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Chapter 1

Ordered structures

Throughout these notes1, we fix an ordered structure M = (M,<, . . . ) such that (M,<) is
a linear order. Unless otherwise specified, “definable” means “definable with parameters”.
For the purposes of these notes, an interval is always a nonempty interval with endpoints
in M ∪ {−∞,+∞} (and hence definable). We consider M with its order topology on M
and the corresponding product topologies on Mk, for k ∈ N.

For 1 ≤ m ≤ n and a strictly increasing ι : {1, . . . ,m} −→ {1, . . . , n}, we denote by
Πn
ι : Mn −→ Mm (or Πι if n is clear from context) the projection on the coordinates

(xι(1), . . . , xι(m)). If ι(i) = i for all i, we also write Πn
m or simply Πm in place of Πn

ι . Note
that Πn

ι is a definable, continuous and open map.

Example 1.1. Let P be the set of all Puiseux series, that is, series of the form G(X) =
Xp/d · F (X1/d), where F (X) ∈ R[[X]] is a formal power series with real coefficients, d ∈ N
is nonzero and p ∈ Z. For such a series G(X), the number (ord(F ) + p)/d is called its
order and denoted by ord(G), and the leading coefficient of G(X) is the coefficient lc(G)
of G(X) for the monomial Xord(G). We set G(X) < 0 if and only if lc(G) < 0, and we set
G(X) < H(X) if and only if G(X)−H(X) < 0. Then (P,<) is a linearly ordered structure,
and if + and · denote the usual addition and multiplication of such series, the structure
P := (P,<,+, ·) is a real closed ordered field.

Exercise 1.2. Prove that P is totally disconnected.

A definable set S ⊆ Mn is definably connected if there are no definable open sets
U, V ⊆Mn such that S ⊆ U ∪ V , S ∩ U ∩ V = ∅ and both S ∩ U and S ∩ V are nonempty.

Exercise 1.3. (1) Prove that the image of a definably connected, definable set under a
definable, continuous map is definably connected.

(2) Let S, T ⊆ Mn be definable and definably connected, and assume that clS ∩ T 6= ∅.
Prove that S ∪ T is definably connected.

A box is a set of the form B = I1 × · · · × Ik with each Ii a definable interval. We call B
open if each Ii is open, and we call B closed if each Ii is closed.

Remark. The open boxes form a basis for the product topology on Mn induced by the order
topology on M ; in particular, they are open sets in this topology.

1Partially based on van den Dries [12], Peterzil [8] and Starchenko [11]
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Definably complete structures

The structureM is definably complete if every definable subset of M has an infimum and
a supremum in M ∪ {−∞,+∞}.

Exercise 1.4. Assume that M is definably complete.

(1) Prove that every interval is definably connected.

(2) Intermediate Value Theorem: Let f, g : I −→ M be definable and continuous,
with I ⊆ M and interval, and assume that f(x) 6= g(x) for x ∈ I. Prove that either
f(x) > g(x) for all x ∈ I, or f(x) < g(x) for all x ∈ I.

Let S ⊆ Mn+m. For x ∈ Mn, we denote by Sx := {y ∈Mm : (x, y) ∈ S} the fiber of
S over x. The projection Πn |S: S −→ Πn(S) is a local homeomorphism if, for every
(x, y) ∈ S, there are an open box B ⊆ Mn+m containing (x, y) and a continuous function
f : Πn(B) −→ Mm such that S ∩ B = gr(f). Note that, if Πn|S is a local homeomorphism,
then Πn(S) is open.

For S ⊆ Mn+m and x ∈ Mn, we say that S is locally bounded at x if there exists an
open box B ⊆Mn containing x such that S ∩ (B ×Mm) is bounded.

Exercise 1.5. Assume that M is definably complete, and let S ⊆ Mn+1 be definable such
that Sx is finite for all x ∈ Πn(S). Assume in addition that:

(i) Πn(S) is definably connected,

(ii) S is locally bounded at every x ∈ Πn(S),

(iii) S is closed in Πn(S)×M , and

(iv) Πn|S: S −→ Πn(S) is a local homeomorphism.

Prove that |Sx| is constant as x ranges over Πn(S). Also, for any three of the conditions
(i)–(iv), find an example satisfying these three conditions where |Sx| is not constant.

O-minimal structures

We callM o-minimal if every definable subset of M is a finite union of points and intervals.

Examples 1.6. (1) By quantifier elimination, every dense linear order without endpoints
is o-minimal.

(2) Let V = (V,<,+, (λk)k∈K) be an ordered vector space over an ordered field K. By
quantifier elimination, V is o-minimal.

(3) By Tarski’s Theorem, every real closed field is o-minimal.

(4) By Wilkie’s [13] and Khovanskii’s [2] Theorems, the real expenential field is o-minimal.

We will discuss examples of o-minimal structures later. We assume from now on thatM
is o-minimal.
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Exercise 1.7. Assume that M is o-minimal.

(1) Let A ⊆Mn+1 be definable. Prove that the set {x ∈Mn : Ax is finite} is definable.

(2) Prove that every infinite definable subset of M contains an interval.

(3) Prove that M is definably complete.

Lemma 1.8. Let S ⊆M be definable and a ∈M . Then there exists ε > a such that either
(a, ε) ⊆ S or (a, ε) ⊆M \ S.

Proof. If a is not in the boundary bdS of S, then either a is in the interior of S or a is in
the interior of M \ S; the lemma follows in both cases. So we assume that a ∈ bd(S). By
o-minimality, bd(S) is finite, so we are in one of the following cases: if a is an isolated point
of S or the right endpoint of an interval contained in S, then (a, ε) ⊆M \ S for some ε > 0;
if a is the left endpoint of some interval contained in S, then (a, ε) ⊆M for some ε > 0.

The first big question about o-minimality is the following: is o-minimality an elementary
property, that is, given N ≡M, is N necessarily o-minimal?

Exercise 1.9. Prove that the following are equivalent:

(i) every N ≡M is o-minimal;

(ii) for every definable A ⊆ Mn+m, there exists k ∈ N such that, for all x ∈ Mn, the fiber
Ax is finite if and only if |Ax| ≤ k.

Condition (ii), called the uniform finiteness property (UFP), will be a direct conse-
quence of the cell decomposition theorem (CDT), probably the most fundamental theorem
of o-minimality. Indeed, special cases of (UFP) need to be proved inductively along with the
proof of (CDT).

Exercise 1.10. Assume thatM is o-minimal and ℵ1-saturated. Prove thatM has (UFP);
in particular, every N ≡M is o-minimal.
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Chapter 2

Monotonicity

We start by studying definable one-variable functions: let f : I −→ M be definable, with
I = (a, b) an interval. We call f strictly monotone if either f is constant, or f is strictly
increasing, or f is strictly decreasing. Also, f is strictly monotone at a ∈ I if there exist
c1 < a < c2 such that the restriction of f to (c1, c2) is strictly monotone.

Exercise 2.1. (1) Assume that f is strictly monotone at every a ∈ I. Prove that f is
strictly monotone.

(2) Assume that f is strictly monotone. Then there is an interval J ⊆ I such that f |J is
continuous. [Hint: if f is not constant, then f(I) contains an interval J , and f−1(J)
is an interval on which f is either an order-preserving or an order-reversing bijection.]

Lemma 2.2. Assume that f(x) > x for all x ∈ I. Then there exist an open interval J ⊆ I
and c > J such that f(x) > c for all x ∈ J .

Proof. Let B := {y ∈ I : f(y) ≥ f(x) for all x ∈ (a, y)}; we distinguish two cases based on
Lemma 1.8.

Case 1: (a, ε) ⊆ B for some ε > a; so f is increasing on (a, ε). Choose a < α < β < ε such
that β < f(α), and put J := (α, β) and c := f(α).

Case 2: (a, ε) ⊆ I \ B for some ε > a. Choose c ∈ (a, ε); so there exists x1 ∈ (a, c) such
that f(x1) > f(c). Iterating this, we find x1 > x2 > · · · > xi > · · · > a, for i ∈ N, such
that f(xi+1) > f(xi) > f(c) for i ≥ 1. So by Lemma 1.8, there exists δ ∈ (a, c) such that
f(x) > f(c) for all x ∈ (a, δ), so we take J := (a, δ).

Proposition 2.3. Let S ⊆ I2 be definable. There exists an open interval J ⊆ I such that
the set

∆>(J) :=
{

(x, y) ∈ J2 : y > x
}

is a subset either of S or of I2 \ S.

