
Existence of quasiperiodic solutions of elliptic equations on the

entire space with a quadratic nonlinearity

Peter Poláčik∗

School of Mathematics

University of Minnesota

Minneapolis, MN 55455, United States

and
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Abstract

We consider the equation

∆u+ uyy + f(x, u) = 0, (x, y) ∈ RN × R (1)

where f is sufficiently regular, radially symmetric in x, and f(·, 0) ≡ 0. We give sufficient
conditions for the existence of solutions of (1) which are quasiperiodic in y and decaying
as |x| → ∞ uniformly in y. Such solutions are found using a center manifold reduction
and results from the KAM theory. A required nondegeneracy condition is stated in
terms of fu(x, 0) and fuu(x, 0), and is independent of higher-order terms in the Taylor
expansion of f(x, ·). In particular, our results apply to some quadratic nonlinearities.
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1 Introduction

In this paper, we continue our study, initiated in [11], of semilinear elliptic equations on the
entire space:

∆u+ uyy + f1(x, u) = 0, (x, y) ∈ RN × R. (1.1)

Here N is a positive integer, ∆ is the Laplacian in x, and f1 : RN ×R→ R is a sufficiently
smooth function satisfying f1(·, 0) ≡ 0. Our main goal in this research has been to give
conditions on f1 which guarantee that (1.1) possesses solutions which decay to 0 as |x| →
∞, uniformly in y, and are quasiperiodic (and not periodic) in y. Our techniques are
based on a spatial-dynamics approach to elliptic equations as proposed by Kirchgässner
[9] and further developed by Mielke (see, for example, [10]) and many other authors, and
results from the Kolmogorov-Arnold-Moser (KAM) theory. Previously, related ideas for
finding quasiperiodic solutions of elliptic equations on an unbounded strip have been used
by Scheurle [14] and Valls [17] (see [11] for a more detailed discussion and further related
references).

The main contribution of our previous work [11] was twofold. First, we built a general
framework for studying solutions of (1.1) using tools from dynamical systems, such as the
center manifold reduction, Birkhoff normal form, and the KAM theory. Second, we showed
how these techniques yield quasiperiodic solutions in some specific classes of equations.
Considering (1.1) in the more specific form

∆u+ uyy + a1(x)u+ b
(
sa2(x)u2 + a3(x)u3

)
+ u4f2(x, u; s, b) = 0, (x, y) ∈ RN ×R, (1.2)

with sufficiently regular functions f2, a1, a2, a3, and parameters b 6= 0 and s ∈ R, we proved
the existence of y-quasiperiodic solutions under various conditions involving eigenvalues and
eigenfunctions of the Schrödinger operator −∆ − a1(x) and the function a3. We assumed
that either b ∈ R \ {0} is fixed and |s| ≥ 0 is sufficiently small (thus, the quadratic term
is small relative to the cubic term), or that s ∈ R is fixed and |b| > 0 is sufficiently small
(the quadratic and cubic terms become small at the same rate, as b→ 0). In both cases, it
is crucial that b 6= 0, and a3 6= 0 satisfies a certain robust condition. While the quadratic
term in (1.2) is always small in some sense, because of the smallness requirement on one of
the parameters, no conditions, other than some smoothness, are imposed on a2 itself. The
coefficient a2 may well vanish, which would actually make the whole theory a lot simpler.
In [11], we made a point of including the quadratic term, although it complicates matters
at several levels (for another perspective on this issue and a KAM-result for the Boussinesq
equation with a quadratic nonlinearity see [15]). As we argued in [11], when considering
applications of our results in specific classes of elliptic problems, say, when the functions
a1, a2, a3 come as the coefficients of the Taylor expansion of a nonlinearity along a y-
independent solution, keeping any restrictive assumptions on these functions to a minimum
is of paramount importance.
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With this in mind, we now consider a case which is in some sense complementary to the
cases considered in [11]: the quadratic term is the dominant one. In our present theorem,
the existence of quasiperiodic solutions is proved not despite a2 6≡ 0, but thanks to a2

being present and satisfying a certain robust condition. This time, the cubic term is of no
importance and it can well be identical to 0. We remark, however, that unlike in [11], where
quasiperiodic solutions with any number of frequencies have been proved to exist, here we
are able to handle only two (rationally independent) frequencies.

The remainder of the paper is organized as follows. Section 2 contains the formulation of
our main result, an informal outline of the proof, and related remarks. As briefly explained
there, while we mainly focus on equations and solutions which are radially symmetric in x,
other settings are admissible as well. In Section 3, we apply a center manifold reduction
to an abstract form of (1.1) and recall some results from [11] concerning the Hamiltonian
structure of the reduced equation. Section 4 is devoted to an application of a KAM-
type theorem, yielding quasiperiodic solutions with any number of frequencies under an
additional assumption. In Section 5, we then verify the additional assumption in the case
of two frequencies.

2 Main results

In this section, we introduce some terminology and provide the statement of our main result.
Afterwords, we give an outline of the proof.

Throughout the paper, Cb(RN ) stands for the space of all continuous bounded (real-
valued) functions on RN and C k

b (RN ) for the space of functions on RN with continuous
bounded derivatives up to order k, k ∈ N := {0, 1, 2, . . . }. The spaces Crad(RN ) and
C k

rad(RN ) are the subspaces of Cb(RN ) and C k
b (RN ), respectively, consisting of all radially

symmetric functions (that is, functions depending on x ∈ RN only via r = |x|). When
needed, we assume that these spaces are equipped with the usual norms. For k ∈ N,
the spaces L2

rad(RN ) and Hk
rad(RN ) are the subspaces of L2(RN ) and Hk(RN ), respectively,

consisting of radially symmetric functions. Throughout this paper we will abuse the notation
slightly by viewing radially symmetric functions as functions of x ∈ RN or functions of r ≥ 0,
depending on the context. This should cause no confusion.

Given integers n ≥ 2, k ≥ 1, a vector ω = (ω1, . . . , ωn) ∈ Rn is said to be nonresonant
up to order k if

ω · α 6= 0 for all α ∈ Zn \ {0} such that |α| ≤ k. (2.1)

(Here |α| = |α1| + · · · + |αn|, and ω · α is the usual dot product.) If (2.1) holds for all
k = 1, 2, . . . , we say that ω is nonresonant, or, equivalently, that the numbers ω1, . . . , ωn
are rationally independent. A special class of nonresonant vectors which will play a role
later on is the class of Diophantine vectors, see Section 4.

A function u : (x, y) 7→ u(x, y) : RN×R→ R is said to be quasiperiodic in y if there exist
an integer n ≥ 2, a nonresonant vector ω∗ = (ω∗1, . . . , ω

∗
n) ∈ Rn, and an injective function

U defined on Tn (the n-dimensional torus) with values in the space of real-valued functions
on RN such that

u(x, y) = U(ω∗1y, . . . , ω
∗
ny)(x) (x ∈ RN , y ∈ R). (2.2)

The vector ω∗ is called a frequency vector of u.
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We emphasize that the nonresonance of the frequency vector is a part of our defini-
tion. In particular, a quasiperiodic function is not periodic and, if it has some regularity
properties, its image is dense in an n-dimensional manifold diffeomorphic to Tn.

Consider now an elliptic equation

∆u+ uyy + a1(x; s)u+ f(x, u; s) = 0 (x ∈ RN , y ∈ R), (2.3)

where s ≈ 0 is a parameter and f is a nonlinearity of the form

f(x, u; s) = a2(x; s)u2 + u3g(x, u; s). (2.4)

We assume that for some δ > 0 the functions a1, a2, and g satisfy the following hypotheses,
where K, m are integers with

K ≥ 18, m >
N

2
. (2.5)

(S1) a1(·; s) ∈ Cm+1
rad (RN ) for each s ∈ (−δ, δ), and the map s ∈ (−δ, δ) 7→ a1(·; s) ∈

Cm+1
rad (RN ) is of class CK+1.

(S2) a2(·; s) ∈ Cm+1
rad (RN ) for each s ∈ (−δ, δ), the map s ∈ (−δ, δ) 7→ a2(·; s) ∈ Cm+1

rad (RN )
is of class CK+1; g ∈ CK+m+4(RN × R× (−δ, δ)), and for all ϑ > 0 the function g is
bounded on RN × [−ϑ, ϑ]× [0, δ) together with all its partial derivatives up to order
K +m+ 4. Also, g = g(x, u; s) is radially symmetric in x ∈ RN .

The next hypotheses concern the Schrödinger operator A1(s) := −∆ − a1(r; s) acting
on L2

rad(RN ) with domain H2
rad(RN ).

(A1)(a) There exists L < 0 such that lim supr→∞ a1(r; s) ≤ L for all s ∈ (−δ, δ).

(A1)(b) For all s ∈ [0, δ), A1(s) has exactly 2 nonpositive eigenvalues µ1(s) < µ2(s), and
one has µ2(s) < 0 for all s ∈ (0, δ) and µ2(0) = 0.

(NR) Denoting ωj(s) :=
√
|µj(s)|, j = 1, 2, the vector ω(s) = (ω1(s), ω2(s)) is nonresonant

up to order K for all s ∈ (0, δ).

Sometimes we will collectively refer to assumptions (A1)(a) and (A1)(b) as (A1). Hypothe-
ses (A1)(b) and (NR) are assumed in our main theorem, but in some of our results we
consider more general versions of (A1)(b) and (NR), namely:

(A1)(b’) There is an integer n ≥ 2 such that for all s ∈ (0, δ), A1(s) has exactly n
nonpositive eigenvalues µ1(s) < µ2(s) < · · · < µn(s), and one has µn(s) < 0 for all
s ∈ (0, δ). (µn(0) = 0 is not required here.)

