
Operations Research Seminar: The Simplex Method

Speaker: Adam Van Tuyl

Introduction

The simplex method is an algorithm for solving linear programs. It was invented by G.B.
Dantzig in the 1940’s. It has many features similar to Gaussian Elimination used in Linear
Algebra.

The goal of this lecture is to introduce the basics of the simplex method. If time permits,
we will also discuss some of the finer details of the algorithm. I have based my explanation
of the simplex method on a number of different texts. In particular, this presentation was
heavily influenced by the textbooks [1, 2, 3].

Basic Terminology

We begin by introducing the needed terminology. Linear programs (LP) of the following
form are said to be in standard form:

Maximize: c1x1 + · · ·+ cnxn = z
Subject to: a11x1 + · · ·+ a1nxn ≤ b1

a21x1 + · · ·+ a2nxn ≤ b2

...
am1x1 + · · · + amnxn ≤ bm

x1, . . . , xn ≥ 0.

Remark. 1. Each textbook has their own definition of standard from.
2. z = c1x1 + · · ·+ cnxn is the objective function.
3. The inequalities are called constraints; the first m inequalities are functional con-

straints; the last n inequalities, i.e., x1, . . . , xn ≥ 0, are non-negative constraints.

Definition 1. A tuple (r1, . . . , rn) ∈ R
n is a feasible solution if all the constraints are satisfied

by this tuple. The feasible region is the set of all feasible solutions.

Remark. Since x1, . . . , xn ≥ 0, all feasible solutions live in

R
n

≥0
= {(r1, . . . , rn) | ri ≥ 0}.

Definition 2. An optimal solution is a feasible solution that maximizes the value of the
objective function.

Example 3. Throughout this lecture, we will illustrate the main points with the following
linear program:

Maximize: 20x1 + 30x2 = z
Subject to: x1 + x2 ≤ 4

−x1 + x2 ≤ 1
2x1 + 4x2 ≤ 10

x1, x2 ≥ 0.
1
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Slack Variables

The first step in the simplex method is to introduce new variables, called slack variables.
The original variables are sometimes called decision variables. To each functional constraint,
we add a new variable, the slack variable, which turns the inequality into an equality. For
example:

x1 + 2x2 + 4x5 ≤ 5 ↔ x1 + 2x2 + 4x3 + s1 = 5.

We do this because there is a bijection (a one-to-one and onto) correspondence between the
feasible solutions of the two equations. More precisely, let

F1 = {(x1, x2, x3) ∈ R
3 | x1 + 2x2 + 4x3 ≤ 5 andx1, x2, x3 ≥ 0}

and

F2 = {(x1, x2, x3, s1) ∈ R
4 | x1 + 2x2 + 4x3 + s1 = 5 andx1, x2, x3, s1 ≥ 0}.

We then define a bijective map ϕ : F1 → F2 by

ϕ(x1, x2, x3) = (x1, x2, x3, 5 − x1 − 2x2 − 4x3) ∈ F2.

The inverse map ϕ−1 : F2 → F1 is given by

ϕ−1(x1, x2, x3, s1) = (x1, x2, x3).

We introduce m slack variables, one for each functional constraint. As a consequence, to
study the feasible region of the original linear program, one can study the feasible region of
a new linear program involving slack variables.

Example 4. Return to the linear program of Example 3. Our equations, with slack variables,
become

Maximize 20x1 + 30x2 = z
Subject to x1 + x2 + s1 = 4

−x1 + x2 + s2 = 1
2x1 + 4x2 + s3 = 10

x1, x2, s1, s2, s3 ≥ 0.

Tableau Format

Just as a matrix encodes the required information to solve a system of linear equations,
a tableau is commonly used to solve a linear program. We begin by rewriting our objective
function:

z − c1x1 − · · · − cnxn = 0.