Proof. Let B := {x ∈ I : ∃ε > x such that (x, ε) ⊆ Sx}. By Lemma 1.8, after replacing S
by I2 \S if necessary, we may assume that B contains an interval I ′. Now define f : I ′ −→ I
by f(x) := sup{ε ∈ (x, b] : (x, ε) ⊆ Sx}; then f is definable and f(x) > x for all x ∈ I ′. By
Lemma 2.2, there are an open interval J ⊆ I ′ and c > J such that f(x) > c for all x ∈ J .
The proposition follows.
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Corollary 2.4. Let S1, . . . , Sk ⊆M2 be definable, and assume that I2 ⊆ S1∪· · ·∪Sk. Then
there exist l ∈ {1, . . . , k} and an open interval J ⊆ I such that ∆>(J) ⊆ Sl.

Theorem 2.5 (Monotonicity [4]). There are k ∈ N and definable a1, . . . , ak ∈ M such
that a0 := a < a1 < · · · < ak < ak+1 := b and, for i = 0, . . . , k, the restriction f|(ai,ai+1) of f
to (ai, ai+1) is strictly monotone and continuous.

Proof. By Exercises 2.1 and o-minimality, it suffices to show that the set

A := {x ∈ I : f is strictly monotone at a}

is contains an open interval. Note that I2 is covered by the definable sets

X∗ :=
{

(x, y) ∈ I2 : f(x) ∗ f(y)
}
,

where ∗ ∈ {<,=, >}. So, by Corollary 2.4, there exist ∗ ∈ {<,+, >} and an open interval
J ⊆ I such that ∆>(J) ⊆ X∗. But this means that the restriction of f to J is strictly
monotone, as required.

Corollary 2.6. (1) The limits limx→a+ f(x), limx→b− f(x) and, for c ∈ (a, b), the limits
limx→c− f(x) and limx→c+ f(x) exist in M ∪ {−∞,+∞}.

(2) If c, d ∈M and g : [c, d] −→M is definable and continuous, then g attains a maximum
and a minimum in [c, d].
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Chapter 3

Definable closure

For A ⊆M , the definable closure of A is defined by

dcl(A) := {b ∈M : {b} is A-definable} .

For A,B ⊆ M , a = (a1, . . . , ak) ∈ Mk and b = (b1, . . . , bl) ∈ M l, we shall write dcl(AB),
dcl(Aa) and dcl(ab) in place of dcl(A∪B), dcl(A∪{a1, . . . , ak}) and dcl({a1, . . . , ak, b1, . . . , bl}),
respectively.

Exercise 3.1. (1) Let A ⊆M . Prove that dcl(A) = acl(A).

(2) Let A ⊆ M and φ(x) a formula with parameters in A. Prove that φ(M) is infinite if
and only if there exist an elementary extension M∗ of M and b ∈ φ(M∗) such that
b /∈ dcl(A).

Since the boundary of any definable subset of M is finite, we obtain:

Corollary 3.2. Let S ⊆M be A-definable. Then bd(B) ⊆ dcl(A).

Lemma 3.3. Let A ⊆ M and a, b ∈ M . Then b ∈ dcl(Aa) if and only if there is an
A-definable function g : I −→M such that a ∈ I and b = g(a).

Proof. Assume first that b ∈ dcl(Aa), and let φ(x, y) be a formula with parameters from A
such that {b} = φ(a,M). So M |= ∃!yφ(a, y), where “∃!y” abbreviates “there is a unique
y”. Thus, the set

I := {x ∈M : ∃!yφ(x, y)}

is definable over A and contains a, and φ(M2)∩(I×M) is the graph of a function g : I −→M
definable over A such that g(a) = b.

Conversely, assume that b = g(a) for some function g : I −→ M definable over A. Let
φ(x, y) be a formula with parameters from A such that φ(M2) is the graph of g. Then
{b} = φ(a,M), so b ∈ dcl(Aa).

Exercise 3.4. Let A ⊆ M , and let f : I −→ M be A-definable, with I ⊆ M . Prove that
the ai obtained by the Monotonicity Theorem for f can be chosen to lie in dcl(A).

Proposition 3.5. The pair (M, dcl) is a pregeometry.
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Proof. Since dcl = acl, it suffices to establish the exchange property. Let A ⊆ M and
a, b ∈ M be such that a ∈ dcl(Ab) \ dcl(A). By Lemma 3.3, it suffices to show that there
exists g : J −→M definable over A, with J ⊆M , such that a ∈ J and b = g(a).

Also by Lemma 3.3, there is an f : I −→ M definable over A such that I ⊆ M , b ∈ I
and a = f(b). By o-minimality and because bd(I) ⊆ dcl(A), we may assume that I is a
singleton or an interval. If I is a singleton, then I = {b} = bd(I) ⊆ dcl(A), so a ∈ dcl(A),
a contradiction. We therefore may assume that I = (c, d) for some c, d ∈ M ∪ {−∞,+∞}
with c < b < d.

By the Monotonicity Theorem and Exercise 3.4, there are a1, . . . , ak ∈ dcl(A) such that
a0 := c < a1 < · · · < ak < ak+1 := d and, for i = 0, . . . , k, the restriction of f to (ai, ai+1)
is strictly monotone. As in the previous paragraph, we must have b 6= ai for each i. Thus,
replacing I by (ai, ai+1) for some i if necessary, we may assume that f is strictly monotone.

If f is constant, then f(x) = a for all x ∈ I, so limx→c+ f(x) = a as well. Hence
{a} = ψ(M), where ψ(y) is the L(A)-formula

∀y1y2x1 (y1 < y < y2 ∧ c < x1 → ∃x(c < x < x1 ∧ y1 < f(x) < y2)) ,

that is, a ∈ dcl(A), a contradiction. Therefore, f must be injective; let g : J −→ M be the
compositional inverse of f . Then g is definable over A, b ∈ J and a = g(b), as desired.

It follows that every set A ⊆ M has a well-defined dimension, denoted here by pdimA.
More generally, for A,B ⊆ M , the set B has a well-defined dimension over A, denoted
here by pdim(B/A). It is well known that in this situation, we have

pdim(AB) = pdimA+ pdim(B/A). (3.1)

For a = (a1, . . . , ak) ∈Mk, we set

dim(a/A) := pdim({a1, . . . , ak}/A) ∈ {0, . . . , k}.

This dimension is not very usefull, as long as we do not know whether it is defined in
elementary extensions of M, as the following example shows:

Example 3.6. Let R be the set of all real algebraic numbers, together with the usual
ordering, addition and multiplication. Then Ralg := (R,<,+, ·) is a real closed field, hence
is o-minimal. However, for any a ∈ Rn, we have dim a = 0; and this remains so for any
o-minimal expansion R of Ralg (for which we do not yet know whether any elementary
extension is o-minimal).
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Chapter 4

Sparse subsets of M2

The next step towards proving that o-minimality is an elementary property is to show that
subsets of M2 have the uniform finiteness property. It suffices to prove this for the following
sets: a set S ⊆Mn is called sparse if S has empty interior.

Lemma 4.1. Let S ⊆M2 be definable. The following are equivalent:

(1) S is sparse;

(2) the set S ′ of all x ∈M such that Sx is infinite is finite;

(3) S is nowhere dense in M2.

Proof. (1)⇒ (2): assume that S ′ is infinite. Then there is an open interval I ⊆M such that
Sx contains an interval, for each x ∈ I. For each x, let Ix be the first open interval contained
in Sx (with respect to <), and consider the definable functions i : I −→ M ∪ {−∞} and
s : I −→M ∪ {+∞} defined by

i(x) := inf Ix and s(x) := sup Ix.

By the Monotonicity Theorem, there exists an open interval J ⊆ I such that i|J and s|J are
continuous. Since i(x) < s(x) for all x, the set {(x, y) : x ∈ J, i(x) < y < s(x)} is open and
contained in S.

(2) ⇒ (3): assume that S ′ is finite, and let U ⊆ M2 be open and definable. Then
(S ∩U)′ is finite, so (U \ S)′ is infinite. From the previous implication, it follows that U \ S
has nonempty interior, that is, S is not dense in U .

(3) ⇒ (2) is obvious.

Corollary 4.2. If S ⊆M2 is definable and sparse, then so is cl(S).