(NR’) Denoting ωj(s) :=
√
|µj(s)|, j = 1, . . . , n, the vector ω(s) = (ω1(s), . . . , ωn(s)) is

nonresonant up to order K for all s ∈ (0, δ), where K satisfies

K ≥ 6(n+ 1). (2.6)
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When hypotheses (A1)(b’) and (NR’) are assumed in lieu of (A1)(b) and (NR), the constant
K in (S1), (S2) is also assumed to satisfy (2.6).

For s ∈ [0, δ) and j = 1, . . . , n (with n = 2 in (A1)(b)), we denote by ϕj(·; s) the
eigenfunction of A1(s) associated with µj(s), normalized in the L2-norm and satisfying
ϕj(0; s) > 0 (ϕj(·; s) is thus determined uniquely, cp. Remark 2.1(iii) below).

Our last hypothesis concerns the coefficient a2 and the eigenfunction ϕ2 when s = 0:

(A2) One has ∫
RN

a2(x; 0)ϕ3
2(x; 0)dx 6= 0.

Hypotheses (S1), (S2), (A1)(a), (A1)(b’), and (NR’) with m > N/2 and K ≥ 6(n + 1)
are assumed throughout the paper. In our main theorem and its proof (Section 5), we take
n = 2 and assume also that (A1)(b) and (A2) hold.

Remark 2.1. (i) We shall mainly deal with nonnegative values of the parameter s (as in
(A1)(b’), (NR’), (A1)(b), (NR), and (A2)), but it will be convenient to extend the parameter
range to (−δ, δ) (as in (S1), (S2), (A1)(a)).

(ii) Hypothesis (A1)(a) guarantees that for all s the essential spectrum σess(A1(s)) is con-
tained in [−L,∞) [13]. The eigenfunctions corresponding to the eigenvalues in (−∞,−L)
have exponential decay as r = |x| → ∞ [1, 13]; in particular, the integral in (A2) exists.
Since the eigenvalues in (−∞,−L) are isolated in σ(A1(s)), hypotheses (A1)(a) and (A1)(b’)
imply that there is γ > 0 such that (0, γ) ∩ σ(A1(s)) = ∅ for all s ∈ [0, δ).

(iii) Since the operator A1(s) is considered on L2
rad(RN ), its eigenfunctions ϕ can be

viewed as solutions of a second-order ordinary differential equation (in the radial variable
r) satisfying ϕr(0) = 0, ϕ(0) 6= 0; in particular, the eigenvalues of A1(s) in (−∞,−L)
are automatically simple [13]. Moreover, (S1) implies that the eigenvalues µ1(s), µ2(s) in
(A1)(b) (or µ1(s), . . . , µn(s) in (A1)(b’)) are functions of s of class CK+1 (see [8]).

(iv) As long as the nonlinearity f in (2.3) is sufficiently smooth, (2.4) is simply a Taylor
expansion of f around u = 0. Note that, other than the regularity assumptions in (S2),
the only hypothesis concerning the nonlinear part of equation (2.3) is (A2). In particular,
the case that the function g vanishes identically is allowed. This is very different from [11],
where the presence of a nonzero cubic term in the nonlinearity f was essential.

(v) The importance of the parameter s lies mainly in hypothesis (A1)(b). The fact that
µ2(s) → 0− (so ω2(s) → 0+), together with (A2), will be crucial in the verification of a
nondegeneracy condition (see the outline at the end of this section for more details). The
dependence of the nonlinearity on the parameter is of little relevance in the proof of our
results, but we include it for the sake of generality.

(vi) Since (NR) is a finite-order nonresonance condition, it is easy to find examples of
families a1(·; s), s ≈ 0, satisfying conditions (S1), (A1), and (NR) (for example, one can use
arguments from [11, Section 2.3]). For any such family, condition (A2) is obviously satisfied
for “most” functions a2(·; 0).
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(vii) Our hypotheses (S1), (S2), (A1)(a), (A2)(b’), (NR’) are analogous to some hypothe-
ses in our previous paper [11]. This will allow us to use certain technical results from
[11].

We can now state our main theorem.

Theorem 2.2. Suppose that the hypotheses (S1), (S2), (A1), (NR) (with K, m as in (2.5))
and (A2) are satisfied. Then the following statements are valid, possibly after making δ > 0
smaller, for each s ∈ (0, δ). There exists a solution u(x, y) of equation (2.3) such that
u(x, y) is radially symmetric in x, u(x, y) → 0 as |x| → ∞, uniformly in y, and u(x, y)
is quasiperiodic in y. In fact, there is a uncountable family of such quasiperiodic solutions
(disregarding translations), their frequency vectors forming an uncountable subset of R2.

Remark 2.3. (i) Theorem 2.2 gives sufficient conditions in terms of the functions a1, a2,
and g for the existence of quasiperiodic solutions of (2.3) with 2 frequencies. As already
mentioned in Remark 2.1(vi), these conditions are easily verified for a large class of radial
functions a1, a2 (the function g just needs to be radial and sufficiently smooth, cp. (S2)).
For technical reasons (the verification of a certain nondegeneracy relation), in this theorem
we need the parameter s > 0 to be sufficiently small and the number of frequencies to be
restricted to n = 2. Below, we do include a theorem—see Theorem 4.4—where, assuming
(S1), (S2), (A1)(a), (A1)(b’), and (NR’), we give a different sufficient condition for the
existence of quasiperiodic solutions of (2.3) with any given number of frequencies and for a
fixed value of s. However, that condition is rather implicit, and, we are unable to formulate
it as a specific condition on a1, a2, unless n = 2 and s is allowed to vary.

(ii) As in [11], while we are primarily interested in radially symmetric solutions, our
techniques are not limited to radially symmetric problems. One can lift the requirement of
the radial symmetry on the functions a1, a2, g, and assume instead that the eigenvalues in
(A1)(b) (or (A1)(b’)) are simple (of course, −∆−a1(x) has to be considered as an operator
on the full space L2(RN ) with domain H2(RN )). Theorem 4.4 (minus the radial symmetry
in x) then remains valid. See [11, Remark 2.1] for more on how the hypotheses can be
adjusted to other settings.

In the proof of Theorems 2.2, 4.4, we first follow a general scheme from [11]. Apply-
ing a center manifold theorem, we obtain a system of ordinary differential equations (the
“reduced equation”) whose solutions are in one-to-one correspondence with a class of so-
lutions of (2.3). The reduced equation is a Hamiltonian system with respect to a suitable
symplectic form. One can choose local coordinates, using the Darboux theorem, so that
the system is Hamiltonian with respect to the standard symplectic structure. The resulting
Hamiltonian is then brought to its Birkhoff normal form up to a sufficiently high order, so
that, when restricted to a neighborhood of the origin, it can be written as the sum of an
integrable Hamiltonian and a small perturbation. If the integrable part satisfies a certain
nondegeneracy condition, then KAM-type theorems can be used to prove the existence of
quasiperiodic solutions for the reduced system, which in turn translate to quasiperiodic
solutions of the original equation.

The most significant differences between [11] and the present paper lie in the verification
of the nondegeneracy conditions. In [11], we verified the nondegeneracy (Kolmogorov’s type)
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when a specific condition involving the cubic term in the nonlinearity f is satisfied and the
quadratic term is small or suitably controlled. Here, the nondegeneracy (Arnold’s type)
comes from the condition on the quadratic term in f and the structure of the Birkhoff
normal form. The assumption µ2(s) → 0 as s → 0 means that the nonresonance property
of (µ1(s), µ2(s)) is lost at s = 0. This introduces certain singularities, with respect to s,
in the fourth-order coefficients of the normal form, which can be effectively used to verify
Arnold’s condition when n = 2 and s > 0 is sufficiently small.

3 The reduced Hamiltonian

To a large extent, this section is a summary of results from Sections 3 and 4 of [11], with
minor changes to account for the setting of the present article. We introduce the Hamilto-
nian of the equation obtained from a center manifold reduction of (2.3) and transform it
to a form suitable for an application of a KAM-type theorem. Throughout the section we
assume that hypotheses (A1)(a), (A1)(b’), (S1), (S2), and (NR’) hold with m > N/2 and
K ≥ 6(n+ 1).

We begin with the center manifold reduction. For that we first write equation (2.3) in
an abstract form, using the spaces X = Hm+1

rad (RN ) × Hm
rad(RN ), and Z = Hm+2

rad (RN ) ×
Hm+1

rad (RN ). Let f be as in (2.4). Its Nemytskii operator f̃ : Hm+2
rad (RN ) × (−δ, δ) →

Hm+1
rad (RN ) is given by

f̃(u; s)(r) = f(r, u(r); s).

This is a well defined map and of class CK+1 (see [11, Theorem A.1(b)]). The abstract
form of (2.3) is given by

du1

dy
= u2,

du2

dy
= A1(s)u1 − f̃(u1; s).

(3.1)

We rewrite this further as
du

dy
= A(s)u+R(u; s), (3.2)

where u = (u1, u2),

A(s)(u1, u2) = (u2, A1(s)u1)T ,

R(u1, u2; s) = (0, f̃(u1; s))T .
(3.3)

Here, for each s ∈ (−δ, δ), A(s) is considered as an operator onX with domain D(A(s)) = Z,
and R as a CK+1-map from Z × (−δ, δ) to Z. The concept of a solution of (3.2) on an
interval I is as in [6, 18]: it is a function in C 1(I, X) ∩ C (I, Z) satisfying (3.2).

