Ng < o0, (28)

L3 (@)
for some g > @. Our hypothesis on the inhomogeneous data f, g is

||f||L2(Q) + llgll Loy = Ny < o0, (29)

for the same ¢ > @ as in (28). The distinction between N, and N, is made here because
the Holder continuity exponent « of weak solutions u to (17) will turn out to depend on
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the gaps 1 — % and 1 — %, where p is as in (27) and ¢ is as in (28) and (29), as well as on
Cp in (27) and N, in (28), but not on uw or N in (29). This is of paramount importance
in applications to nonlinear equations - see e.g. [7].

As in Definition 11 we say that an element (u, Vu) € Wé’z () is a Wg-weak solution
of (17) in Q if w and Vu satisfy

7/(Vu)’QVw+/(HRu)w+/uGSw+/Fuw:/fw+/gTw,

for allw € Lip. (©2). Note as in [11] that all of the above integrals are absolutely convergent
for u,w € Wé’Q (Q) if we use ¢ > Q > 20’ and the fact that (21) implies u,w € L2 ().

loc

As a consequence we may test the integral inequality above over all w € (Wé2> (Q), the
0

closure of Lip. (2) in Wé’Q (©2). This is of course needed to implement Moser iteration.

The next definition incorporates the new generality of our regularity theorems by
requiring Holder continuity for each Wgo-weak solution of (17), rather than merely for
each classical weak solution, as was assumed in [11].

Definition 13. Let q € [2,00]. We say that an operator L = V'Q (z) V with locally
integrable matrix Q) (x) is L?-subelliptic in € if there are positive functions o = « (E, z1)
and C = C (E, z1, 22, z3) defined on P (Q) x [0, 00) and P (Q) x [0, 00)” respectively (where
P (2) is the lattice of compact subsets of )), increasing in each variable separately, such
that every Wo-weak solution (u, Vu) of (17) in §) satisfies, possibly after redefining u on
a set of measure zero,

HUHCQ(K) <¢, (30)
for
a = a(K.N,), (31)
C = C(K,Ng N/, |ull) .

whenever K is a compact subset of §2, (29) and (28) hold, and R = {Ri}fil, S = {Si}fil
and T = {Ti}fvzl are collections of vector fields subunit with respect to Q (z).

Remark 14. The conclusion (30) applies only to the L?> component of (u, Vu) € Wo (£2),
and says nothing about the associated (nonunique) gradient Vu.

With the above new definition of an L9-subelliptic operator in terms of Wg-weak
solutions, the next definition and theorems can be stated exactly as in [11].

Definition 15. Let g € [2,00]. We say that a locally integrable nonnegative semidefinite
quadratic form Q (x,¢) is Li-subelliptic in Q if every operator L = V'B (x) V whose
matrix B (x) satisfies

CsymQ (2,€) < E'B(2) € < CsymQ (2,8), ae.x€Q,&€R", (32)

for positive constants ceym and Csym, is Li-subelliptic in €2, and provided the positive
functions a and C in (31) can be chosen to depend only on the constants cgym and Csym,
in (32) and not on L itself, i.e.

o = ey, Coym (K’ Nq) ’

C = Ccsym7csym (K’ Nq7N(;7 ||UH2) °
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Theorem 16. Suppose that Q (x,§) is a locally integrable nonnegative semidefinite quadratic
form in a bounded open set 2. Let d(x,y) be a symmetric quasimetric in §) with
d(z,y) > c|z —y| for some ¢ > 0, that is Lebesgue measurable in each variable sepa-
rately, with upper dimension Q*, and suppose o > 1. Then Q (z,§) is L?-subelliptic in

for 1 1
¢>Q=max{Q", 20"}, —+—==1,
c o

provided that the following hold for the d-balls B (x,7) = {y € Q : d (z,y) < r}:

~

. the doubling condition (20) holds,

2. the containment condition (19) holds,

3. the Sobolev and Poincaré inequalities (21) and (23) hold with the given o,
4

. the “accumulating sequence of Lipschitz cutoff functions” condition (27) holds for
some p > max {20”,4}.

When restricted to the subunit balls K (z,7) in (25) associated with a nonnegative
semidefinite continuous quadratic form in €2, this theorem yields the following as a corol-
lary since (27) holds automatically with p = oo in this case - see [11].

Theorem 17. Suppose that Q (x,&) is a nonnegative semidefinite continuous quadratic
form in a bounded open set ), and suppose that the subunit metric ¢ (x,y) is finite on
Qx€Q. Let the corresponding subunit balls K (x,r) have upper dimension Q*, and suppose
that o > 1. Then Q (z,¢) is L%-subelliptic in Q for ¢ > Q = max {Q*, 20’} provided that:

1. the doubling condition |K (x,2r)| < C'|K (x,r)| holds for 0 < r < oo,
2. the containment condition (24) holds,

3. the Sobolev and Poincaré inequalities (21) and (23) hold with B (z,r) = K (x,7)
and the given o.

Theorem 18. The statements of Theorems 12, 17, 20, 23 and 24 in [11] also hold with
the new definition of Li-subelliptic in terms of Wg-weak solutions.

Proof: The proofs in [11] reduce matters to Theorems 16 and 17 above.

4.1. Proof of regularity. The proof of Theorem 16 proceeds exactly as in Chapter
3 of [11] using analogues for Wé’2 () of the standard calculus for the classical space
W12 (Q), and upon replacing the vector-valued space L? (2) (more precisely &7_, L? (Q2))
with the form-weighted vector-valued space £? (€2, Q). For (u,Vu) € ng’2 (), define
Ut = X{u>0pt and u— = Xy, 0 that uy is the composition of t1 = tx g ) () With
u. Note that t4 fails to be C' only at the origin. We now prove an analogue of Lemma
1 for WgQ (©). A variant of the following lemma also appears in [10] for the calculus in

Wé’Q (Q) defined using Cauchy sequences.

Definition 19. Given o € R, we define (Wé2 (Q)) to be the completion in VVlQ’2 Q)

[0
of those Lipschitz functions u in §2 such that w — « has compact support in ).
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Lemma 20. Suppose (u, Vu) € WgQ (Q2) where Q is bounded.
1. If ¢ € Lipg () and Q is bounded, then (pu, oVu +uVp) € ng,z ().

2. If f € C*(R) with f' € L (R), then (f o u,
a>band f € C!(b,00) with f' € L (b, 0

flou)Vu) € WIQ’2 (Q). Also, ifu(z) >

(
), then (f owu, (f' ou)Vu) € WSQ (Q).

3. Both (u+,x{u>0}Vu) and (u_,x{u<0}Vu) are Iin W1Q’2 (Q). Moreover, if u €

(ngQ)a (Q) and « > 0, then <u+,x{u>0}Vu) € (W192)a (Q) and (u_,x{u<0}Vu> €
(ng’Q)O (Q) - the opposite holds if a < 0.

