Math 5531 Lecture 10 - LP (Revisited)

In this talk, we will learn how to solve an LP problem using Excel Spreadsheet through an example.

Gaspar's Diet Problem:

Gaspar's diet requires that all the food he eat come from one of the four "basic food groups": chocolate cake, ice cream, coca cola, and cheesecake). The daily nutrition requirement for Gaspar is: 1800 calories, 20 oz of chocolate, 30 oz of sugar, and 25 oz of fat. The nutritional content per unit of each food is shown in Table 1.

	Calories	Chocolate (oz)	Sugar (oz)	Fat (oz)
1 piece of chocolate cake	400	3	2	2
1 scoop of ice cream	200	2	2	4
1 can of coca cola	150	0	4	1
1 piece of cheesecake	500	0	4	5

Table	91
-------	----

The market prices of these food are:

	Price
1 piece of chocolate cake	\$2.50
1 scoop of ice cream	\$0.70
1 can of coca cola	\$0.85
1 piece of cheesecake	\$3.00

Formulate (and solve) a LP problem to give Gaspar a daily shopping list under his tight student's budget.

LP Formulation

We can set up the following LP problem by letting

- x_1 = number of pieces of chocolate cake
- x_2 = number of scoops of ice cream
- x_3 = number of cans of coca cola
- x_4 = number of pieces of cheesecake

$$\begin{aligned} \min z &= 2.5x_1 + 0.7x_2 + 0.85x_3 + 3x_4 \\ s.t. &: 400x_1 + 200x_2 + 150x_3 + 500x_4 \ge 1800, \text{ (calories to keep him alive)} \\ &: 3x_1 + 2x_2 \ge 20, \text{ (oz of chocolate to keep him happy)} \\ &: 2x_1 + 2x_2 + 4x_3 + 4x_4 \ge 30, \text{ (oz of sugar to keep him smart)} \\ &: 2x_1 + 4x_2 + x_3 + 5x_4 \ge 25, \text{ (oz of fat to keep him strong)} \\ &: x_1, x_2, x_3, x_4 \ge 0. \end{aligned}$$

Setup the LP spreadsheet

Step 1.	Input all the	parameters	of the	problem.
---------	---------------	------------	--------	----------

Gaspar's Diet	Problem					
	Chocolate Cake	Ice Cream	Coca Cola	Cheesecake	Total	Required
Cost	2	0.7	0.85	3		
Calories	400	200	150	500		1800
Chocolate	3	2	0	0		20
Sugar	2	2	4	4		30
Fat	2	4	1	5		25

Step 2. Enter the formulas for the "total" columns after fill the decision variables with feasible values, say 4, 4, 2, 2. (\$18.50 is the corresponding cost)

Gaspar's Die	t Problem					
	Chocolate Cake	Ice Cream	Coca Cola	Cheesecake	Total	Required
	4.00	4.00	2.00	2.00		
Cost	2	0.7	0.85	3	18.50	
Calories	400	200	150	500	3700.00	1800
Chocolate	3	2	0	0	20.00	20
Sugar	2	2	4	4	32.00	30
Fat	2	4	1	5	36.00	25

Step 3. Open the "Solver Parameter" box under "tools" menu.

- Set the target cell: total cost. Choose "min";
- Define "changing cells", which are the decision variables;
- Define "constraints", don't forget the "nonnegative constraints for the decision variables.
- Now you are ready to hit "Solve"...

Gaspar's Diet	t Problem					
	Chocolate Cake	Ice Cream	Coca Cola	Cheesecake	Total	Required
	0.00	10.00	2.50	0.00		
Cost	2	0.7	0.85	3	9.13	
Calories	400	200	150	500	2375.00	1800
Chocolate	3	2	0	0	20.00	20
Sugar	2	2	4	4	30.00	30
Fat	2	4	1	5	42.50	25

The best diet plan for Gaspar is to have 10 scoops of ice cream and 2.5 cans of coca cola per day, nothing else. This will cost him \$9.13 a day. Too much calorie and fat!!!