For s ∈ [0, δ) and n ≥ 2 integer, let ϕj(·; s), j = 1, . . . , n, be the eigenfunctions of
A1(s) := −∆− a1(r; s) as introduced in Section 2. By elliptic regularity, (S1) implies that
ϕj(·; s) ∈ Hm+2

rad (RN ), for j = 1, . . . , n and s ∈ [0, δ). Moreover, by [8], as Hm+2(RN )-valued
functions of s, the ϕj(·; s) are of class CK+1 (cp. Remark 2.1(iii)). Define the space

Xc(s) :=
{

(h, h̃)T : h, h̃ ∈ span{ϕ1(·; s), . . . , ϕn(·; s)}
}
⊂ Z,

7



the orthogonal projection operator Π(s) : L2
rad → span{ϕ1(·; s), . . . , ϕn(·; s)}, and let Pc(s) :

X → Xc(s) be given by Pc(s)(v1, v2) = (Π(s)v1,Π(s)v2). As shown in [11, Section 3.2], Pc(s)
is the spectral projection for the operator A(s) associated with the spectral set {±iωj(s) :
j = 1, . . . , n} (with ωj(s) as in (NR’))—the spectrum of A(s) is the union of this set and
a set which is at a positive distance from the imaginary axis. Due to (S1), Pc(s) ∈ L (X)
is of class CK+1 in s ∈ [0, δ); in fact, the smoothness of the maps s 7→ ϕj(·; s) implies that
s 7→ Pc(s) is of class CK+1 as an L (X,Z)-valued map on [0, δ).

Also define Ph(s) = IX − Pc(s), IX being the identity map on X, and, for j = 1, . . . , n,

ψj(·; s) = (ϕj(·; s), 0)T , ζj(·; s) = (0, ϕj(·; s))T . (3.4)

A basis of Xc(s) is given by

B(s) := {ψ1(·; s), . . . , ψn(·; s), ζ1(·; s), . . . , ζn(·; s)}.

For z ∈ Xc(s), we denote by {z}B the coordinates of z with respect to the basis B(s).
Denote further

ψ(s) := (ψ1(·; s), . . . , ψn(·; s)),
ζ(s) := (ζ1(·; s), . . . , ζn(·; s)).

(3.5)

Proposition 3.1. Using the above notation the following statement is valid, possibly after
making δ > 0 smaller. There exist a map σ : (ξ, η; s) ∈ R2n× [0, δ) 7→ σ(ξ, η; s) ∈ Z of class
CK+1 and a neighborhood N of 0 in Z such that for each s ∈ [0, δ) one has

σ(ξ, η; s) ∈ Ph(s)Z ((ξ, η) ∈ R2n), (3.6)

σ(0, 0; s) = 0, D(ξ,η)σ(0, 0; s) = 0, (3.7)

and the manifold

Wc(s) = {ξ · ψ(s) + η · ζ(s) + σ(ξ, η; s) : (ξ, η) = (ξ1, . . . , ξn, η1, . . . , ηn) ∈ R2n} ⊂ Z

has the following properties:

(a) If u(y) is a solution of (3.1) on I = R and u(y) ∈ N for all y ∈ R, then u(y) ∈Wc(s)
for all y ∈ R; that is, Wc(s) contains the orbit of each solution of (3.1) which stays
in N for all y ∈ R.

(b) If z : R→ Xc(s) is a solution of the equation

dz

dy
= A(s)

∣∣
Xc(s)

z + Pc(s)R(z + σ({z}B; s); s) (3.8)

on some interval I, and u(y) := z(y) + σ({z(y)}B; s) ∈ N for all y ∈ I, then
u : I → Z is a solution of (3.1) on I.

Moreover, σ satisfies the following relation:

(c) If 2 ≤ ` ≤ K is an integer, then σ({u}B; s) = O(‖u‖`+1) as u→ 0 whenever s ∈ [0, δ)
is such that R(u; s) = O(‖u‖`+1) as u→ 0.
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In the sequel, the function σ is called the reduction function, Xc(s) is the center space,
Wc(s) is the center manifold, and equation (3.8) is the reduced equation.

Proof of Proposition 3.1. Using the results of [11, Section 3], one can show (without even
shrinking the parameter domain) that there is map σ(ξ, η; s) of class CK+1 in (ξ, η) satisfying
(3.6), (3.7), and statements (a)–(c). However, because of the s-dependence in the linear
operator A(s), we cannot refer to [11] for the CK+1-regularity in s—in [11], parameters
appear only in the nonlinearity R—and we need to prove the existence of σ differently. We
derive it from standard center manifold theorems using the fact that A(s) depends on s in
its bounded part only.

Write equation (3.2) in the form

du

dy
= A0u+ R̄(u; s), (3.9)

where A0 := A(0) and R̄(u; s) = (A(s)−A0)u+R(u; s). Due to (S1), (S2), R̄ : Z×(−δ, δ)→
Z is of class CK+1, just like R. Multiplying R̄ by a suitable cutoff function on the Hilbert
space Z × R, one finds a CK+1

b -map R̃ : Z × R → Z having a sufficiently small (global)

Lipschitz constant and satisfying R̃ ≡ R̄ on a small neighborhood of (0, 0) ∈ Z × R, say,
on N × (−δ0, δ0) (N is a neighborhood of 0 ∈ Z and δ0 ∈ (0, δ)). One then applies
the global center manifold theorem to equation (3.9) with R̄ replaced by R̃, augmented
by the “stationary-parameter equation” ds/dy = 0 (cp. [6, 18]). This yields a CK+1

b -map
σ̃ : Xc(0)× R 7→ Z taking values in Ph(0)Z, such that for each s ∈ R

W c(s) := {w + σ̃(w; s) : w ∈ Xc(0)} (3.10)

is the global center manifold for (3.9). This means, by definition, that W c(s) is the set of
all points u0 ∈ Z with the following property: there is a solution u(y) of (3.9) defined for
all y ∈ R such that u(0) = u0 and

sup
y∈R
‖u(y)‖Ze−ε|y| <∞ (ε > 0).

In particular, since u ≡ 0 is a solution of (3.9) due to the relation R̃(0, s) = R̄(0, s) = 0, one
has σ̃(0, s) = 0 for all s ∈ (−δ0, δ0). The applicability of [6, 18] to (3.9) is verified in [11]: in
addition to the CK+1-regularity of R̄ already mentioned above, this verification amounts to
showing a certain resolvent bound on the operator A(0). The bound determines how small
the Lipschitz constant of R̃ needs to be, and the cutoff function is selected accordingly.

If s ≥ 0 and it is small enough, W c(s) can be written as the graph of a map σ̄(·; s) :
Xc(s) 7→ Ph(s)Z. To find σ̄, for w ∈ Xc(0) we write w + σ̃(w; s) as

w + σ̃(w; s) = Pc(s)(w + σ̃(w; s)) + Ph(s)(w + σ̃(w; s)). (3.11)

Given any v ∈ Xc(s) = Pc(s)Z, we want to solve the equation

Pc(s)w + Pc(s)σ̃(w; s) = v (3.12)

for w ∈ Xc(0). To that goal, define, for any s ∈ [0, δ0),

Q(s) := Pc(s)Pc(0) + Ph(s)Ph(0) ∈ L (X) (3.13)
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and note that Q(0) = IX—the identity on X, and Q(s)w = Pc(s)w for w ∈ Xc(0) (in
particular, Q(s) takes Xc(0) to Xc(s)). As mentioned above, Pc(s) ∈ L (X) is of class
CK+1 in s ∈ (−δ0, δ0), hence Q(s) ∈ L (X) is such as well. It follows that for sufficiently
small s ≥ 0 (say, for s ∈ [0, δ1), with some δ1 ∈ (0, δ0]), the inverse Q−1(s) ∈ L (X) exists
and is of class CK+1 in s. For such s and for any v ∈ Xc(s), equation (3.12) can be
equivalently written as

w = Q−1(s)Pc(s)v −Q−1(s)Pc(s)Ph(0)σ̃(w; s), (3.14)

where we have used the relations Q(s)w = Pc(s)w, Pc(s)v = v, and σ̃(w; s) = Ph(0)σ̃(w; s).
Since σ̃ is of class CK+1

b and Pc(0)Ph(0) = 0, we observe that if δ2 ∈ (0, δ1) is small enough,
then the map on the right-hand side of (3.14) is a 1/2-contraction in w ∈ Xc(0)—assuming
the norm from X on Xc(0)—for all s ∈ [0, δ2) and v ∈ X (not just v ∈ Xc(s)). The uniform
contraction principle implies that equation (3.14) has a unique solution w ∈ Xc(0) given by

w = Υ(v, s), (3.15)

where Υ : X × (−δ2, δ2)→ Xc(0) is a CK+1 map. We now define σ̄ by

σ̄(v; s) := Ph(s)(Υ(v, s) + σ̃(Υ(v, s); s)). (3.16)

Clearly, σ̄ : X × [0, δ2)→ Z is of class CK+1 and, by (3.11),

W c(s) = {w + σ̃(w; s) : w ∈ Xc(0)} = {v + σ̄(v; s) : v ∈ Xc(s)}. (3.17)

To conclude, define σ : R2n × [0, δ2)→ Z by

σ(ξ, η; s) := σ̄(ξ · ψ(s) + η · ζ(s); s) ((ξ, η) ∈ R2n, s ∈ [0, δ2)), (3.18)

with ψ(s), ζ(s) as in (3.5), (3.4). Since the functions ϕj(·; s) ∈ Hm+2(RN ) are of class
CK+1 in s, σ is of class CK+1. It is straightforward to verify, using properties of σ̃, that
σ(0, 0; s) = 0 for all s ∈ [0, δ2), and statements (a), (b) hold. Relation (3.6) is a direct
consequence of the definition of σ̄, (3.16). The remaining statements of the proposition can
be verified, as in [11, Section 2.1], using the following “invariance identity” for σ̄(·; s):

Duσ̄(u; s)[A(s)u+ Pc(s)R(u+ σ̄(u; s); s)] = A(s)σ̄(u; s) + Ph(s)R(u+ σ̄(u; s); s)

(s ∈ [0, δ2), u ∈ Xc(s), u ≈ 0). (3.19)

This identity follows from the definition of W c(s), relation (3.17), and the fact that for
s ∈ [0, δ2) and u ≈ 0 one has A0 + R̃(u, s) = A(s) +R(u, s). From (3.19) and DuR(0; s) = 0
it follows that Duσ̄(0; s) = 0, which gives the second relation in (3.7). For a detailed
verification of the relations in (c), we refer the reader to [11, Section 2.1] (or, see [10,
Section 2]).