Lemma 4.3. Let S ⊆M2 be definable and sparse.

(1) If Π1(S) is infinite, there is a definable, continuous f : I −→ M , with I an open
interval, such that gr(f) ⊆ S.

(2) If there exists a definable, continuous f : I −→M , with I an open interval, such that
gr(f) ⊆ S, then there exist x0 ∈ I and an open box B containing (x0, f(x0)) such that
B ∩ S = gr(f).
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Proof. (1) Assume that Π1(S) is infinite; then it contains an open interval J . Since S is
sparse, after shrinking J if necessary, we may assume that Sx is finite for all x ∈ J . So
we define f : J −→ M by f(x) := minSx; this f is definable and, by the Monotonicity
Theorem, contains an open interval I such that f|I is continuous.

(2) Let I be an open interval and f : I −→ M be definable and continuous such that
gr(f) ⊆ S. Again shrinking I if necessary, we may assume that Sx is finite for every x ∈ I.
Define g, h : I −→M ∪ {−∞,+∞} by

g(x) := sup {y ∈ Sx : y < f(x)} and h(x) := inf {y ∈ Sx : y > f(x)} .

By the Monotonicity Theorem and because the sets {x ∈ I : g(x) = −∞} and {x ∈ I :
h(x) = +∞} are definable, there exists an open interval J ⊆ I such that both g|J and h|J
are continuous. Since g(x) < f(x) < h(x) for all x ∈ I, part (2) follows.

For S ⊆ M2, we let G(S) be the definable set of all (x, y) ∈ S for which there exists an
open box B ⊆M2 containing (x, y) and a definable, continuous f : Π1(B) −→M such that
B ∩ S = gr(f). We also let B(S) be the set of all x ∈M at which S is locally bounded.

Exercise 4.4. Let S ⊆M2 be definable and sparse. Prove that M \B(S) is finite.

Finally, we let fr(S) := cl(S) \ S be the frontier of S.

Corollary 4.5. Let S ⊆M2 be definable and sparse.

(1) Let T ⊆ M2 be such that Π1(T ) is infinite. Then there exist an open box B ⊆ M2

and a definable, continuous f : Π1(B) −→M such that B ∩ S = B ∩ T = gr(f).

(2) The set Π1(fr(S)) is finite.

(3) The set Π1(S \G(S)) is finite.

Proof. (1) First, apply Lemma 4.3(1) with T in place of S to obtain a corresponding function
f , then apply Lemma 4.3(2) with this f .

(2) Assume for a contradiction that Π1(fr(S)) is infinite. Applying part(1) with cl(S)
and fr(S) in place of S and T yields an open box B such that B ∩ cl(S) = B ∩ fr(S) = gr(f)
for some continuous f : Π1(B) −→M ; in particular, B ∩ S = ∅. But the latter implies that
B ∩ cl(S) = ∅, because B is open; contradiction.

(3) follows from part (1) with T = S \G(S).

Theorem 4.6 (Uniform finiteness). Let S ⊆ M2 be definable and sparse. Then there
exist k ∈ N, −∞ = a0 < a1 < · · · < ak < ak+1 = +∞ in M ∪ {−∞,+∞} and ij ∈ N, for
j = 0, . . . , k, such that |Sx| = ij for j ∈ {0, . . . , k} and x ∈ (aj, aj+1).

Proof. By o-minimality, it suffices to show that there exist k ∈ N and −∞ = a0 < a1 <
· · · < ak < ak+1 = +∞ such that, for j = 0, . . . , k, the set Sj satisfies conditions (i)–(iv) of
Exercise 1.5, where Sj := S ∩

(
(aj, aj+1) ×M

)
. By Lemma 4.1, Exercise 4.4 and Corollary

4.5, it suffices to choose finitely many aj-s such that each x ∈ M with Sx infinite, each
x ∈ Π1(fr(S)), each x ∈ Π1(S \G(S)) and each x ∈M \B(S) is listed among them.
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Let X be a set and Y1, . . . , Yl ⊆ X, and put Y := {Y1, . . . , Yl}. We say that the Y
partitions X if X = Y1 ∪ · · · ∪ Yl and the Yj-s are pairwise disjoint. Given Z ⊆ X, we say
that Y is compatible with Z if, for every j, either Yj ⊆ Z or Yj ∩ Z = ∅.

Exercise 4.7. Let Z1, . . . , Zk ⊆ X, and let B be the finite boolean algebra of subsets of
X generated by Z1, . . . , Zk. Prove that Y is compatible with each Zi if and only if Y is
compatible with each atom of B.

Our proof of Theorem 4.6 actually shows the following: for an open interval I and
continuous functions f, g : I −→M ∪ {−∞,∞} satisfying f(x) < g(x) for all x ∈ I, we set

(f, g)I :=
{

(x, y) ∈M2 : f(x) < y < g(x)
}
.

Theorem 4.8 (Cell decomposition in M2). Let S1, . . . , Sk ⊆ M2 be definable. Then
there exist a0 = −∞ < a1 < · · · < al < al+1 = +∞ and, for each j = 1, . . . , l, there
are definable continuous functions fj,1, . . . , fj,p(j) : (aj, aj+1) −→ M such that, with fj,0 :=
−∞|(aj ,aj+1) and fj,p(j)+1 := +∞|(aj ,aj+1), we have for each j:

(1) fj,1(x) < · · · < fj,p(j)(x) for all x ∈ (aj, aj+1);

(2) for each i ∈ {1, . . . , k}, the collection Cj of all sets gr(fj,q) and (fj,q, fj,q+1), with
q ∈ {0, . . . , p(j)}, is compatible with Si.

Proof. For each i = 1, . . . , k, let Ti := {(x, y) ∈M2 : y ∈ bd((Si)x)}. Note that each Ti is
definable and sparse and that it suffices to prove the theorem with the Ti-s in place of the
Si-s (exercise). By Exercise 4.7, we may also assume that the sets Ti are pairwise disjoint.
Now choose the aj-s such that the ones chosen in the proof of Theorem 4.6 with each Ti in
place of S are all listed among the aj-s.

Exercise 4.9. In the situation of Theorem 4.8, what can you say about the sets Si∩
(
{aj}×

M
)
?
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Chapter 5

Cells and Cell Decomposition

Inspired by the previous chapter, we now make the following definition: let σ ∈ {0, 1}n and
set σ′ := σ|{0,1}n−1 . We say that a definable set C ⊆ Mn is a σ-cell whenever the following
holds:

(i) if n = 1 and σ(1) = 0, then C = {a} for some a ∈M ;

(ii) if n = 1 and σ(1) = 1, then C is a nonempty, open, definable interval;

(iii) if n > 1 and σ(n) = 0, then C ′ := Πn−1(C) is a σ′-cell and C is the graph of a definable,
continuous f : C ′ −→M ;

(iv) if n > 1 and σ(n) = 1, then C ′ := Πn−1(C) is a σ′-cell and C is the set

(f, g)C′ :=
{

(x, y) ∈Mn−1 ×M : x ∈ C ′ and f(x) < y < g(x)
}
,

where either f : C ′ −→ {−∞} or f : C ′ −→M is continuous and definable, and either
g : C ′ −→ {+∞} or g : C ′ −→M is continuous and definable, and where f(x) < g(x)
for all x ∈ C ′.

Note that, if C ⊆ Mn is a cell and m ≤ n, then Πm(C) is a cell and, for each a ∈ Mm,
the fiber Ca is a cell. For the next exercises, let n ∈ N, σ ∈ {0, 1}n and C ⊆Mn be a σ-cell.
We call C open if σ(i) = 1 for all i. For σ, we define

∑
σ :=

∑n
i=1 σ(i). We also associate to

σ the unique strictly increasing map ι = ισ : {1, . . . ,
∑
σ} −→ {1, . . . , n} such that σ(i) = 1

if and only if i = ι(j) for some j, and we set Cσ := Πισ(C).

Exercise 5.1. Prove that Cσ is an open cell and that the map πσ := Πισ|C : C −→ Cσ is a
definable homeomorphism (with respect to the subspace topology on C).

Let C be a finite collection of cells in Mn and U ⊆Mn. We call C a cell decomposition
of U if C is a partition of U and, if n > 1, the collection

Πn−1C := {Πn−1(C) : C ∈ C}

is a cell decomposition of Πn−1(U). If C and D are cell decompositions of U , we call D a
refinement of C if D is compatible with each C ∈ C.
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Remark. Let C be a cell decomposition of U ⊆ Mn+m, and let x ∈ Mn. Then Cx :=
{Cx : C ∈ C} is a cell decomposition of Ux.