Explore the alternatives:

• First we note that Gaspar is in the risk of gaining weight. We need to restrict his daily intake of calories with 2000. We need to add another constraint. And hit the "solve", we have

Gaspar's Die	t Problem					
	Chocolate Cake	Ice Cream	Coca Cola	Cheesecake	Total	Required
	0.00	7.00	4.00	0.00		
Cost	2	0.7	0.85	3	8.30	
Calories	400	200	150	500	2000.00	1800
Calories	400	200	150	500	2000.00	2000
Chocolate	3	2	0	0	14.00	20
Sugar	2	2	4	4	30.00	30
Fat	2	4	1	5	32.00	25

Wait a minute... this solution is not feasible! We need to start with a feasible solution.

Case Study: BestChip

Product-Ingredient Mix			
		Ingredient	
Product	Corn	Wheat	Potato
Regular chips	70	20	10
Green onion chips	30	15	55
Party mix	20	50	30

erial Shipping Cost (\$/Ton) · Wheat

5

8

10

7 14

12

12

15

Potato

16

11

15 14

10

11

9

8

		Site Information and Ma	terial Shipping Cost	
BC is considering expanding market to the following candidate sites:	We have collected the following data:	Site Location	Burchasa Cost (\$/Voor)	Mat
Yuma, AZ Fresno, CA	Property cost:	Yuma, AZ	125,000	10
Tucson, AZ	Purchasing, Building, and	Fresno, CA	130,000	12
 Pomona, CA Santa Fe, NM 	Maintenance	Pomona, CA	160,000	11
 Flagstaff, AZ 	to each location.	Santa Fe, NM	150,000	8
Las Vegas, NV St George LIT		Las Vegas, NV	155,000	10
11/26/2007 W.	Huang	St. George, UT	115,000	14

		Demand Information				
BC has six major customers:		TARIA STATES		1.1.1.1.1.1.1.1	Demand	
1. Jones, Salt Lake City				Contraction of the	Demanu	
2. YZCO, Albuquerque	Also we know:	company	Location	Hegular	Green Onion	Party Mix
3. Square Q, Phoenix	Demand of each	Jones	Salt Lake City	1,300	900	1,700
4. AJ Stores, San Diego	customer for each product.	YZCO	Albuquerque	1,400	1,100	1,700
5. Sun Quest, Los Angeles	All demand must be met.	Square Q	Phoenix	1,200	800	1,800
6. Harm's Path, Tucson		AJ Stores	San Diego	1,900	1,200	2,200
	on the distance and	Sun Quest	Los Angeles	1,900	1,400	2,300
11/26/2007 W. Huang	tonnage, which is \$0.15 per ton-mile.	Harm's Path	Tucson	1,500	1,000.	1,400
				50		
Additional constra	int [.]	For simplicity reas	ion, we	BC man	ager wants to	KNOW:
Additional constraint:		information, includ	ling:	 which of the candidate sites should be open for production? which customers should each opened site serve? 		
company does not v locate plants in more	vant to e than two	property and income tax difference between states;				

Other constraints:

states.

• each plant, when opened, can produce 20,000 tons of product (mixed) per year.

• the method of financing the

site purchasing;

LP (or ILP) formulation:

Number the plants, customers, products, ingredients, and states:

<i>i</i> =	Plant in
1	Yuma, AZ
2	Fresno, CA
3	Tueson, AZ
4	Pomona, CA
5	Santa Fe, NM
6	Flagstaff, AZ
7	Las Vegas, NY
8	St. George, UT

<i>j</i> =	Customer & Location
1	Jones, Salt Lake City
2	YZCO, Albuquerque
3	Square Q, Phenix
4	AJ Stores, San Diego
5	Sun Quest, Los Angeles
6	Harm's Path, Tucson
·	

<i>k</i> =	Product
1	Regular chips
2	Green onion chips
3	Party mix

Objective if to minimize

W Huano

the total cost.

<i>l</i> =	ingredients					
1	Corn					
2	Wheat					
3	Potato					

s = 1 2 3 4 5 States AZ CA NM NV UT

We define the following decision variables:

 x_{ijk} = tons of product k sent from plant i to customer j;

 $y_i = 1$, if plant *i* is open for production, 0 otherwise;

 $\delta_s = 1$, if states *s* is used, 0 otherwise.