Next, we examine the Hamiltonian structure of the reduced equation. For (u, v) ∈ Z
and any fixed s ∈ [0, δ), let

H(u, v) =

∫
RN

−1

2
|∇u(x)|2 +

1

2
a1(x; s)u2(x) + F (x, u(x); s) +

1

2
v2(x) dx, (3.20)
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where

F (x, u; s) =

∫ u

0
f(x, ϑ; s)dϑ.

Equation (3.1) has a formal Hamiltonian structure with respect to the functional H and this
structure is inherited in a certain way by the reduced equation. More specifically, denoting
by Φ the composition of the maps (ξ, η)→ σ(ξ, η; s) : R2n → Z and H : Z → R, (3.8) is the
Hamiltonian system with respect to the Hamiltonian Φ and a certain symplectic structure
defined in a neighborhood of (0, 0) ∈ R2n. This can be proved using general results of
[10], but in [11] we instead gave a proof, with some additional useful specifics, using direct
explicit computations. We have then transformed the system successively performing three
coordinate changes:

(T) a Darboux transformation, normal form transformation, and action-angle variables.

By the first change of coordinates, we achieve that the transformed system is Hamilto-
nian with respect to the standard symplectic form on R2n (and the transformed Hamilto-
nian). The existence of such a local transformation is guaranteed by the Darboux theorem,
but in [11] we took some care to keep track of how the symplectic structure and the Dar-
boux transformation depend on the parameters. In particular, the computations in [11]
show that the Darboux transformation can be chosen as the sum of the identity map (on
R2n) and terms of order O(|(ξ, η)|3), with the cubic terms having coefficients of class CK

in s. In the new coordinates (ξ′, η′) resulting from such a transformation, the Hamiltonian
takes the following form for (ξ′, η′) ≈ (0, 0):

Φ(ξ′, η′; s) =
1

2

n∑
j=1

(−µj(s)(ξ′j)2 + (η′j)
2) +

1

3

∫
RN

a2(x; s)(ξ′ · ϕ(x; s))3 dx

+ Φ4(ξ′, η′; s) + Φ′(ξ′, η′; s). (3.21)

Here, µj(s), ϕj(x; s) are the eigenvalues and eigenfunctions as above,

ϕ(x; s) = (ϕ1(x; s), . . . , ϕn(x; s)),

Φ4 is a homogeneous polynomial in (ξ′, η′) of degree 4 whose coefficients are of class CK

in s, and Φ′ is a function of class CK in all its arguments and of order O(|(ξ′, η′)|5) as
(ξ′, η′)→ (0, 0).

Remark 3.2. In the sequel, we will only consider the Hamiltonian Φ for s > 0. Note,
however, that the coefficients of the polynomial on the right hand side of (3.21) with Φ′

deleted, depend continuously on s up to s = 0. In particular, they stay bounded as s→ 0.
This fact will be used in the asymptotic analysis in Section 5.

The second transformation in (T) puts the Hamiltonian Φ(·, ·; s), for s > 0, to the normal
form up to order 2kB + 1, where kB = [K/2]−1, [K/2] being the integer part of K/2. More
precisely, we showed in [11] that near (0, 0) there is a canonical coordinate transformation—
recall that a canonical transformation does not change the symplectic structure—such that

11



in the new coordinates (ξ̄, η̄) the Hamiltonian can be written as follows. Let (ξ̄, η̄) =
(ξ̄1, . . . , ξ̄n, η̄1, . . . , η̄n),

Ij =
1

2
(ξ̄2
j + η̄2

j ), (3.22)

and I = (I1, . . . , In). Then

Φ(ξ̄, η̄; s) = ω(s) · I + Φ0(I; s) + Φ1(ξ̄, η̄; s), (3.23)

where ω(s) = (ω1(s), . . . , ωn(s)) (cp. (NR’)), Φ0 is a polynomial in I of degree at most kB,
and Φ1 a CK function of order O(|(ξ̄, η̄)|2kB+2) as (ξ̄, η̄)→ (0, 0). The polynomial Φ0 is of
the form

Φ0(I; s) =
1

2
I ·M(s)I + P̂ (I; s), (3.24)

where, for s ∈ (0, δ), M(s) is an n × n matrix and P̂ (I; s) a polynomial in I (of degree
at most kB) with no constant, linear, or quadratic terms. The entries of M(s) and the
coefficients of P̂ (·; s) are of class CK in s.

Finally, we introduce the action-angle variables I = (I1, . . . , In) ∈ Rn, θ = (θ1, . . . , θn) ∈
Tn by

(ξ̄j , η̄j) =
√

2Ij(cos θj , sin θj).

The change of coordinates from (ξ̄j , η̄j) to (θ, I) is defined in regions where Ij = (ξ̄2
j+η̄2

j )/2 >
0 for all j ∈ {1, . . . , n}, and it is well known that this transformation is canonical. In these
coordinates, Φ looks as follows:

Φ(θ, I; s) = ω(s) · I + Φ0(I; s) + Φ1(θ, I; s). (3.25)

(Φ1(θ, I; s) actually stands for the function Φ(ξ̄(θ, I), η̄(θ, I); s).) Thus, the Hamiltonian Φ
is the sum of an integrable Hamiltonian (the first two terms on the right hand side of (3.25))
and a “perturbation” (the last term in (3.25)). This is a form suitable for an application of
a KAM theorem.

We remark that for the proof of Theorem 2.2, we will need more precise information on
the lower order terms resulting from the Birkhoff normal form transformation. This issue
will be dealt with in Section 5.

4 Application of a KAM-type theorem using Arnold’s con-
dition

In the previous section, we have summarized how the reduced Hamiltonian Φ can be written
in a form suitable for an application of a KAM theorem: it is the sum of an integrable
Hamiltonian (a function of the action variables only) and a perturbation of a high order
(see (3.25)). We have to work in a finite-differentiability KAM setting here, for in the center
manifold reduction we would in general lose the analytic structure—or, for that matter, the
C∞ structure—even if the original nonlinearity had one. Similarly as in [11], a theorem of
Pöschel is suitable for our purposes. Although it has Kolmogorov’s nondegeneracy condition
as an assumption, a trick from [4], which we recall below, shows that Arnold’s isoenergetic

12



condition can be assumed instead. The validity of Arnold’s condition for the reduced
Hamiltonian will be addressed in Section 5.

To recall Pöschel’s theorem, let n ≥ 2 be an integer and consider a Hamiltonian H :
Tn × Ω→ R given by

H(θ, I) = H0(I) +H1(θ, I), (4.1)

where Ω ⊂ Rn is a domain, and Tn is the n-dimensional torus (in other words, H1(θ, I) is pe-
riodic in θ1, . . . , θn with a common period, 2π, say). The Hamiltonian system corresponding
to H is

θ̇ = ∇IH(θ, I),

İ = −∇θH(θ, I).
(4.2)

We make the assumption that H0 is analytic on Ω and its frequency map ω∗(I) :=
∇H0(I) : Ω → Rn is a diffeomorphism onto its image V := {ω∗(I) : I ∈ Ω}; in particular,
the Hessian matrix

∂2H0

∂I2
(I) (4.3)

is nonsingular on Ω (this is usually referred to as Kolmogorov’s condition). Moreover, we
assume that there is a complex neighborhood Ωρ of Ω,

Ωρ =
⋃
I∈Ω

{ζ ∈ Cn : |ζ − I| < ρ} (4.4)

with ρ > 0, such that H0 has an analytic extension to Ωρ whose Hessian is nonsingular on
Ωρ and ω∗(I) is a one-to-one map of Ωρ onto its image in Cn.

The perturbation term H1 is assumed sufficiently small (as specified in the theorem, see
equation (4.9)) in a Hölder norm: if ϑ > 0 is a noninteger, ‖H‖Cϑ(Tn×Ω) is the infimum of
all constants c satisfying the following inequalities:

‖DJH(θ, I)‖L∞(Tn×Ω) ≤ c for all J ∈ N2n, |J | ≤ [ϑ],

and

sup
I∈Ω

θ,θ′∈Tn
θ 6=θ′

|DJH(θ, I)−DJH(θ′, I)|
|θ − θ′|ϑ−[ϑ]

≤ c, sup
θ∈Tn
I,I′∈Ω
I 6=I′

|DJH(θ, I)−DJH(θ, I ′)|
|I − I ′|ϑ−[ϑ]

≤ c

for all J ∈ N2n such that |J | = [ϑ]. Here [ϑ] is the integer part of ϑ and, for J =
(j1, . . . , jn, `1, . . . , `n),

DJ =
∂|J |

∂θj11 . . . ∂θjnn ∂I
`1
1 . . . ∂I`nn

, |J | = j1 + · · ·+ jn + `1 + · · ·+ `n.