Theorem 5.2 (Cell Decomposition [4]). (I)n Let S1, . . . , Sk ⊆Mn be definable. Then
there exists a cell decomposition C of Mn compatible with each Si.

(II)n Let f : S −→ M be definable, with S ⊆ Mn. Then there exists a cell decomposition
C of Mn compatible with S such that, for each C ∈ C, the restriction of f to C is
continuous.

The proof of the cell decomposition theorem in general proceeds by induction on n, mim-
icking the proof in the previous chapter. (I)1 is of course just the definition of o-minimality,
and we proved (II)1 (the Monotonicity Theorem) in Chapter 2. So we assume n ≥ 2 and
that the cell decomposition theorem holds for lower values of n.

To prove (I)n, we first need to consider sparse sets:

Exercise 5.3. Let S ⊆ Mn be definable. Prove that S is sparse if and only if the set S ′ of
all x ∈Mn−1 such that Sx is infinite is sparse.

Lemma 5.4 (Uniform finiteness). Let S ⊆Mn be definable and sparse. Then there exist
a cell decomposition C of Mn−1 and, for each open C ∈ C, an iC ∈ N such that |Sx| = iC for
all x ∈ C.

Proof. The proof of Theorem 4.6 goes through with the corresponding modifications, such
as using “sparse” in place of “finite”, “open box in Mn−1” in place of “open interval” and
“not sparse” in place of “infinite”, and using (I)n−1 in place of the o-minimality axiom and
(II)n−1 in place of the Monotonicity Theorem.

Proof of (I)n. As in the proof of Theorem 4.8, we may assume that each Si is sparse and that
the Si-s are pairwise disjoint. For each i, let Ci be a cell decomposition of Mn−1 obtained from
Lemma 5.4 with Si in place of S. By (I)n−1, there is a cell decomposition D of Mn−1 that
is a refinement of each Ci. Since the Si-s are pairwise disjoint, for each open C ∈ D, we now
obtain a cell decomposition DC of C×M , as in the proof of Theorem 4.8, that is compatible
with each Si. On the other hand, let C ∈ D be such that C is not open, so that C is a σ-cell
for some σ ∈ {0, 1}n−1 with σ(j) = 0 for some j. Denote by Πσ : Mn−1×M −→M

∑
σ+1 the

projection Πσ(x, y) := (πσ(x), y). By the inductive hypothesis, there is a cell decomposition
D′C of Cσ ×M compatible with each Πσ(Si ∩ (C ×M)). Now set

DC :=
{

Π−1σ (D′) ∩ (C ×M) : D′ ∈ D′C
}

;

then DC is a cell decomposition of C ×M compatible with each Si. Finally, we take C :=⋃
{DC : C ∈ D}.

The key to proving (II)n is the following:

Exercise 5.5. Let U ⊆ Mn be open, I ⊆ M be an open interval and f : U × I −→ M be
such that

(i) for each x ∈ U , the function fx : I −→ M defined by fx(y) := f(x, y) is continuous
and strictly monotone;
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(ii) for each y ∈ I, the function f y : U −→M defined by f y(x) := f(x, y) is continuous.

Prove that f is continuous.

For S ⊆ Mn and y ∈ M , we set Sy := {x ∈Mn−1 : (x, y) ∈ S}, and we denote by
Π1 : Mn −→ M the projection on the last coordinate. For a function f : S −→ M , with
S ⊆ Mn, and for x ∈ Πn−1(S) and y ∈ Π1(S), we define fx : Sx −→ M and f y : Sy −→ M
by fx(y) := f(x, y) and f y(x) := f(x, y).

Proof of (II)n. By (I)n, there is a cell decomposition C of Mn compatible with both S and
the definable set

T := {(x, y) ∈ S : fx is continuous and strictly monotone at y, f y is continuous at x}.

If C ∈ C is open, then f |C is continuous by Exercise 5.5. If C ∈ C is not open we obtain,
along the lines of the proof of (I)n and using (II)n−1, a cell decomposition DC of C such that
f|D is continuous for each D ∈ DC .

Corollary 5.6. Let S ⊆Mn be definable.

(1) M has finitely many definably connected components, and each of them is definable.

(2) If m ≤ n, there exists k ∈ N such that Mx has at most k definably connected compo-
nents, for each x ∈Mm.

(3) If m ≤ n, the set {x ∈Mm : Sx is finite} is definable.

(4) If N ≡M, then N is o-minimal.

Proof. Exercise.
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Chapter 6

Dimension

Let A ⊆ M be finite and φ(x1, . . . , xn) be an L(A)-formula, and we set S := φ(Mn). We
define

dimS := sup {dim(a/A) : M∗ |= φ(a), M∗ an elementary extension of M} .

Note that dimS ∈ {−∞, 0, . . . , n} and that dimS = −∞ if and only if S = ∅.
A priori, the number dimS depends on A; we shall see below that this is not the case,

as long as A contains all parameters of φ. Until then, we keep A fixed.

Exercise 6.1. (1) If M is |L|+-saturated, prove that dimS = max {dim(a/A) : a ∈ S}.

(2) Let S ⊆ T ⊆Mn be A-definable. Prove that dimS ≤ dimT .

(3) Let S, T ⊆Mn be A-definable. Prove that dim(S ∪ T ) = max{dimS, dimT}.

(4) Let S ⊆Mn be A-definable and m ≤ n. Prove that dim Πm(S) ≤ dimS.

(5) Let C ⊆Mn be an open cell, with σ ∈ {0, 1}n. Prove that dimC = n.

(6) Let S ⊆Mn and f : S −→M be A-definable. Prove that the graph gr(f) of f satisfies
dim gr(f) = dimS, and that dim f(S) ≤ dimS.

Proposition 6.2. Let S ⊆Mn and f : S −→Mm be A-definable.

(1) If S is a σ-cell, then dimS =
∑
σ.

(2) dimS is equal to the maximal m ≤ n for which there exists a strictly increasing
ι : {1, . . . ,m} −→ {1, . . . , n} such that Πι(S) is not sparse.

(3) The number dimS is independent of the particular A, as long as the parameters of φ
belong to A.

(4) If f is injective, then dim f(S) = dimS.

Proof. Part (1) follows from Exercise 6.1(5,6). Part (2) follows from (1), the Cell Decomposi-
tion Theorem and Exercise 6.1(3). Since (2) is independent of A (as long as S is A-definable),
part (3) follows. Part (4) follows from Exercise 6.1(6).
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Proposition 6.3. Let S ⊆Mn+m be definable and nonempty. For d ∈ {−∞, 0, . . . ,m}, set
Sd := {x ∈Mn : dimSx = d}. Then each Sd is definable and

dim
(
S ∩ (Sd ×Mm)

)
= dimSd + d.

Proof. This follows immediately from the Cell Decomposition Theorem and Proposition
6.2.

A key property of nonempty definable sets is that their frontier has strictly smaller
dimension than the set itself. To prove this, we need the following:

Lemma 6.4. Let S ⊆Mn+m be definable and put

S ′ := {x ∈Mn : (clS)x 6= cl(Sx)} = {x ∈Mn : (frS)x 6= fr(Sx)} .

Then the set S ′ is sparse.

Proof. Let Bm := {(x1, y1, . . . , xm, ym) ∈M2m : xi < yi for each i}; we think of each z ∈ Bm
as parametrizing the open box B(z) :=

∏
i(xi, yi) ⊆Mm, that is, Bm represents the definable

family of all open boxes in Mm. We let T be the set of all boxes witnessing the defining
inequality for S ′, that is,

T := {(x, z) ∈Mn × Bm : (clS)x ∩B(z) 6= ∅ but cl(Sx) ∩B(z) = ∅} .

Then T is definable and Πn(T ) = S ′ and, by definition, for every x ∈ S ′, the fiber Tx has
nonempty interior. So by Proposition 6.3, we have dimT = dimS ′ + 2m. On the other
hand, the definition of T also implies that, for every z ∈ Bm, the fiber T z is sparse. Hence
by Proposition 6.2, we have dimT < n + 2m, so that dimS ′ < n, that is, S ′ is sparse, as
required.

Theorem 6.5. Let S ⊆Mn be definable and nonempty. Then dim fr(S) < dimS.