In the case that gradients are uniquely determined in Wé’Q (Q), we have

V(pu) = ¢Vu+uVe, (33)
V(fou) = (fou)Vu,
Vuy = X{u>0}vu7
Vu_ = X<y VU,

in £2(Q, Q).

Proof: There is a sequence {u,} C Lipg (Q) such that u,, — w in L?(Q) and
Vi, — Vuin £2(Q, Q) (we remind the reader that Vu is not uniquely determined by
u, but rather by the Cauchy sequence {u,,}). Then ou,, € Lipg (2), and supressing
dependence on x we compute that

A

/Q|<pum—<pu|2 < ||<p||io/ﬂ|um—u|2—>0 as m — 00;

/ Q(V (puum) — {¢Vu+uVe}) = / Q (¢ Vit — Vi) + {t — 1} Vo)
Q Q

IN

2lloll2, /Q Q (Vi — V) + 2 Q (Vo). /Q ot — uf?

tends to 0 as m — oo, which proves assertion 1.
Moreover, f o u., € Lipg (€2) and

IN

/ 1 () — f ()2
Q
/Q Q (f/ (um) Vi, — f/ (U) Vu)

2
1715 /Q i —u’ — 0 as m— 0o

IN

2||f’HiO/QQ<wm—w>
2 /Q 1 () — 1 (w)> Q (V)

also tends to 0 as m — oo upon applying the dominated convergence theorem to the last
integral using the continuity of f’ and assuming, as we may by passing to a subsequence,
that wu,, — u a.e. in Q. This shows that f owu,, — fowu in L*(Q), and V (fou,,) =
(f' o Um) Vi, — (f' ou) Vu in L2 (Q, Q), and completes the proof of the first statement
in assertion 2. The second statement in the assertion follows upon applying the first
statement to f € C! (R) with f € L> (R), where f agrees with f on (%£2, 00).
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Now suppose that (u, Vu) € WgQ (©). For € > 0 define

_f VuP+et—e i u>0

By assertion 2 we have using f! (0) = 0,

u
V(feou) = (f20w) Vi = Xuso) s VU

in £2(Q,Q) for each ¢ > 0. Letting ¢ — 0 we obtain f. ou — wuy in L?(Q) and
V(feou)— X{u>0} VU in L2 (Q, Q) by the monotone convergence theorem. Thus we ob-

tain (u+7 X{u>0}Vu) € )/VIQ’2 () since ng’Q (€2) is closed in L2 (Q) x £2 (22, Q). Similarly
(u,, X{u<0}vu) € W1Q’2 Q).

Now we turn to the final statement in assertion 3. Let (u, Vu) € (ngQ) . (). Suppose
first that o = 0, and let {us};-, be a sequence in Lip. (£2), the space of compactly
supported Lipschitz functions in , that converges to (u,Vu) € (W1Q’2)0 (Q). Since
fe (0) =0, we see that f. ouy € Lip. () and so

faou:kllrrgofaouke(W1Q’2>O(Q), 0<e<l.
It now follows that
. 1,2
(u+7X{u>0}vu) = sh_{% fE ouE€ (WQ )0 (Q) :

If @ < 0 and {ug}y—, is a sequence in Lip. () such that u; + o converges to (u, Vu),
then (uy + ), € Lip. () and it follows that (u+, X{U>O}Vu) c <W1Q,2>O (Q).

Now suppose that a > 0. We must left translate the functions f. to satisfy f. (o) = a.
Thus we define

fg(u):fs(u+t(a7€))7 u € R,

where t (o, €) is the unique positive number satisfying

\/(a+t(a75))2+62—szfg(a+t(a75)) =a.
If {ur —a}pe, is a sequence in Lip. (Q) such that {ug},., converges to (u,Vu) €
<W1Qz) (€2), then since f& (a) = «, we see that
o _ . 6% 172
fgou—len;ofE oukE(WQ )Q(Q), 0<e<l
Since t(a,e) — 0 as ¢ — 0, we also have that lim. ¢ f® (u) = wuy in L?(Q) and

V(f&ou) — X{usoyVu in L2 (9, Q) by the monotone convergence theorem. Thus it
follows that

(u+, x{u>0}Vu) = ;12% floue (ng’z)a (Q),

since (ng’2>a () is a closed set in L? () x £2 (2, Q).
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(Q) for @ < 0 and (u_,x{u<0}Vu) € (Wéz) ()

Similarly (u—,X{u<0}v“) € (WSQ)Q 0

for a > 0, and this completes the proof of Lemma 20.

We will also need an extension of part 2 of Lemma 20 to include f € C’;w (R) with
f" € L> (R), where C}, (R) is the space of piecewise continuously differentiable functions
on R, ie. f is continuous, f’ has at most finitely many discontinuities Dy and f’ has
two-handed limits at each point in D;s. The immediate difficulty is that f’owu is undefined
on the set where u takes values in Dy, which can lead to problems if this set has positive
measure. This motivates the following definition.

Definition 21. We say that an element (u, Vu) € Wé’z (Q) is regular if

=0 for all « € R. (35)
L£2(92,9)

e

One way out of the difficulty mentioned above is to simply assume that Q (z,§) =~
X (z,§) where X = {Xj};';l is a collection of Héi’f (Q2) vector fields, since then the elements

in Wé’Q () are necessarily regular in the sense of (35), as we now show.

Corollary 22. Suppose that Q (z,€) is comparable to the quadratic form X (z,§) asso-
ciated to a collection X = {Xj};ll of H;i’f (Q) vector fields in a bounded open set ().
Then Vu is uniquely determined in £ (2, Q) and every u € Wé’Q (Q) is regular, i.e. (35)
holds.

Proof: As observed earlier, Wé’z () is embedded in H)lgz () under these conditions,

and it follows that Xu is uniquely determined in L?(Q) if u € Wé’z (€2), hence by the
comparability of @ and X, that Vu is uniquely determined in £2 (2, Q). Since u = uy +u_
in L? (Q), uniqueness of gradients shows that Vu = Vuy +Vu_ = x (201 Vu in £ (2, Q).

= 0. Applying this

Thus Vu vanishes on the set where u is zero, i.e. Hx{u:()}Vu‘
£2(2,9)

argument to u — « for constants « € R yields (35).
However, there is another way around this difficulty that does not require we suppose

the weak solution wu is regular. Instead, we use the following proposition that shows for
every (u,v) € W1Q’2 () there is a natural choice of w € L£2(Q, Q) such that (u,w) €

W1Q’2 (Q) and (u, w) satisfies (35).
Proposition 23. Suppose that (u, Vu) € WSQ (Q) (respectively (ng’z)o (©)) where Q
is bounded, and let

R, ={a €R:u=a«aon a set of positive measure} .