Our linear program, with slack variables, can be expressed as

a11x1 + · · · + a1nxn + s1 = b1

...
am1x1 + · · · + amnxn + sm = bm

−c1x1 − · · · − cnxn + z = 0
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Omitting the coefficient of z, we get a tableau

a11 · · · a1n s1 0 · · · 0 b1

a21 · · · a2n 0 s2 · · · 0 b2

...
am1 · · · amn 0 0 · · · sm bm

−c1 · · · −cn 0 · · · 0 0

The last row is called the objective row.

Example 5. The tableau associated to Example 3 is

1 1 1 0 0 4
−1 1 0 1 0 1
2 4 0 0 1 10

−20 −30 0 0 0 0

Basic Solutions and Initial Basic Solutions

A basic solution has the following four properties:

1. Each variable is either a basic variable or a non-basic variable.
2. The number of basic variables equals the number of functional constraints. The

number of non-basic variables is the total number of variables minus the number of
basic variables.

3. Non-basic variables are set to zero.
4. Values of basic variables are obtained by solving remaining system of linear equations.

The initial basic solution is the case that we take s1, . . . , sm to be basic variables, x1, . . . , xn

are the non-basic variables, and si = bi for each i.

Example 6. Consider Example 3. We let s1, s2, s3 be our basic variables, and set x1 = x2 = 0.
We then get the system

s1 0 0 = 4
0 s2 0 = 1
0 0 s3 = 10

So, our initial basic solution is (0, 0, 4, 1, 10). This is a feasible solution. This is the case that
x1 = x2 = 0 and when our objective function equals 0.

Key Observation 7. I’ve been a bit vague about picking the basic variables. However, note
that the columns corresponding to s1, s2, s3 are all columns of an identity matrix, i.e., they
only contain one nonzero entry, and this entry is a one. As we will see, the basic variables will
correspond to the columns of the tableau that resemble the columns of an identity matrix.

Warning 1. Suppose that bi < 0 for some i. In this case, if we try to construct the initial
basic solution described above, we get 0 ≤ si = bi < 0, a contradiction. In this case, we need
to resort to some “mathematical trickery” to get an initial basic solution. For the purpose
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of this talk (and many elementary books) this problem is avoided by assuming that bi ≥ 0
for all i at the onset.

Pivot Rows and Columns

We now describe the main iterative step in the simplex method.

Definition 8. 1. Pick a variable with largest negative entry in the objective row (the
last row). If there is a tie, pick either variable. The corresponding column is the
pivot column and the corresponding variable is the entering variable

2. For each positive entry r in the pivot column, compute the ratio s/r where s is the
rightmost entry in the row containing r. The row that gives the smallest ratio is the
pivot row. The current basic variable that has a 1 in the pivot row is the leaving

variable.

Example 9. We continue with our example. Since −30 is the smallest value in the objective
row, x2 is our entering variable, and the second column (which is boxed below) is the pivot
column:

1 1 1 0 0 4
−1 1 0 1 0 1
2 4 0 0 1 10

−20 −30 0 0 0 0

For each positive entry r in this column, we form the ratio s/r where s is the entry at the
end of the row containing r. So, our ratios are 4/1, 1/1, and 10/4. The smallest of these
ratios is 1/1. So, the second row is our pivot row, which we box below:

1 1 1 0 0 4
−1 1 0 1 0 1
2 4 0 0 1 10

−20 −30 0 0 0 0

Note that s2 is a basic variable with a 1 in our pivot row. So s2 will be our leaving variable.

To find the next basic solution, we treat entire array as a matrix. Use Gaussian Elimination
to make every entry in the pivot column 0, except the entry in the pivot row, which becomes
a 1.

Example 10. Viewing the array as a matrix, and applying row operations, we get the new
array

2 0 1 −1 0 3
−1 1 0 1 0 1
6 0 0 −4 1 6

−50 0 0 30 0 30

Our new basic variables are x2, s1, and s3 (the variable s2 has left). The basic variables
correspond to columns of the identity matrix. The next basic solution is (0, 1, 3, 0, 6). If we
return to our original linear program, this corresponds to setting x2 = 1 and x1 = 0. In
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this case, our objective function equals 30, which corresponds to the value in the bottom
right-hand corner of the array.