Proof. By induction on n; the case n = 1 follows from the definition of o-minimality, so we
assume n > 1 and the theorem holds for lower values of n. By Lemma 6.4, the set

S1 := {x ∈M : (frS)x 6= fr(Sx)}

is finite and, by the inductive hypothesis, we have dim fr(Sx) < dimSx for all x ∈ M . It
follows from Proposition 6.3 that the definable set

T1 := frS ∩
(
(M \ S1)×Mn−1)

has dimension less than dimS and satisfies Π1(frS \T1) ⊆ S1; that is, the required inequality
holds outside a set whose projection on the first coordinate is finite.

Next, for i = 1, . . . , n, we let σi be the permutation of coordinates exchanging x1 and xi
and leaving the other coordinates fixed. Arguing as above with σi(S) in place of S produces
a set Ti ⊆ frS such that dimTi < dimS and the projection of frS \ Ti on the ith coordinate
is finite. Therefore, dim(T1 ∪ · · · ∪ Tn) < dimS and the set frS \ (T1 ∪ · · · ∪ Tn) is finite, so
the theorem is proved.
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Exercise 6.6. (1) Let C ⊆ Mn be a bounded, open cell and f : C −→ M be bounded,
definable and continuous. For x ∈ Mn, we say that C is locally connected at x if,
for every open box B containing x, there is an open box B′ ⊆ B containing x such
that B′ ∩ C is definably connected.

(i)n Prove that there is a definable set S ⊆ frC of dimension at most n− 2 such that
C is locally connected at every x ∈Mn \ S.

(ii)n Prove that the set {x ∈ cl(C) : f does not extend continuously to x} has
dimension at most n− 2.

[Hint: prove (i)n and (ii)n together by induction on n.]

(2) Find an example to show that (1) is optimal.

Exercise 6.7. Let S ⊆Mn+m and f : S −→M be definable.

(1) Assume that Sx is open for every x ∈ Mn. Prove that there is a cell decomposition C
of Mn such that, for every C ∈ C, the set S ∩ (C ×Mm) is an open subset of C ×Mm.

(2) Assume that fx is continuous for every x ∈Mn. Prove that there exists a cell decom-
position C of Mn such that, for every C ∈ C, the restriction of f to S ∩ (C ×Mm) is
continuous.

[Hint: use Lemma 6.4.]
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Chapter 7

Definable choice

We assume from now on thatM = (M,<,+, 0, . . . ) is an o-minimal expansion of an ordered
group.

Exercise 7.1. Prove that (M,<,+, 0) is abelian and divisible.

Note that the function x 7→ |x| : M −→M is now definable. For x = (x1, . . . , xn) ∈Mn,
we set |x| := max{|x1|, . . . , |xn|}. We also have a definable choice functions:

Proposition 7.2 (Definable Choice). Let S ⊆ Mn+m be definable. Then there is a
definable function f = fS,n : Πn(S) −→ Mm such, for x ∈ Πn(S), we have f(x) ∈ Sx and,
for x, y ∈ Πn(S), we have f(x) = f(y) whenever Sx = Sy.

Proof. By induction on m, simultaneously for all n. If m = 1 and x ∈ Πn(S), we choose
f(x) ∈ Sx as follows:

(i) if min bd(Sx) 6= inf Sx, we set f(x) := min bd(Sx)− 1;

(ii) if min bd(Sx) = inf Sx ∈ Sx, we set f(x) := minSx;

(iii) if min bd(Sx) = inf Sx /∈ Sx and | bd(Sx)| ≥ 2, we let f(x) be the midpoint between
the least two points of bd(Sx);

(iv) otherwise, we set f(x) := min bd(Sx) + 1.

Assume now that m > 1 and the proposition holds for lower values of m, and put
S ′ := Πn+m−1(S). Then we define fS,n : Πn(S) −→Mm by

fS,n(x) := (fS′,n(x), fS,n+m−1(x, fS′,n(x))) .

It is straightforward to see that this f has the required properties.

Exercise 7.3. (1) Let E ⊆ M2n be a definable equivalence relation on Mn. Prove that
there are k ∈ N a definable function f : Mn −→ Mk such that, for all x, y ∈ Mn, we
have xEy if and only if f(x) = f(y). (In particular, Meq =M.)

(2) Let A ⊆ M be different from {0}. Prove that dcl(A) is the underlying set of an
elementary substructure of M. [Hint: use Tarski’s test and definable choice.]
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(3) LetM be an arbitrary o-minimal structure (not necessarily an expansion of an ordered
group). Prove that there are definable choice functions for closed and bounded definable
sets S ⊆Mn+m.

A particular case of the models of the theory of M described in Exercise 7.3(2) is the
following: let N be a saturated elementary extension of M, and let τ ∈ N be such that
τ > M . We denote by M〈τ〉 the definable closure of M ∪ {τ} in N ; this is the underlying
set of an elementary extension of M denoted by M〈τ〉.

On the other hand, let D be the set of all definable functions f : M −→M . For f, g ∈ D,
we set f ∼ g if there exists a ∈ M such that f|(a,∞)= g|(a,∞). Let G := D/ ∼; each element
of G is called the germ at +∞ of any of its representatives.

Exercise 7.4. (1) Prove that G is the underlying set of an elementary extension of M
denoted by G.

(2) Prove that, for f, g ∈ D, we have f(τ) = g(τ) if and only if f ∼ g.

(3) Prove that the map [f ]∼ 7→ f(τ) : G −→M〈τ〉 is a structure isomorphism.

Proposition 7.5 (Curve Selection). Let S ⊆ Mn be definable and x ∈ frS. Then there
is a definable, continuous curve f : (0, ε) −→ S such that limt→0 f(t) = x.

Proof. We let S̃ ⊆M1+n be the definable set

S̃ := {(t, y) ∈ (0,∞)× S : |y − x| = t} .

The hypothesis and o-minimality imply that there exists ε > 0 such that (0, ε) ⊆ Π1

(
S̃
)
.

The restriction f of the choice function fS̃,1 to (0, ε) is a definable curve with values in S
and, by the Monotonicity Theorem and after shrinking ε if necessary, we may assume that
f is continuous. By construction, we have limt→0 f(t) = x.

Exercise 7.6. Let S ⊆ Mn be definable. We call S definably compact if, for every
definable curve f : (0, ε) −→ S, we have limt→0 f(t) ∈ S.

(1) Prove that S is definably compact if and only if S is closed and bounded.

(2) Assume S closed and bounded, and let f : S −→ Mk be definable and continuous.
Prove that f(S) is closed and bounded.
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Chapter 8

Differentiability

We assume from now on that M expands a ring (M,<,+, ·, 0, 1, . . . ) with unit 1.

Exercise 8.1. Prove that (M,<,+, ·, 0, 1) is a real closed ordered field.

Let I ⊆ M be an open interval and f : I −→ M be definable, and set D := {(x, y) ∈
M2 : x = y}. We define ∆f : I2 \D −→M by

∆f(x, y) :=
f(x)− f(y)

x− y
,

a definable function. Recall that f is differentiable at x ∈ I if and only if limy→x ∆f(x, y)
exists in M ; in particular, the set

D(f) := {x ∈ I : f is differentiable at x}

is definable. As usual, for x ∈ D(f), we write f ′(x) := limy→x ∆f(x, y). We call f differ-
entiable if D(f) = I.

Exercise 8.2. (1) State and prove Rolle’s Theorem and the Mean Value Theorem for f .

(2) Assume f is differentiable and that f ′ = 0. Prove that f is constant.

Lemma 8.3. The set I \D(f) is finite.

Proof. For x ∈ I, we set f ′(x−) := limy→x− ∆f(x, y) and f ′(x+) := limy→x+ ∆f(x, y). By
the Monotonicity Theorem, we have f ′(x−), f ′(x+) ∈M ∪{−∞,+∞} for all x. So it suffices
to prove the following two claims:

Claim 1: The set S1 := {x ∈ I : f ′(x−) 6= f ′(x+)} is finite.
To see this claim, we assume for a contradiction that S1 contains an interval J . By the

Monotonicity Theorem, after shrinking J if necessary, we may assume that both x 7→ f ′(x−)
and x 7→ f ′(x+) are continuous on J . By the Intermediate Value Theorem, it follows that
either f ′(x+) > f ′(x−) for all x ∈ J , or f ′(x+) < f ′(x−) for all x ∈ J ; we assume the former,
the proof in the latter case being similar. Again shrinking J , if necessary, we may assume
that there exists c ∈ M such that f ′(x+) > c > f ′(x−) for all x ∈ J . Now consider the
function g : J −→ M defined by f(x)− cx; shrinking J again, if necessary, we may assume
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that g is continuous and strictly monotone. But g′(x+) > 0 for all x, so g must be strictly
increasing; while g′(x−) < 0 for all x, so g must be strictly decreasing, a contradiction.