A vector ω ∈ Rn is said to be κ, ν-Diophantine, for some κ > 0 and ν > n− 1, if

|ω · α| ≥ κ|α|−ν (α ∈ Zn \ {0}). (4.5)

For κ > 0 and ν > n− 1, we define

Vκ := {ω ∈ V : dist(ω, ∂V ) ≥ κ and ω is κ, ν-Diophantine}. (4.6)

(We only emphasize the dependence on κ of the set Vκ in our notation, since ν will be fixed.)
The following statement is contained (in a stronger form) in [12, Theorem A].
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Theorem 4.1. Let Ω, H0, ρ, and V be as above. Suppose additionally that for some R > 0
one has ∣∣∣∣∂2H0

∂I2
(I)

∣∣∣∣ ,
∣∣∣∣∣
(
∂2H0

∂I2

)−1

(I)

∣∣∣∣∣ ≤ R (I ∈ Ωρ). (4.7)

Fix constants λ, ν and α satisfying

λ > ν + 1 > n, α > 1, α 6∈ {`/λ+ j : j, ` ∈ N}. (4.8)

Then there exists a positive constant δKAM, depending on n, ν, λ, ρ, R (but independent of
Ω and κ), such that for any κ ∈ (0, ρ/R) and H1 ∈ C αλ+λ+ν(Tn × Ω) satisfying

‖H1‖Cαλ+λ+ν(Tn×Ω) ≤ κ2δKAM (4.9)

the Hamiltonian H = H0 + H1 has the following property. There exists a diffeomorphism
T : Tn × V → Tn × Ω of class C α such that for each I ∈ Ω with ω∗(I) ∈ Vκ the manifold
T̃I := T (Tn × ω∗(I)) is invariant under the flow of (4.2) and the solution of (4.2) with the
initial condition T (θ0, ω

∗(I)), θ0 ∈ Tn, is given by T (θ0 + ω∗(I)t, ω∗(I)), t ∈ R.

The stated property of the diffeomorphism T means that T conjugates the flow of (4.2)
to a flow for which each torus TN × {ω̄}, ω̄ ∈ Vκ, is invariant and whose restriction to this
torus is a linear flow with frequencies ω̄. The theorem thus provides a class of quasiperiodic
solutions of (4.2) whose frequencies cover Vκ. Of course, to use this conclusion, we want
Vκ 6= ∅, or, better, |Vκ| > 0, where | · | stands for the Lebesgue measure.

In [11], choosing the domain Ω and a constant κ with |Vκ| > 0 suitably, we showed that
Theorem 4.1 applies directly to the reduced Hamiltonian (3.25). In particular, a hypothesis
of [11] was tailored so as to imply Kolmogorov’s condition. In the present setting, we make
use of Arnold’s nondegeneracy condition instead and verify that Theorem 4.1 applies to the
Hamiltonian H given by

H(θ, I) = G(θ, I) + (G(θ, I))2, (4.10)

where G(θ, I) := G0(I) +G1(θ, I), with

G0(I) := ω · I + Φ0(I) = ω · I +
1

2
I ·MI + P̂ (I), G1(θ, I) := Φ1(θ, I), (4.11)

and Φ0, Φ1, M , and P̂ are as in (3.24), (3.25). Here, and throughout this section, the
argument s in these functions and in ω is omitted; the dependence on s is not employed in
the section and the value of s can be considered fixed. Thus G(θ, I) is equal to the reduced
Hamiltonian Φ(θ, I; s) for a fixed value of s ∈ (0, δ). Recall that P̂ (I) is a polynomial in I
with no constant, linear or quadratic terms.

The Hamiltonian defined in (4.10) can be written in the form (4.1) by setting

H0(I) = G0(I) + (G0(I))2,

H1(θ, I) = G1(θ, I) + 2G0(I)G1(θ, I) + (G1(θ, I))2.
(4.12)

The Hamiltonian H is relevant for two reasons, both observed in [4]. First, on any energy
level, the Hamiltonian vector fields of H and G differ only by a multiplicative constant. This
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will be elaborated on and used later on. The second reason is that H0 satisfies Kolmogorov’s
condition if G0 satisfies Arnold’s nondegeneracy condition requiring the matrix

∂2G0

∂I2
(I)

∂G0

∂I
(I)

∂G0

∂I
(I)T 0

 (4.13)

to be nonsingular in a selected domain. To be more specific, consider the (n+ 1)× (n+ 1)
matrix

M :=

[
M ω

ωT 0

]
. (4.14)

Note that this is the matrix (4.13) evaluated at I = 0 (cp. (4.11)).

Lemma 4.2. Suppose that the matrix M is nonsingular, while the matrix M is singular.
If H0 is as in (4.12), then the Hessian matrix (4.3) is nonsingular for I = 0 (and hence
for any I sufficiently close to 0).

Proof. Note first that

∂2H0

∂I2
(0) =

(
(1 + 2G0(I))

∂2G0

∂I2
(I) + 2

∂G0

∂I
(I)⊗ ∂G0

∂I
(I)

) ∣∣∣∣
I=0

= M + 2ω ⊗ ω, (4.15)

where, for vectors v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Rn, v ⊗ w is the exterior product
of v and w, i.e., (v ⊗ w)ij = viwj . Also recall the following determinant identity for block
matrices: if A is an n× n matrix and v, w ∈ Rn are (column) vectors, then∣∣∣∣ A v

wT 0

∣∣∣∣ = detA− det(A+ v ⊗ w). (4.16)

Applying this identity with A = M , v = ω, w = 2ω, and using that M is singular, we
obtain

det(M + 2ω ⊗ ω) = −2 detM 6= 0.

The conclusion of the lemma follows immediately from this and (4.15).

Lemma 4.2 facilitates an application of Theorem 4.1 to the Hamiltonian H defined
in (4.10). We consider G0 and G1 (cp. (4.11)) as real-valued maps on Ω and Tn × Ω,
respectively, where

Ω = Ωq := {I ∈ Rn : q ≤ Ij ≤ 2q (j = 1, . . . , n)} (4.17)

with a sufficiently small q > 0. Note that these maps are defined, as are Φ0, Φ1, if q > 0 is
small enough.

Lemma 4.3. Suppose the hypotheses (S1), (S2), (A1)(a), (A1)(b’), and (NR’) are satisfied
and set kB = [K/2] − 1. Let (for some fixed s ∈ (0, δ)) M be as in (4.11) and M as in
(4.14), and assume that detM = 0 and detM 6= 0.
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Fix constants α, λ, ν such that

3n > αλ+ λ+ ν and relations (4.8) hold.1 (4.18)

Then there exists q∗ > 0 such that for each q ∈ (0, q∗) the maps H0, H1 defined in
(4.12) have the following properties.

(a) H0 is a polynomial in I, and there are R, ρ > 0 such that (4.7) holds (with Ωρ as in
(4.4)) and the map

I 7→ ω∗(I) = ∇H0(I) (4.19)

is one-to-one on Ωρ. We denote by V the image of Ω under this map ω∗.

(b) H1 ∈ C αλ+λ+ν(Tn × Ω) and, with R, ρ the constants in statement (a) and δKAM =
δKAM(n, ν, α, ρ,R) as in Theorem 4.1, there is κ ∈ (0, ρ/R) such that (4.9) holds and
|Vκ| > 0 (Vκ is defined in (4.6)).

Proof. This lemma is analogous to Lemma 5.2 of [11]. In that lemma, we showed that—
using the present notation—if detM 6= 0, then (a), (b) hold when one takes H0 = G0,
H1 = G1, that is, when H0 +H1 is the reduced Hamiltonian itself.

In the present case, assuming that detM = 0 and detM 6= 0, and using Lemma 4.2,
we discover that with H0 and H1 as in (4.12) the Hamiltonian H = H0 +H1 has the same
structure as in the proof of [11, Lemma 5.2]. More specifically, one has

H0(I) = ω · I +
1

2
I · M̃I + P̃ (I),

where M̃ is the Hessian matrix ofH0 as in (4.15) (hence det M̃ 6= 0) and P̃ (I) is a polynomial
in I with no constant, linear or quadratic terms. Further, H1 is a CK map on Tn × Ωq

of order O(|I|kB+1) uniformly in θ ∈ Tn. This is all the structure one needs (regardless of
the origin of the Hamiltonian H) to show, following [11, Proof of Lemma 5.2], that (a), (b)
hold if q∗ is sufficiently small.

We can now state the main result of this section. We make the following assumption on
the matrix M defined in (4.14) (with M and ω as in (4.11)).

(AN) The (n+ 1)× (n+ 1) matrix M is nonsingular.

We remark that although M is defined in terms of the reduced Hamiltonian, it is not easy
to formulate explicit sufficient conditions for (AN) in terms of the functions in the original

equation (2.3). Indeed, M is the Hessian matrix ∂2Φ0
∂I2

(0) of the reduced Hamiltonian in the
action variables, thus, it depends on fourth-order terms of the Hamiltonian in the variables
(ξ′, η′) (cp. (3.21)), and these in turn depend on terms up to order 3 of the reduction
function and the Darboux transformation. These are hardly ever computable explicitly.
Nonetheless, we will show in the next section that (AN) holds if n = 2, hypothesis (A2) is
satisfied, and s > 0 is sufficiently small.