With Vyegt = X{ze0iu(z)gr, } VU We have (u, Vyegu) € ng’z (Q) (respectively <W1Q’2>0 (Q))
and (u, V,equ) satisfies (35).

We caution the reader that V,.qu depends on both u and Vu, i.e., V,c4u is not the
result of an operation on u alone.
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If in addition the Sobolev inequality (21) and the Poincaré inequality (23) hold, we
may of course restrict Vu to V,¢4u in the right side of both inequalities. Note that V,.qu
is essentially the smallest of the gradients that when paired with u belong to ng’2 Q).

Proof: The set R, is at most countable so we can enumerate it as {ozj};il (the
case when R, is finite is easier). If a3 = 0, then assertion 3 of Lemma 20 shows

that (U,X{uio}Vu) = <u+,x{u>0}Vu) + (u_,x{u<0}Vu> € WIQ’2 (). In general, as
(u—a1,Vu) € ng’Q (Q),

(u — Oq, X{u;éal}VU’) = ((’U, - al)jL 7X{u>a1}vu)+((u - 0[1)7 >X{u<a1}vu) € W1Q72 (Q) )
1,2 . .
so that (u,x{u;ﬁal}VU) = (u - al,x{u;éal}Vu) + (a1,0) € W5~ (©2), and by induction,

(u,x{uiah__uk}w) EWS(Q), 1<k<o.

Now let k — oo and note that X (.4, a3} VU = X{zeQu(z)¢R,} YU = Vregtt Pointwise.
We then obtain that X, 24, ay} V¥ = Viegu in £ (Q, Q) by the dominated convergence
theorem. Thus (u, Vyequ) € WlQ’2 () since ng’Q () is closed, and we trivially have that
(u, Vyequ) satisfies (35).

The case when (u, Vu) € (Wé’Q)O (©) is handled in the same way using the final
statement in assertion 3 of Lemma 20. Indeed, for oy > 0, we have (u— «a1,Vu) €
(Wléz)_al (©) and then

((u_a1)+7X{u>a1}VU> € (WSQ) (),

((u—al)i,x{u@q}Vu) € (W1Q72)_a1 (Q),

and so
(u - a17x{u¢m}vu) = (w=—a1),,V(u—a1),)+ ((u—a1) ,V(u—ar) )
€ (ng’Q)O Q) + (wg)ﬂl Q) = (wg)m Q).
Thus
(u,x{u;ﬁal}Vu) - (u - al,x{u;ﬁm}w) + (a1,0)

= (wg)_al @+ (W5) (@)= (W52)o Q).

a1

The argument is similar for a; < 0, and we can now proceed by induction as before.

Corollary 24. Suppose (u, Vu) € Wé’z (Q) with Q bounded and that either f € C},, (R)
with f € L> (R), or u(z) > a > b and f € C},, (b,00) with f" € L> (b,0), then

(fou,(f ou)Vyequ) € ng’2 (Q).
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Remark 25. In the situation of Corollary 22, we thus have Vu = V,¢qu and V (f o u) =
(f' ou) Vu.

Proof: Choose a sequence {gj } -, in C* (R) with uniformly bounded derivatives that
converges uniformly to f on R and such that g}, converges pointwise and boundedly to f
on the set where f’ is continuous. By Proposition 23, (u, V,equ) € ng’2 (Q), and from
assertion 2 of Lemma 20 applied to (u, V,cqu) we obtain that

(gr © u, gk (W) Viegu) € W5 (Q), 1<k < oo
Now we let £ — oo and note that
Q;c (1) Viyegu — I (w) Viegt

pointwise a.e. upon recalling that if w is constant on a set of positive measure, then
Vgt is zero on that set. Again, it follows from the dominated convergence theorem that
g), (W) Vyegu — f (u) Viegu in L2 (9, Q). Since we also have gx ou — f (u) in L? (Q2), we
conclude that (f (u), f’ (u) Vyegu) is in ng’Q Q).

The following corollary is needed explicitly to prove the analogue of (113) in chapter
3 of [11] - see the discussion below. In fact, as we indicate in more detail below, this
corollary together with Lemma 20, Proposition 23 and Corollary 24 suffice for all the
calculus needed in the proof given in chapter 3 of [11].

For 1 < p < oo we define £ (2, Q) to consist of the measurable R"-valued functions

f such that )
B ;
flemo = ([ @ant) <.

and if we identify f and g for which [|f — g|| 2, o) = 0, then L7 (€2, Q) is a normed linear
space. From (9) we obtain

[NIS]
S

Il = | | IR I I SIS
j= J= !

and the standard proof of completeness of LP (i) together with our proof of Theorem 4
above, now shows that £? (Q, Q) is complete and hence a Banach space for 1 < p < co.

Definition 26. We define ngp (Q) to be the closure of Lipg (Q) in LP (2) x LP (), Q)
where Lipg () is embedded into the product space by sending w to (w, Vw).

Corollary 27. Suppose both Q and Q are bounded and that (u, Vu), (v, Vv) € ng’2 Q).
Then
(wv,uVv +vVu) € W1Q’1 Q).

Proof: Let {v,,} C Lipg (Q) satisfy v,, — v in L?(Q) and Vu,, — Vo in £2 (2, Q).
Then by part 1 of Lemma 20 with ¢ = v, we have

(WU, UV Uy + v Vu) € VVIQ’2 (Q).
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Now we let m — oo and use
[uvm — UUHLl(Q) < ||u||L2(Q) [[om — UHLQ(Q)
and
(uV vy, + v, Vu) — (uVo + Uvu)||£1(Q’Q)
[ w10 =valt + [ o, ~ellQ(Vul?

[ull L2 ) 1VVm = VVll 20,0y + lvm = Vil 20y IVUll 22(0,0)

IN

IN

to obtain (uv,uVv +vVu) € Wé’l (Q).

We are indebted to S. Rodney for pointing out to us his treatment of products of
Cauchy sequences in [10], which motivated the definition of products in Wé’Q (Q) that is
used in the second bullet item below.

Adapting the classical proof. We end this subsection with some remarks on
adapting the proof in chapter 3 of [11] to the situation at hand here.

In the special case that X € H2% (Q) and (16) holds for some ¢ > 1, then Proposition
29 below shows that WyP (Q) = HYP (Q) for 1 < p < 20’. Thus for u,v € Hy> (Q),
Corollary 27 yields uv € H}Y’l (Q). As a result we obtain the following

Claim 28. Suppose X € H%2' (Q), o > 1, and that X and Q are bounded. If u,v,uv €
HY? () and if u € L (), then vVu € L2 (2, X).

Indeed, the corollary yields V (uv) = uVv +vVu in £! (£, X). By assumption both
Vv and V (uv) are in £2 (2, X) and u is bounded, so we conclude that both V (uv) and
uVv are in £2 (Q, X), hence vVu € £ (Q, X).