Claim 2: The set S2 := {x ∈ I : f ′(x−) ∈ {−∞,+∞}} is finite.
To see this claim, we assume for a contradiction that S2 contains an interval J = [a, b];

shrinking J if necessary, we may assume, by Claim 1, that f is continuous on J and f ′(x+) =
f ′(x−) = +∞ for all x ∈ J (the case f ′(x+) = f ′(x−) = −∞ for all x ∈ J is handled
similarly). Consider an affine function h(x) := cx+d such that h(a) = f(a) and h(b) = f(b),
and define g : J −→ M by g(x) := f(x) − h(x). Then g′(x+) = g′(x−) = +∞ and
g(a) = g(b) = 0. By Exercise 7.6(2), g attains a maximum or a minimum at some c ∈ J .
But if g(c) is a maximum, then g′(x+) ≤ 0; and if g(c) is a minimum, then g′(x−) ≤ 0, a
contradiction.

Next, we let U ⊆ Mn be definable and open and f : U −→ M . Recall that f is
differentiable at a = (a1, . . . , an) ∈ U if and only if each partial derivative ∂f/∂xi(a) exists
in M . Another way to say this is as follows: for each i = 1, . . . , n, let

Uai := {t ∈M : (a1, . . . , ai−1, t, ai+1, . . . , an) ∈ U} ,

and let fai : Uai −→ M be given by fai(t) := f(a1, . . . , ai−1, t, ai+1, . . . , an). Then f is
differentiable at a if and only if each fai is differentiable at ai; in particular, the set D(f) :=
{x ∈ U : f is differentiable at x} is definable and, by the previous corollary and cell
decomposition, its complement U \D(f) is sparse.

Finally, let f = (f1, . . . , fk) : U −→ Mk be definable. Recall that f is differentiable at
a ∈ U if each fj is differentiable at a. For p ∈ N, we call f of class Cp if the following holds:

(i) if p = 0, then f is continuous;

(ii) if p = 1, then each D(fj) = U and each partial derivative ∂fj/∂xi is continuous;

(iii) if p > 1, then each partial derivative ∂fj/∂xi is of class Cp−1.

Corollary 8.4. Let p ∈ N. Then there exists a cell decomposition C of U such that, for
every open C ∈ C, the restriction of f to C is of class Cp.

Assume that f is differentiable at a ∈ U . We denote by Jaf the jacobian matrix of f at
a. The linear map daf : Mn −→ Mk defined by daf(x) := Jaf · x is called the differential
of f at a.

Exercise 8.5. State and prove the Inverse and Implicit Function Theorems for definable f .

Let p ∈ N, and assume now that f is of class Cp. Moreover, let g : gr(f) −→ M l be
definable, and assume that g◦f : U −→M l is of class Cp. Then the function G : U×Mk −→
M l given by G(x, y) := g(x, f(x)) is of class Cp and satisfies G|gr f= g. (What is d(x,y)G?)

The previous observation leads to the following definition: let S ⊆Mn and f : S −→Mk

be definable. We say that f is of class Cp if there exists an open set U ⊇ S and a definable
CP -map F : U −→Mk such that F|S= f .

Correspondingly, a cell C ⊆Mn is a Cp-cell if all the functions used in the construction
of C are of class Cp.
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Theorem 8.6 (Cp-Cell Decomposition). Let p ∈ N.

(I)n Let S1, . . . , Sk ⊆Mn be definable. Then there exists a Cp-cell decomposition C of Mn

compatible with each Si.

(II)n Let f : S −→M be definable, with S ⊆Mn. Then there exists a Cp-cell decomposition
C of Mn compatible with S such that, for each C ∈ C, the restriction of f to C is of
class Cp.

Proof. As for the Cell Decomposition Theorem, we proceed by induction on n. (I)1 follows
from o-minimality and (II)1 from Lemma 8.3; so we assume n > 1 and the theorem hold for
lower values of n.

To prove (I)n, we let C be a cell decomposition of Mn compatible with each Si. Now use
(II)n−1 to obtain a refinement D of Πn−1(C) by Cp-cells such that, for every C ∈ C of the
form gr f with f : Πn−1(C) −→ M continuous and every D ∈ D contained in Πn−1(C), the
restriction f|D is of class Cp. The corresponding refinement of C is a Cp-cell decomposition
compatible with each Si, as required.

For the proof of (II)n, we need the following:

Claim. Let C ⊆ Mn be a cell and g : C −→ M be definable, and let p ∈ N. Then there is
a definable, open subset C ′ of C such that g|C′ is of class Cp and dim(C \ C ′) < dimC.

To prove the claim, by (I)n, we may assume that C is a Cp-cell of dimension k, say.
Permuting the coordinates, if necessary, this means that C = grh for some definable Cp-map
h : D −→Mn−k with D := Πk(C) an open Cp-cell (why can we permute these coordinates?).
It follows from Corollary 8.4 that there is a definable, open subset D′ ⊆ D such that g ◦h|D′
is of class Cp and dim(D \D′) < dimD. Hence the restriction of g to the graph C ′ of h|D′
is of class Cp and satisfies dim(C \ C ′) < dimC, as required.

We now return to the proof of the Cp-cell decomposition theorem: we proceed by in-
duction on dimS. If dimS = 0, there is nothing to do, so we assume dimS > 0 and (II)n
holds for lower values of dimS. By (I)n, we may assume that S is a cell C, and we let
C ′ be obtained from the claim and a Cp-cell decomposition be obtained from the inductive
hypothesis applied to f|C\C′ . Now let C be a Cp-cell decomposition of Mn compatible with
each D ∈ C ′ and with C ′.

Assume now that M = R, and let f : U −→ Rk be definable, with U ⊆ Rn open. We say
that f is of class C∞ if f is of class Cp for every p ∈ N. We call f real analytic at a ∈ U
if there exists a convergent power series F (X) ∈ C[[X]], with X = (X1, . . . , Xn), such that
f(a+ x) = F (x) for all x in a neighbourhood of a. Note that, if f is analytic, then it is C∞.

Correspondingly, we define C∞-cells and analytic cells in analogy with the Cp def-
inition above. We say that M admits C∞-cell decomposition (resp., analytic cell
decomposition) if Theorem 8.6 holds with “C∞” (resp, “analytic”) in place of “Cp”.

Until the turn of the millenium, all known examples of o-minimal expansions of the real
field admitted analytic cell decomposition. More recently, examples were constructed that
show Cp-cell decomposition for finite p to be optimal, even for o-minimal expansions of the
real field:
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Theorem 8.7. (1) There exist o-minimal expansions of the real field that admit C∞-cell
decomposition, but not analytic cell decomposition [10].

(2) There exist o-minimal expansions of the real field that do not admit C∞-cell decom-
position [5].

Grassmannians

For k, l ∈ N, we identify the M -vector space Mk,l(M) of all M -valued (k × l)-matrices with
Mkl via the map A = (aij) 7→ zA = (z1, . . . , zkl) defined by aij = zk(i−1)+j. As usual, we
write Mn(M) in place of Mn,n(M).

Let l ≤ n. I denote by Gl
n(M) the Grassmannian of all l-dimensional vector subspaces

of Mn. This Gl
n(M) is a definable variety with a natural embedding into the vector space

Mn(M): each l-dimensional vector space E is identified with the unique matrix AE (with
respect to the standard basis of Mn) corresponding to the orthogonal projection on the
orthogonal complement of E (see Section 3.4.2 of [1] for the case M = R); in particular,
E = ker(AE). We identify Gl

n(M) with its image in Mn2
under the above map. Note

that, under the above identification, Gn(M) :=
⋃n
p=0G

p
n(M) is definable in M and the sets

G0
n(M), . . . , Gn

n(M) are the definably connected components of Gn(M).

Example 8.8. Let C ⊆Mn be a C1-cell of dimension k. Under the above identification, we
can view the tangent bundle TC of C as the graph of the definable map gC : C −→ Gk

n(M)
given by

gC(x) := TxC.