1for example, take α, λ, ν as in (4.8) with λ ≈ ν + 1 ≈ n, α ≈ 1.
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Theorem 4.4. Assume the hypotheses (A1)(a), (A1)(b’), (S1), (S2), (NR’) (with m > N/2
and K ≥ 6(n+ 1)) are satisfied, and also that (for some fixed s ∈ (0, δ)) (AN) holds. Then
there exists a solution u(x, y) of equation (2.3) such that u(x, y)→ 0 as |x| → ∞ uniformly
in y, and u(x, y) is radially symmetric in x and quasiperiodic in y with n frequencies (n is
as in (A1)(b’), (AN)). In fact, there is a uncountable family of such quasiperiodic solutions,
their frequency vectors forming an uncountable subset of Rn.

Proof. If M = ∂2Φ0
∂I2

(0) is nonsingular, then the result is a direct consequence of Theorem
2.2 and Remark 5.5(b) in [11].

We proceed assuming that M is singular. As above, we consider the maps G0 and G1

(cp. (4.11)) with domains Ω and Tn×Ω, respectively, where Ω = Ωq is as in (4.17). Denote
G = G0 + G1 and let H0, H1 be as in (4.12). According to Lemma 4.3, for all sufficiently
small q > 0 the conclusion of Theorem 4.1 applies to the Hamiltonian H = H0 +H1, with
|Vκ| > 0. We choose a small q > 0 such that in addition, |G(θ, I)| < 1/4 and |H(θ, I)| < 1/8
for all (θ, I) ∈ Tn × Ω.

Let T be the diffeomorphism from Theorem 4.1, and I∗ ∈ Ω be such that ω∗(I∗) ∈ Vκ,
Vκ being the set defined in (4.6). Since the manifold T (Tn × {ω∗(I∗)}) is invariant under
the Hamiltonian vector field of H, it is contained in the level set (relative to H) Mε :=
{(θ, I) ∈ Tn × Ω : H(θ, I) = ε}, for some ε = ε(I∗) ∈ (−1/8, 1/8). This set coincides with
the c-level set of G for c = c(I∗) := (1/2)(−1 +

√
1 + 4ε), as found by taking the inverse of

the map

t ∈

(√
2− 2

4
,

√
6− 2

4

)
7→ t2 + t ∈ (−1/8, 1/8).

The gradients of H and G are related as follows:

∇H(θ, I) = ∇
(
G(θ, I) + (G(θ, I))2

)
= (1 + 2G(θ, I))∇G(θ, I); (4.20)

in particular, when ∇H and ∇G are restricted to Mε, one has

∇H(θ, I)

∣∣∣∣
Mε

= (1 + 2c)∇G(θ, I)

∣∣∣∣
Mε

. (4.21)

It follows that, up to a multiplicative constant, the Hamiltonian vector fields of G and H
coincide when restricted to Mε (this is the first of the two observations from [4] mentioned
above). By Theorem 4.1, the solution of

θ̇ = ∇IH(θ, I),

İ = −∇θH(θ, I),
(4.22)

with the initial condition T (θ0, ω
∗(I∗)), is given by T (θ0 + ω∗(I∗)t, ω∗(I)). Using (4.21), it

is easy to see that the manifold T
(
Tn ×

{
1

1+2cω
∗(I∗)

})
is invariant under the flow of

θ̇ = ∇IG(θ, I),

İ = −∇θG(θ, I),
(4.23)
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and the solution of (4.23) with the initial condition T
(
θ0,

1
1+2cω

∗(I∗)
)

, θ0 ∈ Tn, is given

by

T

(
θ0 +

1

1 + 2c
ω∗(I∗)t,

1

1 + 2c
ω∗(I∗)

)
(t ∈ R). (4.24)

Note that since ω∗(I∗) ∈ Vκ, the solution in (4.24) is quasiperiodic, with frequency vector
ω∗(I∗)/(1 + 2c). Note also that the trajectory of this solution is contained in Tn × Ωq.
Adjusting q > 0, we can assume that the solutions obtained this way are as close to Tn×{0}
as we like.

We pause at this point to observe that the frequencies ω∗(I∗)/(1 + 2c), c = c(I∗), found
above form an uncountable set in Rn. More specifically, since |Vκ| > 0, there exists an
uncountable set Wκ ⊂ Vκ such that no two elements of Wκ are multiples of each other. Let
ΩW be the preimage of Wκ via the frequency map ω∗(I) = ∇H0(I). This is an uncountable
set, as ω∗(I) is a diffeomorphism. The frequencies

ω∗(I∗)

1 + 2c(I∗)
(I∗ ∈ ΩW ), (4.25)

are mutually distinct, due to the defining property of the set Wκ, thus they form an un-
countable set in Rn.

Remembering that G is equal to the reduced Hamiltonian Φ(θ, I; s) for a fixed value of
s ∈ (0, δ), we now reverse the transformations identified in Section 3 (see the list (T)), to
get back to the reduced equation (3.8). This yields quasiperiodic solutions zI∗ , I

∗ ∈ ΩW , of
(3.8), whose frequency vectors form the uncountable set described by (4.25). Moreover, we
can assume that all the trajectories of these solutions are contained in a small neighborhood
of (0, 0) ∈ R2n (this is guaranteed by choosing q small enough); in particular, zI∗(y) ∈ N
for all y ∈ R, N being the neighborhood of 0 ∈ Z from Proposition 3.1. By Proposition
3.1(b), for each I∗ ∈ ΩW ,

U(y) = (U1(y), U2(y))T = zI∗(y) + σ({zI∗(y)}B) ∈ Z

is a solution of system (3.1). Letting

u(x, y) = U1(y)(x), (4.26)

we obtain a solution of (2.3). This solution is quasiperiodic in y, in the sense of the definition
given in Section 2, with frequency vector ω∗(I∗)/(1 + 2c(I∗)).

It remains to show that the solution u(x, y) in (4.26) decays to 0 as |x| → ∞, uniformly
in y. This follows immediately from the fact that the set {u(·, y) : y ∈ R} is contained in a
compact set—continuous image of a torus—in Hm+2

rad (RN ), with m > N/2.

5 Verification of Arnold’s condition

Throughout this section, we take n = 2 and assume that hypotheses (S1), (S2), (A1), (NR)
(with K and m as in (2.5)), and (A2) hold. We prove that condition (AN), stated in
Section 4, holds for all sufficiently small s > 0. Once this fact has been established, our
main theorem will become a direct consequence of Theorem 4.4.
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The verification of hypothesis (AN) will be carried out by studying the terms of degree 4
arising from the computation of the Birkhoff normal form of the Hamiltonian Φ (cp. (3.21)).
Hypothesis (A2) will be instrumental in describing the asymptotic behavior of these terms
as s → 0 (which actually means s → 0+, as we only take s ≥ 0 in this section). Since
ω2(s) =

√
|µ2(s)| → 0, at s = 0 we arrive at the resonant case: a double 0 eigenvalue and

a pair of purely imaginary eigenvalues ±iω1(0). Therefore, an analysis of this resonance,
as carried out in [3, 16], for example, could probably be put to some good use here. We
proceed differently, however. Keeping track of the parameter dependence in the Birkhoff
normal form procedure (see Section 5.1), we single out the 4th-order term in the normal
form with the highest singularity as s→ 0, and relate it to the functions a2 and ϕ2 via the
integral in (A2).

5.1 Birkhoff normal form algorithm

To compute the terms of order 4 (order 2 in I), we use some steps from the normal form
algorithm, which we now summarize (the details can be found in [2, 5, 7], for example).
Although we need the following computations for n = 2 only, there is no need for such
restriction in this subsection.

Recall that if h1(ξ, η) and h2(ξ, η) are C 2 functions on a domain in R2n, their Poisson
bracket {h1, h2} is defined by

{h1, h2} :=
n∑
j=1

(
∂h1

∂ξj

∂h2

∂ηj
− ∂h1

∂ηj

∂h2

∂ξj

)
. (5.1)

Consider a Hamiltonian on R2n in the form H = H2 +H3 + · · ·+H` + h.o.t., where

H2(ξ, η) =
n∑
j=1

ωj
ξ2
j + η2

j

2
,

Hj is a homogeneous polynomial of degree j, j = 2, . . . , `, and “h.o.t.” stands for terms of
order O(|(ξ, η)|`+1). We assume that the vector ω = (ω1, . . . , ωn) is nonresonant up to order
` ≥ 4. In the normal form procedure, one successively eliminates the nonresonant terms (as
defined below) in H3, H4, . . . . The cubic terms are all nonresonant and they are eliminated
by a first transformation. This transformation alters terms of degree 4 and higher, but
does not change the quadratic terms. The next transformation eliminates the nonresonant
terms from the (altered) 4th-order terms, keeping the quadratic and cubic terms intact and
altering the terms of degree 5 and higher; and so on. The transformations in this procedure
are always found as the Lie transforms corresponding to a polynomial Hamiltonian, which
guarantees that they are canonical (in the new coordinates, the symplectic form is still the
standard one and the Poisson brackets are computed in the same way as in (5.1)). The
key observation here is that if χ` is a homogeneous polynomial on R2n of degree ` ≥ 3 and
ν` is the time-1 map of the Hamiltonian flow with the Hamiltonian χ` (ν` is defined in a
neighborhood of the origin and it is a near identity transformation), then

H ◦ ν` = H2 +H3 + · · ·+H` + {H2, χ`}+ h.o.t. (5.2)
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Thus, if χ` can be chosen such that

{H2, χ`} = −H`, (5.3)

then the terms of degree ` can be completely eliminated; otherwise only certain terms of
degree ` can be eliminated by a suitable choice of χ`.