We also define the following intermediate variables:

• f_i = fixed cost associated with opening plant *i*.

i	f_i
1	125,000
2	130,000
3	140,000
4	160,000
5	150,000
6	170,000
7	155,000
8	115,000

• $c_{ij} = \text{cost to ship 1 ton of final products from plant } i$ to customer j.

		SL City	Albuq.	Phoenix	S. Diego	LA	Tucson
Distances		1	2	3	4	5	6
1	Yuma	712	646	186	172	282	242
2	Fresno	818	917	592	350	222	708
3	Tucson	779	497	116	412	488	-
4	Pomona	661	760	345	114	29	460
5	Santa Fe	626	63	526	877	848	558
6	Flagstaff	519	326	144	495	466	260
7	Las Vegas	420	574	288	338	271	404
8	St. George	302	604	434	455	388	550

Unit shipping cost from Plants i to Customers j (\$0.15 times the mile distance)

Cij	j = 1	j = 2	j = 3	j = 4	j = 5	j = 6
i = 1	\$106.83	\$96.89	\$27.89	\$25.74	\$42.33	\$36.24
i = 2	\$122.66	\$137.51	\$88.85	\$52.46	\$33.26	\$106.19
i = 3	\$116.84	\$74.51	\$17.39	\$61.86	\$73.20	\$0.00
i = 4	\$99.12	\$113.97	\$51.69	\$17.15	\$4.41	\$69.03
i = 5	\$93.95	\$9.45	\$78.92	\$131.49	\$127.20	\$83.63
i = 6	\$77.82	\$48.92	\$21.63	\$74.19	\$69.93	\$38.96
i = 7	\$62.96	\$86.03	\$43.14	\$50.69	\$40.62	\$60.62
i = 8	\$45.35	\$90.65	\$65.09	\$68.19	\$58.13	\$82.43

• d_{kj} = demand in tons of product k from customer j.

d_{kj}	<i>j</i> = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	<i>j</i> = 5	<i>j</i> = 6
<i>k</i> = 1	1300	1400	1200	1900	1900	1500
<i>k</i> = 2	900	1100	800	1200	1400	1000
<i>k</i> = 3	1700	1700	1800	2200	2300	1400

• $m_{il} = \text{cost}$ in dollars of sending 1 ton of raw material *l* to plant *i*.

m _{il}	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4	<i>i</i> = 5	<i>i</i> = 6	<i>i</i> = 7	<i>i</i> = 8
l = 1	10	12	9	11	8	10	13	14
l = 2	5	8	10	7	14	12	12	15
<i>l</i> = 3	16	11	15	14	10	11	9	8

• r_{lk} = percentage of product *k* that is raw material *l*.

r_{lk}	l = 1	<i>l</i> = 2	<i>l</i> = 3
k = 1	70	20	10
k = 2	30	15	55
k = 3	20	50	30

We now have the following mixed ILP model

 min_z = Location purchasing cost + Shipping for Products + Shipping for Raw Materials

~

$$= \sum_{i=1}^{8} f_{i}y_{i} + \sum_{i=1}^{8} \sum_{j=1}^{6} c_{ij} \sum_{k=1}^{3} x_{ijk} + \sum_{i=1}^{8} \sum_{l=1}^{3} m_{il} \sum_{k=1}^{3} \sum_{j=1}^{6} r_{lk}x_{ijk},$$

s.t: $\sum_{i=1}^{8} x_{ijk} \ge d_{kj}, j = 1, 2, ..., 6, k = 1, 2, 3$ (Demands need to be met)
: $\sum_{j=1}^{6} \sum_{k=1}^{3} x_{ijk} \le 20000y_{i}, i = 1, 2, ..., 8,$ (Plant capacity constraints)
: $y_{1} + y_{3} + y_{6} \le 10\delta_{1},$ (State AZ is counted)
: $y_{2} + y_{4} \le 10\delta_{1},$ (State CA is counted)
: $y_{5} \le 10\delta_{3},$ (State NM is counted)
: $y_{7} \le 10\delta_{5},$ (State NV is counted)
: $y_{8} \le 10\delta_{5},$ (State UT is counted)
: $\sum_{s=1}^{5} \delta_{s} \le 2.$ (No more than 2 states are used)

This model has 8 + 5 = 13 0-1 integer variables and $8 \times 6 \times 3 = 144$ nonnegative continuous variables.