The map gC is also called the Gauss map of C.
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Chapter 9

Polynomially bounded vs.
exponential, and an open question

LetM be an o-minimal expansion of an ordered field (M,<,+, ·, 0, 1). We callM polyno-
mially bounded if for every definable function f : M −→M , there exist n ∈ N and a ∈M
such that f(x) ≤ xn for all x > a.

Example 9.1. The real field R is polynomially bounded: by Tarski’s Theorem, R admits
quantifier elimination and universal axiomatization in the language

L =
(
<,+, ·, 0, 1, ( n

√
)n∈N

)
;

now apply Exercise 9.2 below.

Exercise 9.2. Assume M admits quantifier elimination and is universally axiomatized.
Prove that every definable function f : Mn −→ M is piecewise given by terms, that is, for
each such f there exist k ∈ N and terms t1, . . . , tk such that

M |= ∀x
(
f(x) = t1(x) ∨ · · · ∨ f(x) = tk(x)

)
.

Clearly, the exponential function is not definable in any polynomially bounded expansion
of the real field.

More generally, a power function is a group isomorphism φ from (M>0, ·, 1) onto itself.
For a definable power function φ, the definable element µ := limx→1 x · φ′(x)/φ(x) of M is
called the definable exponent of φ, and we usually write xµ = φ(x) for x > 0 and set
xµ := 0 for x ≤ 0. We denote by K = K(M) the set of all definable exponents of M; note
that K is a subfield of M .

Exercise 9.3. What are K
(
R
)

and K(Rexp)? Is K(M) a definable subfield of M?

We call M power-bounded if, for every definable function f : M −→ M , there exist
µ ∈ K and a ∈ M such that f(x) ≤ xµ for all x > a. Every polynomially bounded M is
power bounded.

In the same spirit, an exponential function is a group isomorphism ψ from (M,+, 0)
onto (M>0, ·, 1). If M is power bounded, no exponential function is definable in M. A
fundamental fact about o-minimal structures is the following:
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Theorem 9.4 (Miller [7]). M is either power bounded, or there is a unique exponential
function definable in M.

Thus, we call M exponential if an exponential function is definable in M. We call M
exponentially bounded if either M is power bounded, or M is exponential with unique
exponential function exp and, for every definable function f : M −→ M , there exist n ∈ N
and a ∈M such that f(x) < exp(exp(· · · (exp(x)) · · · )) (n times) for all x > a.

Fact 9.5 (based on [6]). Every known (as of April 2011) o-minimal expansion of the real
field is exponentially bounded.

Question 9.6. Are there transexponential o-minimal structures, that is, o-minimal struc-
tures that are exponential but not exponentially bounded?

One of the principal tools in studying these questions is the Hardy field: for real functions
f, g : R −→ R, we set f ∼ g if there exists a ∈ R such that f |(a,+∞)= g |(a,+∞). The
corresponding equivalence classes are called germs at +∞ of real functions; they are added
and multiplied in the obvious way. Such a germ is differentiable if it has a representative
that is differentiable on some interval (a,+∞). A Hardy field is a field of differentiable
germs at +∞ that is also closed under differentiation.

Exercise 9.7. (1) Prove that the field R(x) of all rational functions is a set of represen-
tatives of a Hardy field (also denoted by R(x)).

(2) Assume that M = R. Prove that the set G defined before Exercise 7.4 is a Hardy field.

In view of the previous exercise, we call the set G defined before Exercise 7.4 for arbitrary
M the Hardy field associated to M and denote it by H = H(M).

Assume now that M = R. By the previous exercise, the o-minimality ofM implies that
H is a Hardy field. Thus, if we want to find a transexponential o-minimal structure, there
must also be a transexponential Hardy field, that is, a Hardy field containing a germ that is
larger than the germ of any finite compositional iterate of exp. Such Hardy fields do exist:
consider the functional equation

f(x+ 1) = exp(f(x)). (9.1)

Theorem 9.8 (Boshernitzan). The functional equation (9.1) has a solution f that gen-
erates a Hardy field over R(x).

However, generating a Hardy field is not sufficient for generating an o-minimal structure:

Theorem 9.9 (Rolin, Sanz and Schaefke [9]). There exists a Hardy field that is not
the Hardy field of any o-minimal expansion of the real field.

Thus, Question 9.6 remains open. If there does exist a solution f of the functional
equation 9.1 that generates an o-minimal structure, however, it is amusing to consider the
following consequence: the function x 7→ f(f−1(x) + y) would then define the yth iterate of
exp, for every y ∈ R.
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Chapter 10

Exponential Polynomials

In this chapter, we consider the following question: given a polynomial P (x, y) ∈ R[x, y],
with x = (x1, . . . , xn) and y = (y1, . . . , yn), does the zeroset (or positivity set, or negativity
set) of the exponential polynomial P (x, expx) have finitely many connected components,
where expx := (expx1, . . . , expxn)? This question represents a first step towards proving
the o-minimality of Rexp := (R, <,+, ·, 0, 1, exp) but, as we shall see, its solution leads to a
theory for a large class of functions called pfaffian functions relative to any given o-minimal
expansion of the real field.

We first consider the special case x = x1 and y = y1. Then the zeroset of P (x, expx) is
given by the projection on the first coordinate of the intersection of the zeroset of P (x, y)
with the graph of exp.

Khovanskii’s point of view [2]

The answer to our question in this case is based on a version of Rolle’s Theorem. Rather
than viewing the latter as a theorem about differentiable functions, we view it as a theorem
about the line field dhorizontal : R2 −→ G1

2 given by dhorizontal(x, y) := {y = 0} and horizontal
affine lines:

Rolle’s Theorem. Let L = {y = 0} + a for some a ∈ R, and let γ : [0, 1] −→ R2 be a
C1 curve such that γ(0), γ(1) ∈ L. Then there exists t ∈ [0, 1] such that γ′(t) is tangent to
d(γ(t)), that is, γ′(t) ∈ d(γ(t)).

Khovanskii realized that this theorem is true for other line fields: for example, for x ∈ R2

we let dexp(x) be the kernel of the 1-form ωexp := dy1−y1dx1, that is, dexp(x) is the orthogonal
complement of the vector (−y1, 1) in R2. Note that this line field is definable in the real
field.

Lemma 10.1 (Rolle-Khovanksii). Let γ : [0, 1] −→ R2 be a C1 curve such that γ(0), γ(1) ∈
gr(exp). Then there exists t ∈ [0, 1] such that γ′(t) ∈ dexp(γ(t)).

Proof. Write d = dexp and ω = ωexp. Since exp is C1 and total, each of the sets C1 :=
{(x, y) ∈ Rn+1 : y < exp(x)} and C2 := {(x, y) ∈ Rn+1 : y > f exp(x)} is connected and
gr(exp) is a closed leaf of d. Let γ : [0, 1] −→ Rn+1 be a curve with γ(0), γ(1) ∈ gr(exp). Note
that the continuous function t 7→ ω(γ(t))(γ′(t)) : [0, 1] −→ R is a measure of the orientation
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of γ′(t) with respect to d(γ(t)), with ω(γ(t))(γ′(t)) = 0 if and only if γ′(t) ∈ d(γ(t)). Without
loss of generality, we may assume that ω(γ(0))

(
γ′(0)

)
and ω(γ(1))

(
γ′(1)

)
are both nonzero

and γ
(
(0, 1)

)
is contained in either C1 or C2.

We now claim that ω(γ(0))
(
γ′(0)

)
and ω(γ(1))

(
γ′(1)

)
must have opposite signs. For if

ω(γ(0))
(
γ′(0)

)
> 0, say, there is an ε > 0 such that γ

(
(0, ε)

)
⊆ C1, and so by the above

γ
(
(0, 1)

)
⊆ C1; but if also ω(γ(1))

(
γ′(1)

)
> 0, there is a δ > 0 such that γ

(
(δ, 1)

)
⊆ C2, so

that γ
(
(0, 1)

)
⊆ C2, a contradiction. We obtain a similar contradiction if both ω(γ(0))

(
γ′(0)

)
and ω(γ(1))

(
γ′(1)

)
are negative, so the claim is proved.

It follows from the claim and Rolle’s Theorem that there exists a t ∈ (0, 1) such that
ω(γ(t))

(
γ′(t)

)
= 0. This is equivalent to saying that γ′(t) ∈ d(γ(t)), so the lemma is

proved.