We can now obtain the required analogue of (113) on page 56 of [11] in this case. Using
the notation of [11] we recall that (113) asserts wh” (u) Vu € L? (Q) if u € W12 (Q) and
w is in the test function space (see (110) in [11]),

M [u; h] = {wGWOl’2 (Q):w>0and b’ (u)w e Wy~ (Q)},

where h is admissible for u, i.e. there is an interval I containing the range of u such that
h e C'(I)nC2, (I) is positive and monotone on I and

@ " @), th" @) <C,  tel
Now suppose that v € H /1\;2 () and w is in the analogous test function space
p] — 1,2 Cw > / 1,2
M [u; h] {w € (HX )O(Q) w >0 and I (u)w € (HX )O(Q)},
where h is admissible for u. We first observe that
B oue Hy* (Q) with V(B ou) = h" (u) Vu. (36)

Indeed b/ € C},, (I) with h” bounded, and Corollary 24 shows that (b’ o u, (" o u) V,cqu) €
W22 (). Since gradients are unique in Hy> = W5? (Q), we have V,c,u = Vu, which
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completes the proof of (36). If we now apply the claim above with u, v replaced by h'ou, w
we obtain that wh” (u) Vu = wV (k' ou) € £2 (2, X), the required analogue of (113).

In the general case of a bounded quadratic form Q, we still obtain the above conclu-
sions, but we need to take care in defining the composition h' o u, as well as in defining
what we mean by the product of two elements (u, Vu) and (v, Vo) in Wé’z (Q). We define
B/ ou to be the element (A’ (u),h” (u) Vyequ) € ng’Q (Q) given by Corollary 24, i.e. we
take VI (u) to be the element h” (u) V,equ in £2(£2, Q). Motivated by the approach
using Cauchy sequences in [10], we define the product of (u, Vu) and (v, Vo) to be the
pair (uv,uVv + vVu), which lies in ng’l (©2) by Corollary 27. If in the claim above we
replace X by Q and the assumption uv € Hy” () by (uv,uVo +vVu) € W1Q’2 (), we
again conclude by taking differences that vVu € £2 (€, Q). We now define the space of
test functions Mg [u; h] by

Mg [u;h] = {w € (ng)o (Q):w>0and b (v)w e (Wéz) (Q)}

0

with the following two understandings:
o h/ (u) refers to the pair (b’ (u),h” (u) Vyegu) € ng’2 (©), and

o if UVE Wé’Q are represented by the pairs (u, Vu), (v, Vv) € ng’Q (Q) then the
product UV is represented by the pair (uv, uVv +vVu) € Wé’l Q).

The appropriate analogue of (113) now holds here as well. Since the compositions
h o u appearing in [11] satisfy the hypotheses of assertion 2 of Lemma 20, the proof in
[11] now carries over to prove Theorem 16 here if we simply interpret h” (u) everywhere
a8 X{zeu(z)gr,} P (1) where R, is the set of values u takes on with positive measure as
in Proposition 23.

More precisely, we have the following analogue of (112) in [11]:

_ / VwBY (hou) = — / V [wh (u)] BV + / WX (pesaieyzr i (0) [Va] B[Val,

To see this we use V (howu) = h' (u) Vu from assertion 2 of Lemma 20 together with the
two bullet items above.
Then to obtain the analogue of (114) with X (,cq.u(z)¢r,} 7’ (¢) in place of A (u), we

use
/goTv: —/ vT
Q Q

for v € Wé’Q (), ¢ € Lip. (2) and T subunit - this in turn is true by approximation of v
by Lipschitz functions using Remark 12.

Then (115) uses only (111) and V (hou) = b’ (u) Vu, and (116) follows directly from
(111), (114) and (115). This shows that with @ = h o u we have the following analogue of
(117) in [11]:

Li = [+ T8 + X{veau@gr.) P (W) Vo] B[Vu] + @ (37)

in the Mg [u; h]-weak sense where ® = X(,cq.u@)gr, 1P (v) {(Tu) g — (Su) (Gu)} and
L, f and g are as on page 58 of [11]. The meaning of equation (37) in the Mg [u; h]-weak



DEGENERATE SOBOLEV SPACES AND REGULARITY OF SUBELLIPTIC EQUATIONS 25

sense is that if we multiply both sides by w € Mg [u;h], and then integrate by parts
formally in the appropriate integrals, the resulting integrals are absolutely convergent
and equality of the two sides holds. Finally, in Subsection 3.2 of [11] we revert to using
equation (99) there instead of (116) or (117) there, and the reader can verify that the
argument in Subsection 3.2 also carries over with X (,cq.u(z)gr, 37" (4) in place of A (u).
We should also point out that the remaining arguments in chapter 3 of [11] do not use any
calculus for the functions vy = max {u,0} and u_ = min {u, 0}, only pointwise estimates.

Recall from Corollary 22 that when the quadratic form Q (z,€) is comparable to the
form X (z,€) associated to a collection X of H;i’f (Q) vector fields, the gradient Vu of

u € WEQ (Q) is uniquely determined as an element in the form-weighted space £2 (2, Q),
and moreover elements in Wg () are regular, i.e. (35) holds. In this case, the proof in
Chapter 3 of [11] applies verbatim to Wgo-weak solutions u € L? (Q) with Vu € £2 (2, Q)
provided (u, Vu) € Wé’z Q).

5. EQUALITY OF DEGENERATE SOBOLEV SPACES

We prove equality of degenerate H and W Sobolev spaces for H'? () vector fields X in
three situations:

1. when the vector fields X are in HY2°" (Q) and satisfy the Sobolev inequality (16)
for the same o > 1.

2. when the vector fields X are in H'2 (2), are comparably Lipschitz off their common
zero set Z (see (41) below), and Lipschitz at Z, i.e. |v; (z)] < Cdist (z, Z).

3. when the dimension n = 1 and the vector fields X' are in H'2 (Q).

For convenience we will state and prove our results for 1 < p < co when appropriate.
We begin by considering the first situation in the following subsection.

5.1. The Sobolev inequality. The following proposition is proved in [3] and [4] in
the case when the vector fields X = {X;, ..., X,,,} are Lipschitz continuous in . Recall
that

HY? (Q)={ve P (Q):Vve L (Q)},

and consider the following LP? — L? analogue of (16):

{/ |w|Q}; <o { [0+ [ |Xw|p}i7 .

for all opens sets w € Q and for all w € Lip. (w). Note that (38) typically holds in a
stronger form in the presence of a subrepresentation inequality in a homogeneous space
with % =5 <, where D is the doubling exponent for the metric balls - see e.g. Propo-
sition 74 in [11]. Inequalities (16) and (38) coincide when ¢ = 20, p = 2 and D = 20".
Below we give an example of vector fields X satisfying the hypotheses of Proposition 29,
but with X (z,&) not comparable to any quadratic form arising from Lipschitz vector

fields.