Stopping Criterion

The main idea of the simplex method is to repeat the steps given in the previous section
until we reach a stopping criterion:

Stopping Criterion:

1. Each entry in the pivot column is negative. In this case, the feasible region is un-
bounded (the objective function can be made as large as you want).

2. All entries of the objective row are positive.

To see why the second condition is a stopping criterion, suppose that after doing a number
of iterations of the above procedure, the last row has the form

d1 d2 · · · dn e1 · · · em f.

This corresponds to the function

d1x1 + d2x2 + · · · + dnxn + e1s1 + · · · emsm + z = f

with di, ei ≥ 0. Since each di, ei ≥ 0, after rearranging we get

z = f − d1x1 − · · · − dnxn − e1s1 − · · · − emsm.

So, if try to make any of the xi’s or si’s bigger, we will only make z smaller. So, the optimal
value is f , and the basic solution for this tableau gives the feasible solution.

Example 11. We finish working out the remaining details of our example. At our last step,
our tableau looked like:

2 0 1 −1 0 3
−1 1 0 1 0 1
6 0 0 −4 1 6

−50 0 0 30 0 30

Since neither Stopping Criterion has been reached, we continue. The first column must be
our next pivot column since this is the only column where the objective row has a negative
value (the −50). For each positive entry r in this column, we form the ratio s/r where s is
the corresponding last entry in the row. We only have two ratios to consider: 3/2 and 6/6
(because we have a -1 in the second row, this row is ignored). Since 6/6 is minimal, our
pivot row is the third row.

Viewing the above array as a matrix, we use row operations to turn all entries in the pivot
column (except the one in the pivot row) to zero, and the remaining entry into a 1. To do
this, we first re-scale the third row by 1/6:

2 0 1 −1 0 3
−1 1 0 1 0 1
1 0 0 −4

6

1

6
1

−50 0 0 30 0 30
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Row operations then give us:

0 0 1 2

6
−2

6
1

0 1 0 2

6

1

6
2

1 0 0 −4

6

1

6
1

0 0 0 −20

6

50

6
80

Our new basic variables are x1, x2 and s1. The corresponding basic solution is (1, 2, 1, 0, 0).

We have yet to reach a Stopping Criterion. So, we continue with the simplex method.
The next pivot column is the column corresponding to s2 since we have a negative entry −20

6

in the objective row. The new pivot row is the first row. Applying row operations to the
array, viewed as a matrix, gives:

0 0 3 1 −1 3
0 1 −1 0 1

2
1

1 0 2 0 −3

6
3

0 0 0 10 30

6
90

We have now reached the second Stopping Criterion. The basic solution in this case is
(3, 1, 0, 3, 0). The optimal solution is therefore x1 = 3 and x2 = 1, and the maximal value of
our linear program is 90.

Final Remarks

This is simply a cursory introduction to the simplex method. Notice that we really haven’t
discussed the mathematics (the proofs!) for why this works. In fact, there is a glaring gap in
this presentation – I have not explained why the optimal solution, if it exists, must have the
form of a basic solution. Also, examples can be found where the simplex method gets stuck
in a cycle (although they are quite rare). The book of Chvátal [2] gets into the “nitty-gritty”
details. For example, it discusses how to get around the problems like those in the warning.
As well, it discuss the complexity of the simplex method, that is, the speed of this algorithm.
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Problems from Lecture 3

1. (Exercise 2.1.c of [2]) Use the simplex method to solve

Maximize: 2x1 + x2

Subject to: 2x1 + 3x2 ≤ 3
x1 + 5x2 ≤ 1
2x1 + x2 ≤ 4
4x1 + x2 ≤ 5

x1, x2 ≥ 0.
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[1] E. Chong, S. Żak, An Introduction to Optimization. John Wiley & Sons, Inc., New York, 1996.
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