Back to the zeroset of P (x, exp(x)): let now C be a C1-cell decomposition (definable in
the real field) compatible with both the zeroset of P (x, y) and with dexp, where the latter
means that, for each nonopen C ∈ C, either C is transverse to d (at every point of C), or C
is tangent to d (at every point of C).

Lemma 10.2. Let C ∈ C be nonopen. Then C ∩ gr(exp) has at most one connected
component.

Proof. If dimC = 0, this is obvious, so we assume dimC = 1. If C is tangent to dexp,
then either C ⊆ gr(exp) or C ∩ gr(exp) = ∅; so we may assume that C is transverse to
dexp. Note that then C ∩ gr(exp) is discrete; assume for a contradiction that C ∩ gr(exp)
contains at least two points. Since C is connected and hence path connected, there is a
C1-curve γ : [0, 1] −→ C such that γ(0), γ(1) ∈ gr(exp). It follows from Lemma 10.1 that
γ′(t) ∈ dexp(γ(t)) for some t ∈ [0, 1], that is, C is tangent to dexp at the point γ(t), a
contradiction.

Now, if P is not the zero polynomial, then only nonopen cells in C are contained in the
zeroset of P . Thus, the zeroset of P (x, exp(x)) has at most as many connected components
as C has nonopen cells.

This argument generalizes to all exponential polynomials: for instance, to study the
zeroset of P (x1, x2, expx1, expx2), we consider the graph of (x1, x2, y2) 7→ expx1 as tangent
to the 3-plane field associated to the 1-form d1 := dy1− y1dx1, and we consider the graph of
(x1, x2, y1) 7→ expx2 as tangent to the 3-plane field associated to the 1-form d2 := dy2−y2dx2.
Corresponding versions of Lemmas 10.1 and 10.2 go through; but at this point, it is worth
introducing some general terminology.

Pfaffian functions

We fix an o-minimal expansion R of the real field. A function f : Rn −→ R is pfaffian over
R if there are definable functions Pi : Rn+1 −→ R such that

∂f

∂xi
(x) = Pi(x, f(x)) for i = 1, . . . , n and x ∈ Rn. (10.1)
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Examples 10.3. For instance, exp is pfaffian over the real field, and hence over R. The
function log is not pfaffian over R (because log is not total, i.e., defined on all of R), but
the function x 7→ log

(
1 + x2

)
is pfaffian over R. Similarly, the function arctan is pfaffian

over R. Every antiderivative of a definable function from R to R is pfaffian over R, but
not necessarily definable: log

(
1 + x2

)
is not definable in R by quantifier elimination and

analytic continuation. Finally, the functions (x1, x2, y2) 7→ expx1 and (x1, x2, y1) 7→ expx2
are pfaffian over the real field, and hence over R.

The connection between pfaffian functions and Rolle leaves is a straightforward general-
ization of Lemma 10.1: Let f : Rn −→ R be pfaffian over R, and let P1, . . . , Pn : Rn+1 −→ R
be definable such that ∂f/∂xi(x) = Pi(x, f(x)) for all x ∈ Rn. Then

df(x) = P1(x, f(x))dx1 + · · ·Pn(x, f(x))dxn;

thus, for (x, y) ∈ Rn+1, we let df be the kernel of the 1-form ωf := dy−P1dx1−· · ·−Pndxn.
Note that df is definable and that gr(f) is an analytic submanifold of Rn+1 that is tangent
to df (at every point).

Lemma 10.4 (Khovanskii [3]). Let f : Rn −→ R be pfaffian over R. Then the graph
gr f of f is a Rolle leaf over R.

Proof. The proof now goes exactly as the proof of Lemma 10.1, with d = df and ω = ωf .

Thus, to prove Lemma 10.2 for arbitrary exponential polynomials, we want to repeat
its proof; however, we need one other observation. To explain this, fix n ∈ N and a poly-
nomial P (x, y) with x = (x1, . . . , xn) and y = (y1, . . . , yn), and write ei for the function
(x, y1, . . . , yi−1, yi+1, . . . , yn) 7→ exp(xi). Then each ei is pfaffian over R with ωi := ωei =
dyi − yidxi and di := dei = kerωi.

We call a C1-cell C ⊆ R2n compatible with {d1, . . . , dn} if, for every I ⊆ {1, . . . , n}, the
definable map dC,I : C −→ Gn given by

dC,I(x, y) := dimT(x,y)C ∩
⋂
i∈I

di(x, y)

has constant dimension, and we denote this dimension by dim dC,I . In this situation, it
follows from the rank theorem that, for I ⊆ {1, . . . , n}, the set CI := C ∩

⋂
i∈I gr(ei) is a

C1-submanifold of C of dimension dim dC,I . A cell decomposition C is compatible with
{d1, . . . , dn} if each C ∈ C is compatible with {d1, . . . , dn}.

Exercise 10.5. Prove that there exists a C2-cell decomposition that is compatible with the
zeroset of P and with {d1, . . . , dn}.

We now fix a C2-cell decomposition C as obtained from the previous exercise.

Lemma 10.6. Let C ∈ C and I ⊆ {1, . . . , n}. Then the number of components of CI is
finite.
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Proof. We proceed by induction on dimC and |I|; if dimC = 0 or |I| = 0, there is nothing
to do, so we assume dimC > 0 and |I| > 0 and the claim holds for lower values of dimC or
|I|. We are now distinguishing two cases:

Case 1: dim dC,I = 0. In this case, we proceed as in Lemma 10.2: fix an i ∈ I, and put
I ′ := I \ {i}. Then dim dC,I′ ∈ {0, 1}, because di is a codimension one subspace field. If
dim dC,I′ = 0, then CI′ is finite by the inductive hypothesis, so CI is finite as well. So we
assume that dim dC,I′ = 1; therefore, CI′ is a 1-dimensional submanifold of C, and by the
inductive hypothesis has finitely many connected components. Arguing as in the proof of
Lemma 10.2, using Lemma 10.4 applied to gr(ej), shows that CI has finitely many connected
components as well.

Case 2: dim dC,I > 0. In this case, we want to find a definable set S ⊆ C such that
dimS < dimC and every component of CI contains a point of S. Assuming such an S can
be found, we then finish by refining C compatibly with S and {d1, . . . , dn} and applying the
inductive hypothesis.

To find such an S, we use a definable variant of Morse functions: a definable C1-function
f : C −→ R is a carpeting function if f(x) > 0 for all x ∈ C, limx→y f(x) = 0 for all
y ∈ fr(C) and f−1(K) is compact for every compact K ⊆ (0,∞).

Given a carpeting function f : C −→ R, we obtain a candidate for S by the Lagrange
multiplier principle: since each component D of CI is a closed submanifold of C, the function
φ|D attains a maximum at some point x ∈ D. This point also belongs to the definable set

Sf := {x ∈ C : ∇f(x) is orthogonal to dC,I(x)} .
Thus, it suffices to show that there exists a carpeting function f for which dimSf < dimC.
By definition of C2-cell, there exists a definable C2-diffeomorphism φ : RdimC −→ C. Pulling
back via φ (this is where we use C2 rather than C1), we may assume that C = Rm for
some m ≤ 2n, and we write dI = dC,I . In this situation, for each u ∈ (0,∞)m the map
φu : Rm −→ (0,∞) given by

φu(x) := 1/(u1x
2
1 + · · ·+ umx

2
m)

defines a carpeting function on Rm, and the family of all φu is clearly definable. Thus, we
are done once we establish the following

Claim. There exists u ∈ (0,∞)m such that dimSφu < m.

To see this, assume for a contradiction that dimSφu = m for all u ∈ (0,∞)m. Then
dimS = 2m, where

S := {(u, x) ∈ Rm × Rm : u1 > 0, . . . , um > 0, x ∈ Sφu} ,
so there are nonempty open V ⊆ (0,∞)m and W ⊆ Rm such that V ×W ⊆ S. Fix some
x ∈ W with all xi 6= 0 and let u range over V . Note that

∇φu(x) = − (2u1x1, . . . , 2umxm)

(1 + u1x21 + · · ·+ umx2m)2
.

Therefore the vector space generated by all ∇φu(x) as u ranges over V has dimension m,
that is, the intersection of all their orthogonal complements, as u ranges over V , is trivial.
But by assumption, dI(x) is contained in this intersection, which contradicts dim dI > 0.
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