Proposition 29. Suppose that X = { X1, ..., X,,} is a collection of H*P (Q) vector fields

in Q satisfying (38) with % = % — & for some 1 < p < D. Then WP (Q) = HyP (Q);

moreover, J. ¥ of — ¢f in Hy" (Q) as e — 0 for every f € Hy? (), ¢ € O (Q) and
any smooth compactly supported Euclidean approximate identity {J:}, .-
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Remark 30. In general however, convolution of elements in H }Y’p (Q) is not sufficient for
proving local density of Lip (2) when X is not Lipschitz. See the subsection on examples
below.

Proof: The proof is a straightforward modification of that of Theorem .5 in [4],
where our spaces WP (Q) and Hy” () are denoted S'P (Q) and L7 (Q) respectively.
In fact, it is only in Proposition .7 where the argument in [4] must be essentially changed
to accommodate our assumptions, namely that X € H%P () and that (38) holds with
1_ 1

i 5, in place of the assumption in [4] that X is Lipschitz. Indeed, Proposition .7

is applied with f = w € £L'? (Q) = Hy? (Q), and since by (38) we now have f € L. (),
the analogue of Proposition .7 given below will complete the argument in [4]. We will use
the notation in [4]: J is a smooth function compactly supported in the unit ball B in R,
Jo () =eJ (e7'x), and

T (2) = [X;, 0] = X;J. — J.X;

is the commutator of X; and J.. Lemma .6 in [4] shows that

ﬁf(w)=/3f(:v+6h) 7 (v, h) dh,

where
, I~ 0 ; ;
j _ 1t O ([ Y
K (a,h) = 2 ,; G LLbk (@ +eh) = b ()] T ()
_\" J o) .
and X; =, b (x) For for 1 < j < m. Here is the required analogue of Proposition .7
in [4].
Proposition 31. Let X € H"P (Q). Then for any f € L} () with % = 117 — 5 and
w € ) we have
i <7<m.
EILI% LP(w) 1<j<m (39)

Proof: To see (39), fix j and let je, K. and b, denote fg’, K7 and bi. By hypothesis
b € HYP (Q). We have

= sup

gl oy =1

|7

For ||g||Lp (@) = 1 we compute using Jp K< (x,h)dh = 0, Hélder’s inequality and 1 =
- —|— —I- L that

[ 2r@aal.

Lr(w)

Jof (x) g (z) da

w{/Bf<x+sh>z<a<m,h>dh}g<x>dx

w{/B[f(ereh) /(@) dh}g
{/‘U/Bf(ersh) f@ |qdhd:v} {/W/B

IA

K. (z dhd:r}

o=

)
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which tends to 0 as ¢ — 0 since f € L] (), translation is continuous in L{  (Q), and
/ / K. (2,h)|" dhdz < C < o (40)
wJB
holds with C' independent of & < d (09, w). Indeed, to see (40) we write
= by, RS dJ
K, h) = — eh)J - [b h) —b —(h
: (a,h) ;amk(ﬁ +5k§:jl o (@ +ch) = b ()] 53— ()

1
= I (z,h)+1I.(z,h).

{/w/BHE (x,h)|Ddhdx}}j <

since € < d (0Q,w) and by € H-P (Q). Using

Now

" Oby,
2 Doy

k=1

[l o (py < o0
LP(@)

1
b (x +¢€h) — by, (z) = / eh - Vb, (z + €ht) dt,
0

we also have

{/UJ/BUIE (x’h”Ddhdx}%

dhdz

LI

{ / h- Vb (z + cht) dt} gf‘; (h)

k=1

1

n 8J D D
< Z{/ {/ /|ka (z + ht)|” dasdt} o (h) h dh}
k=1
= aJ
< IVoel o ’—(h)h < 0.
= R | oh LD (B)

k=1

This completes the proof of (40) and hence of the proposition.
Now we can show that J. * f — f locally in Hy? (Q) as e — 0 for every f € HY? (Q).
Indeed,

1 ) = Xl oy = || (2% + 2) £ = X1, < 12 (X56) -

7y

Lr(w)

tends to 0 as ¢ — 0 for each 1 < j < m, and obviously |J.f — f||Lp(w) — 0ase — 0.

With this accomplished we can now obtain the global result Wy? (Q) = Hy” () using a
partition of unity argument as in [4].

5.2. Comparably Lipschitz off the common zero set. Now we turn to our second
generalization of the H = W theorem in [3] and [4]. This time we assume that the vector
fields X = {Xi,..., X;,} are merely in H'? (Q), but are comparably Lipschitz off their
common zero set Z: for each open set w € Q\ Z there is a positive constant ¢, and a
collection of Lipschitz vector fields F,, = {Fi,...,Fp}, p = p(w), defined in w such that

WF @O SX(@OS —F(n), (R, zewe\Z (1)

w
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where Z = ﬂ;n:l Zj and Z; = {zx € Q:v;(z) =0} is the zero set of the vector field

Xj (x) = vj(x) - V. We prove that Hy> = Wy” provided that in addition the vector
fields X are ”Lipschitz at their common zero set”, i.e.
[v; (z)] < Cdist(x,Z), z€Q,1<j<m. (42)

Note in particular that (41) holds with F,, = {%} ) if the vector fields X € Hélf Q)
i) j=

are elliptic off their common zero set Z: for each compact subset L of 2\ Z there is a
positive constant cy, such that
m

cp € <X (2,8 =) (v |5|, (eR™ zel. (43)

Jj=1

We also mention a weakening of the hypothesis (41); namely that the vector fields F,
need not be Lipschitz in w, but merely satisfy the hypotheses of Proposition 29 in w, i.e.
F., € HY2' (w) and (16) holds with the same o for all compactly supported open subsets
of w. Finally, in the subsection on examples below, we give an example of a collection
Y = {Y1,Y2,Y3} of three H'2 (D) vector fields in the unit disk D satisfying (43) and
(42), but for which there is no collection X = {X7,...X,,,} of Lipschitz vector fields whose
quadratic form X (x,¢) is comparable to Y (z,€), thus demonstrating that Theorem 32
isn’t a consequence of the Lipschitz result in [3] and [4].

Theorem 32. Suppose that X = {X1,..., X,,,} is an HY2 (Q) collection of vector fields
in Q C R"™ such that X is comparably Lipschitz off its common zero set and satisfies (42).
Then HY? (Q) = W12 ().

Proof: Let Z = (7, Z; where Z; is the zero set of the vector field X; = v; - V. For
d > 0 define the sets P5 by

Ps={z € Q:dist(x,Z) > 0}.

We can construct smooth functions n; with 0 < 75 < 1, and a positive constant C' such
that

ns = 1 on Py,
supp (ns) C Ds,
Vns| < Cs5 .