The homological equation (5.3) is easiest to consider in the complex coordinates (α, β) =
(α1, . . . , αn, β1, . . . , βn) given by

(αj , βj) =
1√
2

(
ξj + iηj , i(ξj − iηj)

)
. (5.4)

We note that these coordinates are canonical in the sense that for any two polynomials h1,
h2 expressed in these coordinates, their Poisson bracket is still computed as in (5.1) with ξ,
η replaced by α, β, respectively.

The new coordinates (α, β) “diagonalize” equation (5.3) in the following sense. Substi-
tuting the inverse relations ξj = 1√

2
(αj − iβj), ηj = 1√

2
(βj − iαj) in a homogeneous polyno-

mial, one obtains a homogeneous polynomials in (α, β) of the same degree. Assuming that
χ`(α, β) is a homogeneous polynomials of degree ` makes (5.3) a linear nonhomogeneous
equation on the space of such polynomials. Consider the basis of this space consisting of
the monomials

αJβL, J, L ∈ Nn, |J |+ |L| = `, (5.5)

where, for any multiindex J = (j1, . . . , jn) ∈ Nn, we denote |J | = j1 + · · · + jn, αJ =
αj11 . . . αjnn ; and similarly for L, βL. Equation (5.3) can be written, with respect to the basis
(5.5), as a system of linear equations with the diagonal coefficient matrix diag(iω · (L −
J))|J |+|L|=`. If ω · (J − L) = 0, the monomial hJLαJβL (for any hJL ∈ C) is said to be
resonant ; otherwise, it is nonresonant. Due to the nonresonance assumption on ω, there
are no resonant terms of degree ` if ` is odd. Therefore, (5.3) has a unique solution χ` and
the terms of degree ` can be completely eliminated in (5.2). If ` is even, only nonresonant
terms of degree ` can be eliminated by a suitable (nonunique) choice of χ`.

In the first step of the normal form procedure, one takes the (unique) solution χ3 of

{H2, χ3} = −H3. (5.6)

The corresponding Lie transform ν3 eliminates the cubic terms and alters the quartic terms
as follows (see [2, 5, 7] for details):

H ◦ ν3 = H2 +H4 +
1

2
{{H2, χ3}, χ3}+ {H3, χ3}+ h.o.t.

= H2 +H4 +
1

2
{H3, χ3}+ h.o.t.

(5.7)

where “h.o.t.” now stands for terms of order 5 or higher and (5.6) was used to get the second
equality in (5.7). Thus, the new degree-four homogeneous polynomial is H4 + 1

2{H3, χ3}.
The second step is to determine which terms in this polynomial can be eliminated by the
next transformation ν4.
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If, in the coordinates (α, β),

H3(α, β) =
∑

J,L∈Nn
|J |+|L|=3

hJL3 αJβL,

for some coefficients hJL3 , then the polynomial χ3 is given by

χ3(α, β) =
∑

J,L∈Nn
|J |+|L|=3

hJL3

iω · (L− J)
αJβL, (5.8)

Computing the 4th-order term H̃4 := H4 + 1
2{H3, χ3} in (5.7), one finds coefficients hJL4

such that
H̃4(α, β) =

∑
J,L∈Nn
|J |+|L|=4

hJL4 αJβL. (5.9)

Due to the nonresonance assumption on ω, for any J , L with |J | + |L| = 4, the term
hJLαJβL is resonant if and only if J = L. The second step consists in choosing a homoge-
neous polynomial χ4 which is real in the coordinates (ξ, η) and such that the corresponding
transformation ν4 eliminates all nonresonant terms in (5.9) while keeping the resonant terms
intact. The final form of the quartic terms in H ◦ ν3 ◦ ν4 is then obtained by substituting
(5.4) in the sum of all the resonant terms,∑

|J |=2

hJJ4 αJβJ , (5.10)

and noting that for |J | = 2 one gets hJJ4 αJβJ = −hJJ4 IJ , with I = (I1, . . . , In) as in (3.22),
(3.23).

To conclude these preparatory remarks, we rewrite (5.10) in a more convenient form.
For any J = (J1, . . . , Jn) with |J | = 2, there exist two integers 1 ≤ j2 ≤ j1 ≤ n such that
either j2 < j1 and

Jj =

{
1 if j = j1 or j = j2

0 otherwise,

or j1 = j2 and

Jj =

{
2 if j = j1

0 otherwise.

Therefore, denoting h̄j1,j24 = hJJ4 , we have

∑
|J |=2

hJJ4 αJβJ =

n∑
j1=1

j1∑
j2=1

h̄j1,j24 αj1αj2βj1βj2 . (5.11)
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5.2 The asymptotic behavior of M(s)

In this section, we consider the matrix M defined in (4.14). Bringing the parameter s ∈
(0, δ) back into play, we have

M(s) :=

M(s) ω(s)

ωT (s) 0

 , (5.12)

where M(s) is as in (3.24). We only consider the case of n = 2 frequencies here, thus,
ω(s) = (ω1(s), ω2(s)) (this is the vector defined in (NR)) and M(s) is a 2 × 2 matrix. We
are going to examine the behavior ofM(s) as s→ 0. To simplify the notation, while keeping
the dependence of ω and M on s > 0 in mind, when there is no danger of confusion, we
will often omit the argument s in ω, M , and related quantities and functions.

Recall from (3.21) that after the Darboux transformation described in Section 3, the
Hamiltonian of the reduced equation (3.8) takes the form

Φ(ξ′, η′; s) =
1

2

2∑
j=1

(−µj(s)(ξ′j)2 + (η′j)
2) +

1

3

∫
RN

a2(x; s)(ξ′ · ϕ(x; s))3 dx

+ Φ4(ξ′, η′; s) + Φ′(ξ′, η′; s),

where Φ4 is a homogeneous polynomial in (ξ′, η′) of degree 4, while Φ′ is a function of class
CK in all its arguments, and of order O(|(ξ′, η′)|5) as (ξ′, η′)→ (0, 0). Denote by Φ2(ξ′, η′),
Φ3(ξ′, η′) and Φ4(ξ′, η′) the homogeneous polynomials in Φ of degree 2, 3 and 4, respectively.

Remark 5.1. The coefficients of the polynomials Φ2, Φ3 and Φ4 are bounded functions of
s ∈ (0, δ), see Remark 3.2.

We now change the variables by

ξ′j =
1
√
ωj
ξj , η′j =

√
ωj ηj (j ∈ {1, 2}),

so the quadratic part of Φ becomes

Φ2(ξ, η) :=
1

2

2∑
j=1

ωj(ξ
2
j + η2

j ),

(similarly as above, in a slight abuse of notation we write Φ2(ξ, η) for the the function
Φ2(ξ(ξ′), η(η′))). We now write the cubic terms,

Φ3(ξ, η) =

∫
RN

a2

3
(ξ′ · ϕ)3 dx, (5.13)

explicitly in terms of (ξ, η): first,

(ξ′ · ϕ)3 =

2∑
j,k,`=1

ξ′jξ
′
kξ
′
`ϕjϕkϕ` =

2∑
j,k,`=1

ξjξkξ`
(ωjωkω`)1/2

ϕjϕkϕ`,
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so

Φ3(ξ, η) =
1

3

2∑
j,k,`=1

ξjξkξ`
(ωjωkω`)1/2

∫
RN

a2ϕjϕkϕ`dx =

2∑
j,k,`=1

Θ(j, k, `; s)ξjξkξ`, (5.14)

where

Θ(j, k, `) =
1

3(ωjωkω`)1/2

∫
RN

a2ϕjϕkϕ`dx, (j, k, ` ∈ {1, 2}). (5.15)

(Even though Φ3 is independent of η, for consistency we write it as a function of (ξ, η)
anyway.) Of course, the quantities Θ(j, k, `) depend on s > 0. As functions of s, Θ(j, k, `; s)
satisfy the following estimates.

Lemma 5.2. As s→ 0, one has ω2 = ω2(s)→ 0 and

Θ(j, k, `; s) = O
(
ω
−(j+k+`−3)/2
2

)
(j, k, ` ∈ {1, 2}).

In particular,

Θ(2, 2, 2; s) = O
(
ω
−3/2
2

)
,

and if (j, k, `) 6= (2, 2, 2), then

Θ(j, k, `; s) = O
(
ω−1

2

)
.

Proof. By the continuity of the maps s ∈ [0, δ) 7→ a2(·; s) ∈ Cm+1
b and s ∈ [0, δ) 7→ ϕj(·; s) ∈

Lprad(RN ) for 1 ≤ p ≤ ∞ and j = 1, 2, it follows that the integral on the right hand side

of (5.15) is bounded by a constant independent of s. Also, ω1(s) =
√
|µ1(s)| > ω2(s) for

s ∈ [0, δ); in particular, ω1(s) stays away from 0 as s→ 0. Our assertion follows immediately
from these remarks.

Using a similar reasoning, combined with Remark 5.1, one proves the following result:

Corollary 5.3. The coefficients of the polynomial Φ4(ξ, η; s) are of order O(ω−2
2 ) as s→ 0.

We now carefully examine the fourth-order term resulting from the Birkhoff normal form
procedure applied to Φ. Recall that the first transformation in the procedure eliminates all
terms of degree 3 in (ξ, η). For any s > 0, let χ3 = χ3(ξ, η; s) be the unique solution of

{Φ2, χ3} = −Φ3 (5.16)

(cp. (5.6)). If ν3 is the time-1 map generated by χ3, then (cp. (5.7))

Φ ◦ ν3 = Φ2 + Φ4 +
1

2
{Φ3, χ3}+ h.o.t., (5.17)

where “h.o.t.” stands for terms of order O(|(ξ, η)|5).
We now use the complex coordinates (5.4) (and, as customary, write Φ2(α, β) for

Φ2(ξ(α, β), η(α, β)), and similarly for other functions). As before, although not always
explicitly indicated in the notation, the functions involved in (5.17) depend on s > 0.

The complex coordinates will help us to identify the resonant terms (see the definition in
the paragraph following (5.5)) of degree 4 in Φ◦ν3. These are the only terms we need to care
about; they remain intact after the second transformation in the normal from procedure,
while all the nonresonant terms get eliminated.
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Lemma 5.4. For each s ∈ (0, δ),

(Φ ◦ ν3)(α, β) = Φ2(α, β) +
5

12ω4
2

(∫
RN

a2(x; s)ϕ3
2(x; s)dx

)2

α2
2β

2
2 + Φ̃(α, β) +

+ nonresonant terms + h.o.t., (5.18)

where Φ̃(α, β) is a homogeneous polynomial of degree 4 whose coefficients are of order

O(ω
−7/2
2 ) as s→ 0, “nonresonant terms” contains all nonresonant terms of degree 4 not in

Φ̃, and “h.o.t.” stands for terms of order O(|(α, β)|5).

Proof. Returning to (5.17), we recall that the coefficients of Φ4 are of order O(ω−2
2 ) as

s → 0 by Corollary 5.3. Looking for terms with the highest singularity in s, we focus our
attention on the term (1/2){Φ3, χ3} in (5.17). Using Lemma 5.2 and (5.14), we can write

Φ3(ξ, η) = Θ(2, 2, 2)ξ3
2 + Φ′3 =: Φ̄3 + Φ′3, (5.19)

where Φ̄3(ξ, η) = Θ(2, 2, 2)ξ3
2 , and Φ′3 is a homogeneous polynomial in (ξ, η) of degree 3,

whose coefficients are of order O(ω−1
2 ). Equation (5.16) can be rewritten as

{Φ2, χ3} = −Φ̄3 − Φ′3.

There are unique χ̄3 and χ′3, both homogeneous polynomials in (ξ, η) of degree 3, such that

{Φ2, χ̄3} = −Φ̄3, (5.20)

{Φ2, χ
′
3} = −Φ′3. (5.21)

Thus,
χ3(ξ, η) = χ̄3(ξ, η) + χ′3(ξ, η) (5.22)

is the unique solution of (5.16). Using (5.19) and (5.22),

1

2
{Φ3, χ3} =

1

2

(
{Φ̄3, χ̄3}+ {Φ̄3, χ

′
3}+ {Φ′3, χ̄3}+ {Φ′3, χ′3}

)
, (5.23)

and the rest of the proof consists of studying the asymptotic behavior (as s→ 0) of each of
the brackets on the right hand side of (5.23).

Recall that if J = (j1, j2) ∈ N2 is a multiindex, we write αJ = αj11 α
j2
2 . As mentioned in

Section 5.1, the homological equation {Φ2, χ3} = ψ is diagonalized in the complex coordi-
nates (5.4): with respect to the basis given by the monomials

αJβL, J, L ∈ N2, |J |+ |L| = 3, (5.24)

{Φ2, χ3} = ψ becomes a (consistent) linear nonhomogeneous system with the coefficient
matrix diag(iω · (L − J))|J |+|L|=3. Since the transformation (5.4) (and therefore also the

transition matrix from the basis {ξJηL : |J |+ |L| = 3} to the basis (5.24)), is independent of
s, when solving the equation {Φ2, χ3} = ψ (by inverting the diagonal matrix) one introduces
a singularity of order at most O(ω−1

2 ). Therefore, (5.21) in conjunction with the fact that
the coefficients of Φ′3 are of order O(ω−1

2 ) imply that the coefficients of the polynomial χ′3
are of order O(ω−2

2 ) as s→ 0.
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Next, in the coordinates (α, β),

Φ̄3(α, β) =
Θ(2, 2, 2)

(
√

2)3
(α2 − iβ2)3

=
Θ(2, 2, 2)

2
√

2
(α3

2 − 3iα2
2β2 − 3α2β

2
2 + iβ3

2). (5.25)

By (5.8), to find χ̄3 we need to divide each term αJβL in Φ̄3 by iω ·(L−J), with J = (j1, j2),
L = (`1, `2) as in (5.24). Note that none of the terms on the right hand side of (5.25) involves
α1 or β1, so j1 = `1 = 0, iω · (L−J) = iω2(`2− j2), and the condition |J |+ |L| = 3 becomes
j2 + `2 = 3. Thus,

χ̄3(α, β) =
Θ(2, 2, 2)

2
√

2iω2

(
−1

3
α3

2 + 3iα2
2β2 − 3α2β

2
2 +

i

3
β3

2

)
.

In particular, by Lemma 5.4, χ̄3 is a homogeneous polynomial in (α, β) of degree 3 whose

coefficients are of order O(ω
−5/2
2 ) as s→ 0.

Using the formulas for Φ̄3 and χ̄3, we expand the first bracket on the right hand side of
(5.23) as follows:

{Φ̄3, χ̄3} =
∂Φ̄3

∂α2

∂χ̄3

∂β2
− ∂χ̄3

∂α2

∂Φ̄3

∂β2

=
Θ(2, 2, 2)2

8iω2

[
(3α2

2 − 6iα2β2 − 3β2
2)(3iα2

2 − 6α2β2 + iβ2
2)−

(−α2
2 + 6iα2β2 − 3β2

2)(−3iα2
2 − 6α2β2 + 3iβ2

2)
]

=
Θ(2, 2, 2)2

8iω2
[3i+ 36i− 9i− (−3i− 36i+ 9i)]α2

2β
2
2 + nonresonant terms

=
15Θ(2, 2, 2)2

2ω2
α2

2β
2
2 + nonresonant terms

=
15

18ω4
2

(∫
RN

a2(x)ϕ3
2(x)dx

)2

α2
2β

2
2 + nonresonant terms,

where we have used (5.15) and the fact that the fourth-order resonant terms are of the form
(5.11).

From our previous observations, we can easily find the asymptotic behavior of the last
three terms on the right hand side of (5.23): the coefficients of the polynomials {Φ̄3, χ

′
3}

and {Φ′3, χ̄3} are of order O(ω
−7/2
2 ) as s→ 0, while the coefficients of {Φ′3, χ′3} are of order

O(ω−3
2 ). Setting

Φ̃ =
1

2

(
{Φ̄3, χ

′
3}+ {Φ′3, χ̄3}+ {Φ′3, χ′3}

)
+ Φ4,

we see that all statements of the lemma are valid and the proof is complete.

We are now ready for the final step which is to consider the asymptotics of the deter-
minant of the matrix M(s) in (5.12).

Lemma 5.5. For all sufficiently small s > 0, one has detM(s) 6= 0.
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Proof. Recall that the matrix M = M(s) in (5.12) is the same as the matrix in (3.24). This
matrix is determined by the first two steps of the Birkhoff normal form algorithm, since the
third and subsequent steps do not alter terms of degree less that or equal to 4 in (ξ′, η′)
(that is, degree 2 in I = (I1, I2)).

Denote by mij , i, j ∈ {1, 2}, the entries of M , with m12 = m21. Expanding,

1

2
I ·MI =

1

2

(
m11I

2
1 + (m12 +m21)I1I2 +m22I

2
2

)
. (5.26)

If (αj , βj), j ∈ {1, 2}, are as in (5.4), then

αjβj = i(ξ2
j + η2

j )/2 = iIj .

Compare (5.26) with the expansion in Lemma 5.4. The resonant term α2
2β

2
2 = −I2

2 is
present in (5.18) in the second term of the right hand side (and its coefficient is explicitly

given) and, possibly, in Φ̃(α, β), in which case its coefficient is of order O(ω
−7/2
2 ). Thus, as

s→ 0, we have the following asymptotic formula for m22 = m22(s):

m22 = − 5

12ω4
2

(∫
RN

a2(x; s)ϕ3
2(x; s)dx

)2

+O(ω
−7/2
2 ). (5.27)

The integral in (5.27) depends continuously on s, thus, by hypothesis (A2), it is bounded
from above and below by positive constants for all sufficiently small s ≥ 0. The other
nonresonant terms, namely, multiples of the monomials α2

1β
2
1 = −I2

1 and α1β1α2β2 = −I1I2,
are all gathered in Φ̃(α, β) on the right hand side of (5.18). Therefore, Lemma 5.4 implies

that m11 and m12, being the coefficients of these terms (cp. (5.26)), are of order O(ω
−7/2
2 ).

Expand the determinant detM(s) along the last row:

detM(s) = ω1(m12ω2 −m22ω1)− ω2(m11ω2 −m21ω1)

= −m22ω
2
1 + ω1ω2(m12 +m21)−m11ω

2
2.

Since m12 = m21 and, as s→ 0, ω2(s)→ 0, m11 and m12 are of order O(ω
−7/2
2 ), and ω1(s)

stays away from zero, using (5.27) we find

detM(s) = −ω2
1m22 +O(ω

−7/2
2 ) = ψ(s)ω−4

2 +O(ω
−7/2
2 ),

where ψ(s) is bounded from below by a positive constant for all sufficiently small s > 0. It
follows that detM(s)→∞ as s→ 0, proving in particular the conclusion of the lemma.

Proof of Theorem 2.2. The theorem is a direct consequence of Theorem 4.4 and Lemma
5.5
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