Let J be a smooth nonnegative function of integral one supported in the unit ball B of
R"™, and as usual define

J.(x)=e"J(e'2), xR e>0.
Let f € Hy (Q) and § > 0. Write

f=g95+b+hs
where
9(5 = 775f7
b = XZf7
hs = Xp, (1 —ns) f.

We will prove the following three assertions:
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1. Xj(gs*J:) — X;gs in L* (K) as € — 0 for each compact set K C Q2,0 < § <
dist (K,Q°), 1 <j <m,and

2. Xj([xz (b*Jy)] % J:) — 0in L? (K) as € — 0 for each compact set K C Q,0 < o <
%dist (K,Q°),1<j<m,and

3. [hsll 20y + 1 X5hell p2(q) — 0 as 6 — 0 for each 1 < j < m.

First we complete the demonstration of the theorem assuming these three assertions.
In fact we now claim

limsup || f — (gs + xz (b* Js)) * Js||H}Y,2(w) —0asoandd — 0, (44)
e—0

for all open sets w € 2. With Lipxy (w) as defined in (13), we have (gs + x5 (b* J))*Je €
Lipx (w). It now follows easily that H)lf Q) = W;’?loc (©) (as usual Bj,. (2) denotes

Jloc

those functions f on € such that ¢f € B(Q) for all ¢ € C°(Q2)). A standard partition
of unity argument ([6]; see also [4]) now shows that Hy? (Q) = Wy (). To see (44) we
set by = x5 (b* J,) on w and use

f—(9s+bs)*xJe = gs+b+hs—(g95s+bs)*Je
= {(9s +bo) — (95 + bs) * Jo} + hs + b — b,

to compute that
[1f = (g5 + bo) = JE”Lz(w) < l(gs + o) — (g5 + o) * J€||L2(w) (45)
+ 15l 20y + 10 = boll 220wy »
and since g5 + b, € L? (w') with w € W’ € §, we obtain

limsup || f = (g5 + bo) * JEHLZ(w) < HhSHLz(Q) + 16— bU||L2(Zﬁw) :

e—0
To estimate the L2 norm of the derivatives we note that
X;f=X;(95+ hs) (46)

in the weak sense in (Q since
Jexst== [ 117} == [xnd 19 (vt = = [ (g +h) (V- (v}

for ¢ € C} (), where the first equality is the definition of X f, and the second equality
follows from Py = Q\ Z, the identity

V- (pv;) =pdivv; + Ve v;
in Lemma 1, and the fact that divv; = 0 a.e. in the set Z; where v; vanishes, which in
turn holds since v; € H"? (2) (see Lemma 7.7 in [5]). The third equality uses V-(¢v;) = 0
a.e. in Z. Thus we compute
16 1F = (95 +b0) % ¥l oy = 15 {005 +hs) = (95 + o) ¥ Ml ey (47)
1X; {95 — g5 * Js}”m(w) + ||th5HL2(Q)
+ X {bs = Ja}”p(w) ‘

IA
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Now the first and third terms on the right side of (47) tend to 0 as € — 0 by assertions 1
and 2 above. Thus we have

limsup |1 = (g5 +bo) * Jell gy < lomsup | = (g5 +bo) Tl ooy (48)
+lim su% X5 {f — (95 + bs) = Js}HLz(w)
£—
< hsllpzay + 10 = b Joll 220w + 1 X5h6ll 120 -

The right-hand side of (48) tends to 0 as o and § — 0 upon using b € L? () and assertion
3. This completes the proof of (44).

So it remains to prove assertions 1, 2 and 3. Choose K C w’ € Q. We obtain assertion
1 immediately from the final statement of Proposition 29 applied to the open set Q\ Z
together with assumption (41). Assertion 2 follows from the inequality |v,;| < Ce on
Py \ P., which is in turn a consequence of (42). Indeed, using this with the estimate

1
[V Jel * Ixz (0 Jo)] ()] < IV Iellpa 6% Joll oo (zrwry < O 10 * ol poe 2wy

we have since the support of [y, (b * Jy)] * J. is outside P-,

/ X (b (b5 Jo)] # J2) / Vi - (g (b5 o))+ Jo)
K KNPy

_ / [vi - (VI % [xz (b Jo))
KN(Py\P:)

02
2 2
< [ W @F G Tl e da
KN(Po\P:) €
2
< C? b JUHLOO(Zm;’) [Po\ Pel.

The quantity |Py \ P:| tends to 0 as ¢ — 0 since [\ (Py\ P:) = ¢, and this establishes
e>0
assertion 2. Since X;b = 0 in the weak sense by (46), we have

Xjhs = X (b+hs) = X; (f = 95) = X5 {(L = ns) [}
Also (42) and supp Vns C Ps \ Pas imply |v;||Vns| < C. Assertion 3 now follows from
2 2 2 2
[+ [ 1xins® = [ j@=n) s [ v v i@ -0 1)
Q Q Py Q

< o[ {a-mr el IVl 1o [ 0= v

IA

of (P +IXP).

Py\ Pas
which tends to 0 as 6 — 0 since (- (Po \ Pas) = ¢.

5.3. One dimension. When n = 1 and the vector fields X = {X;,..., X,,} are in
HY2(Q) (which coincides with Hclh’f (©) in one dimension), @ C R, we always have
Hy® (2) = Wy* (Q).
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Theorem 33. Hy> (Q) = Wy (Q) if X = {X1,..., X} € HY2(Q), Q CR.

Proof: We suppose for convenience that there is only one vector field X = U%, and
that the open set €2 is a bounded interval - the proof in the general case is similar. The
crucial consequence of X € H? (Q) that is used in the approximation scheme is the lip%

estimate
y y ) 3 .
/v’(t)dt‘ﬁ(/ W (8] dt) o -yt (49)

Let Z = {z € Q:v(z) =0} and write

v (y) —v (@) =

O\ Z = L.anlln = LJn:l (ansbn)
where U denotes a pairwise disjoint union. We also define Ps = {z € Q : dist (z, Z) > 0}
for § > 0 as in the previous subsubsection. Note that Py = Q\ Z.

Now suppose [ € H/.l\f () and € > 0 are given. We will complete the proof by
constructing g € Lip (2) such that

2 2 2
If = g”H;(’z(Q) =f- 9||L2(Q) + 1 = g/HLz(Q,vz) < Ce. (50)
First we choose ¢ € CZ° (2) such that
(e </7||2L2(Q) <E. (51)

Then since Ng~o (Py \ Ps) = ¢, we can choose § > 0 so that

/ f@)Pde < e (52)
Py\P;s

/ 1 @) v (@) da / Xf (@) de <,
(Ps)© P\ Ps

[ w@iteere = [ xewla<e
(Ps)* Po\Ps

Now since lim,, s |I,| = 0, there are only finitely many of the intervals I,, that intersect
Ps: enumerate them as {In}fj:l and set G = UY_,T,,. Note that Ps C G.

We now define g in the set Q\ G by g = . To define g in the interval I,, = (ap,by,) we
proceed as follows. Suppose that both of the endpoints a,, and b, lie in Z (the case that
one or both lie in 9 is similar). Since (ay,b,) intersects Py and a,,, b, € Z we thus have
an < ap+9 < b, —3§ <b,. Since v is positive on (an, by,), f is continuous on (a,, b,) and
we can choose a point x,, € (an + g, an + 5) such that

9 an+0
fa=3 [ fwa

an+3

and similarly choose y,, € (bn —9,b, — %) such that

b
=3[ i



DEGENERATE SOBOLEV SPACES AND REGULARITY OF SUBELLIPTIC EQUATIONS 32

Now define
f(xn) for a,<t<uwz,

hy (t) = f@) for z,<t<y,
fyn) for gy, <t<b,

Clearly h,, € L (I,). We also have h;, = f'x(,, ,.) € L*? (I,,) since f’ € L? (,v?) and v
is positive on (2, yn), the support of hl,. Thus with J as in the previous subsubsection,
we can choose 0 < 0 < g independent of 1 < n < N so small that (for the purpose of
defining the convolution h,, x J, we extend h,, to be continuous and constant outside I, ),

% T = hnllieg,, < (53)

[ A A

2|0z o

The function h,, * .J, is smooth in I,, and since o < g, it is constant on the intervals
(an, an + g) and (bn — %, bn), taking the values f (x,) and f (y,) there respectively. The
only reason we cannot define g to be h,, * J, on I, is that h,, x J, does not match ¢ at
the endpoints a,, and b,,. So we will modify h,, * J, near the endpoints to match ¢ there
by adding a small piecewise affine perturbation v,,, and use the lip% estimate (49) on v
to control the L? (112) norm of the derivative of the perturbation. Here are the details.
For 0 <71 < % to be chosen momentarily, we define v,, to be the piecewise affine function
on [ay,b,] whose graph joins the four points (an, ¥ (a,) — f (z4)), (an + 7,0),(b, — 7,0)
and (b, (by) — f (yn)) in succession. Using (49) and a,, b, € Z we have for 1 <n < N,

an+T7 2
/ |1/);1’2v2 _ / * ¢ (an) —2f (7)] v(t)2 dt (54)
I, a T

n

" e (be) = f a)l® e
+/bn—‘r v(t)"dt

T2

_ 2 an+T An+T
eten) Sl ([ ) [
T [o 7% Qn
bn - n 2 On O
| le(by) j@>|</‘ U¢>T/ i
T by —T by —T

Apn+T7 bn
< el =@l [ WP - F® [ WP < g

IN

if 7 > 0 is chosen sufficiently small. We also choose 7 > 0 small enough to ensure

{le@n) = f @+l )~ )P }r< . 1<n<N. (55)

Then we set g = hy, % J, + 1, on I, for 1 <n < N. Altogether we have

s0={ 1.0,

Clearly g € Lip (Q2) and we have

@ (1) for teQ\G
(t) 4+, (t) for tel,, 1<n<N

N

N N
f—9= (f—<P)XQ\G+Z(f—hn)XIn + Z(hn —hn* Jo) xyp, — Z¢n- (56)
n=1 n=1

n=1
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We now use (56) to compute ||f — gl 2(q) and [|[ X f — Xg|[12(q) as follows:
N b
2 2 2
£ =9l S 1= el + 3 [ 17~ bl
n=1"an

N b N b
2 2
+2/ |hn—hma|+z/ [,
n=1"Aan n=1"Yan

I+IT+II1+1V,

where I < ¢ by (51),

woe SR L]
< CZ{/ s +%/++5f| +/yi”|f2+72(b"§y") /bb;IfF}
< C IfI> < Ce

Po\Ps

by the first line in (52), ITT < 25:1 ~ = € by the first line in (53), and

1V <3 {0 o)~ £ @)+l o) £ () }T<ZN

n=1

by (55).
Using (56) again, together with Py C G, the derivatives are estimated by

N b
ARSI D Y A AR A
(Ps)© (Ps)©
+Z/ X (hyy — i % Jo) 2 +Z/ X0, |

= VA4VI+VII+VIII+IX,

IN

2
X[ = Xgl72(0)

where V 4+ VI < 2e by the second two lines in (52),

N Tn bn
VIIZ{/ |Xf|2+/ |Xf|2} §/(P)C IXf*<e

n=1 n n

by the second line in (52),

N b N
2 Z 2 2 Z €
VIIISC”’UHLOC(Q) / ‘h'/n_h'/n*‘]a" SC”UHLOO(Q) N :C/E
n=1"Yan n=1

by the second line in (53), and finally X < En 1 7 = € by (54). This completes the
proof of (50), and hence that of Theorem 33.
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Remark 34. Theorem 33 generalizes to show that HY" (Q) = WP (Q) for 1 < p < 2
provided n = 1 and the vector fields X are in H'*' (Q). Here Hy" (Q) and Wy (Q) are
defined as in Remarks 3 and 9 above. In fact, only inequality (54) of the proof of Theorem
33 is affected for p # 2, and now becomes

-1

an+T1 AP
[l < 2ot - 1 @l ( / |) (57)
by, AP
2 o (b) — £ ()P ( N |v’|p> .

For 1 < p < 2, the right side of (57) tends to 0 as 7 — 0, and the proof of Theorem
33 shows that Hy” (Q) = Wy (Q). However, when p > 2 the right side of (57) need
not tend to 0 as 7 — 0, resulting in examples for which H}gp (Q) # W}(’p (Q), even when
X € H1(Q) for all ¢ < p. See the subsection on examples below.

5.4. Examples. We first give an example of a collection Y = {Y7,Y5,Y3} of three
HY2 (D) vector fields in the unit disk D such that Y is elliptic off its common zero set and
satisfies (42), but for which there is no collection X = {X4,...X,,} of Lipschitz vector
fields whose quadratic form X (z,£) is comparable to Y (z,£). This shows that Theorem
32 is not included in the known theorems in [3] and [4].

Example 35. Identify * = (z1,72) € R? with x = x1 + ivg = re € C, and define
C-valued functions wy, ws, W3 by

wi (z) = e—r*27 ws (2) = Z.e_r727 ws (z) = el rei(e'”ia),

so that Y; (x) = w; (x) - V is given by

2 0
Yi(z) = FIT
2 0
Y2(x) = a—x27
—ay O . a
Ys(x) = rcos(0+r )8—931—&-7“511(1(0—&-7“ )8—332

The vectors wy and wQ are smooth, and wz € H%? (D) for —oo < a < 1 since % (recos(@+1r%) =
O(1+r=*) and % 89 (recos(0+r=%)) = O(1), etc., but ws is Lipschitz only for « < 0

(and also with v~ replaced by logr). Conditions (43) and (42) hold with Z = {0} for all

a.

However, if X = {X1,...X,,} is a collection of vector fields X; = v; - V satisfying

X(z,8) =Y (zx,§) = Z -2r7? \§|2 + {Re (rei(eJrFa)E) }2 ,

Jj=1

then for £ = e; and x = (r,0), which is denoted r € C, we have

(vi(r)-e1)’ = X (r,e)) me ¥ +r2cos® (r™®), (58)
j=1
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shows that X cannot be Lipschitz if & > 0. Indeed, if X' is Lipschitz, then

|X (r+s,e1) — X (r,e1)] = Z{ v (r+s e1)2,(Vj (r).el)Q} (59)

j=1
< C|S|Z|V] r+s)-e1+v;(r) e
j=
< Clsl(r+1s)),
since X (z,e1) < CY (z,e1) < Cr?. On the other hand, if we choose 0 < roy < 1—10 so that
coS (rao‘) =0, and then take so > 0 such that (ro + so) ~ =1y " — %, we have
E7“821—(14—8—0) ml—(l—as—()):as—o,
2 To To To
and so -
~ 1+«
So ~ %TO+ .

But (58) and cos (ry®) = 0 yield

Ce_2T52,
c(ro+ 80)23

X (7“0,81)
X (ro + S0, €1)

IV IA

and so we have
X (ro + so,e1) — X (rg,e1) > ¢(ro + 50)2 —Ce 0 ~ 7“8 > T8+a ~ so (ro+ so),
contradicting (59).

We observe that the above argument yields a single vector field that is comparably
Lipschitz, instead of elliptic, off its zero set:

Example 36. The single vector field Y = {Y3} is comparably Lipschitz off its zero set
and satisfies (42) in D, while by the argument above, ) (x,§) fails to be comparable to
X (z,€) for any collection X = {X1,...X,,} of Lipschitz vector fields in D.

Next we give an example of nonvanishing and non-Lipschitz vector fields that satisfy
the hypotheses of Proposition 29.

Example 37. Let a and 8 be positive rational fractions with even numerators and odd
denominators, and suppose

NG 1+«

1>a> . 1>8>
@ 2 > 9

Set D = 2+ . We claim that the vector fields X = {X,Y} defined in the unit disk D by

o 40 P 9
X = 2 and Y = .
gz TV gy mdY = 5ot g



DEGENERATE SOBOLEV SPACES AND REGULARITY OF SUBELLIPTIC EQUATIONS 36

are in HY'P (D) and satisfy (38) for é =
The integral curves for X are given by

Y (1) = (1,0) and 7, (1) = (t,1(1 = B) (t = )] ™7 ),

together with concatenations of v, , v and v,, that join on the x-axis. The integral curves

for'Y are given by
5 (1) = (64 1"
b - 5 1 T a .

% — % (they are Lipschitz only for o, > 1).

Note that both of the exponents ﬁ and 1 + « are fractions with odd denominator by

1t+a
24«
long and tedious calculation using v, and &, then shows that the control balls B ((z,y) , )

associated with X have doubling constant D = 2 + a, i.e.

our assumptions on « and 3. The hypothesis § > implies that 1 + a < ﬁ, and a

B ()0l <0 () 1B (@)l

for all0 < s <r <1 and (x,y) € D. Using the integral curves vy, and &, we can establish
the subrepresentation inequality (186) in [11], and then Proposition 74 of [11] yields the
Sobolev inequality (38) with D = 2 + a. Now X € HY'P (D) provided o, 8 > 1 — %, and

this follows from D = 2 + a, a > @ and 3 > ;i—g Finally, arguing as in the first
example, we can show that X (z,§) is not comparable to any quadratic form arising from

Lipschitz vector fields.

Convolution of elements in H /1\;2 () is not in general sufficient for proving density of
Lip () when X is not Lipschitz. Here is an example in dimension n = 1.

Example 38. If

vg (z) = (z4+

)P - 0 if —-1<z2<0
Tl 2 if O0<zxz<l

on Q = (—1,1), then vg € H"?(Q) for all 3 > 3, yet for Xz = 05%, the convolutions
f*xJe.— fin Hgl(j (=1,1) for all f € H}gj (=1,1) if and only if 8 > 1. Indeed, f, (z) =

(x_)" " € H}Y; (=1,1) provided o < % since vg-L fo, = 0 in the weak sense. Assuming

J > 0 one then computes that for 2 < x < 3¢,

g

(Je* fo) () = Jo % f! (x) = a/ (z— 75)_)70(71 eI (e7)dt > e,

—&

for a > 0, and hence

2 m2
”fa_Js*fOz”H}\;;(Q) > Hfé_(Js*foc) ||L2(Qﬂ,g)
3e
> /2 |(JE * fa)' (av)f2 V3 (;v)2 dx
3e
> (6570‘71)2/ 22Pdy = ce2(B-)—1
2e

tends tooco ase — 0 ifa > 3 — % Thus given % < 3 < 1, we can choose o > 0 satisfying
B— 4 <a<}sothat fo € Hy? () and J. x fo = fo locally in Hy? (Q).
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Now we give examples in all dimensions of vector fields X in H'#' (Q) for which
HP (Q) # WP (), p > 2 - compare Remark 34.

Example 39. For every p > 2 and n > 1 there is a vector field X € HP (Q) for
which Hy? () # WP (), X = {X}, and moreover, we can even take X € H%(Q) for

p' < q < p. To see this in dimension n = 1, fix % < % <pB< i and let X = |x|’6 % for

x € Q= (-1,1). Then X € H“(Q) since 3 > %. Set u (x) = sgn (x) so that Xu =0

in the weak sense and u € Hy” (). Now we observe that if w € Lip (Q) N Hy? (Q) =
Lipxp, (), then § < % yields the Poincaré inequality:

[w@-vora = [ |[wow w=[
/_11 /0 Ui dt‘p_l /0 lxw) <t)|”dt‘ da

Cos [ 11 [ e <t>|”dt\ s < Gy [ X0 O .

From this and Xu = 0 we easily see that u ¢ Wi" (). Indeed, if w € Lipx , (), then

p
dx

/0 1 (Xw) (1) de

IN

IN

Cr X W=l = Ol X0l ey
> - w (Ol ey
> fu—w (O)HLZD(Q) = [Jw— u”LP(Q)
> 1w - ully

shows that ||w — UHH;(,p(Q) > ¢, >0 forallw € Lipy , (), hence u is not in the closure
WP (Q) of Lipx, (Q) in Hy? (Q). This example immediately lifts to higher dimensions
by introducing extra variables and then multiplying the function uw by an appropriate
smooth cutoff function.

Remark 40. Note that the existence of a Poincaré inequality as above prohibits sgn (z)
from belonging to W}(’p (©). On the other hand sgn (x) belongs to H;(’p (Q) if X vanishes
on the y-axis. The above example shows that both phenomena can occur simultaneously
if p> 2.
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