
Operations Research Seminar: Integer Programming
Speaker: Kevin Jurcik

1 Introduction

1.1 Limitations of LP

We have seen how Linear Programming (LP) problems can be used to answer economics-
based questions such as optimal production rates and buying strategies. However, some-
times the answers produced using LP techniques are nonsensical when translated into
their economic counterparts. For instance, it does no good to us when the simplex
method tells us to build 2.4 new warehouses and 3.2 new factories.

The problem here is that the variables in our LP represent items that come in units
that are not divisible. For a solution to be of any use to us, we must impose an additional
constraint: all the variables in a feasible solution must take on integer values. Thus, we
have developed a new problem, the Integer Linear Programing problem (or ILP
problem). Indeed, adding integrality constraints to any optimization problem creates a
new type of problem, but we will focus on integrality constraints in Linear Programming.

1.2 Differences between LP and ILP

Consider an arbitrary ILP problem:

Maximize: cT x = z
Subject to: Ax ≤ b

x ≥ 0
xj is integer j = 1, 2, . . . , n

Notice that if we drop (or “relax”) the integrality constraint, we are left with an LP
problem. This is called the LP relaxation of the ILP. An important result to notice is
every feasible solution of an ILP is also a solution of its LP relaxation. That is,

FILP ⊆ FLP

One might think that since there are fewer solutions for an ILP (finitely many, if the
solution set is bounded) than for its relaxation, that it is easier to find a solution for the
ILP; this is not the case. In fact, it is in general much more difficult to solve an ILP than
to solve an LP of similar size. This is because LP-solving algorithms take advantage of
the fact that an optimal solution of an LP is a basic solution of the LP and a corner point
of the feasible region. The feasible region for an ILP is not continuous, so these methods
cannot be applied.

1.3 Binary ILP Problems

There is a subset of ILP problems that is worth separate consideration. These problems
are problems in which the variables correspond to Yes/No questions. That is, given a
particular solution of the problem, question j is answered with “yes” if xj = 1, and with
“no” if xj = 0. This is particularly helpful in many network models where problems
correspond to decisions such as whether to open a certain facility or not, or whether to

1



assign an employee to a certain task or not. These are handled similarly to ILP problems,
adding a further constraint that xj takes on the value 0 or 1.

Any ILP problem can be transformed into a Binary ILP problem if we can find a
bound on the value of each decision variable in the problem. For instance, suppose that
we know that variable xi is bounded above by 2n − 1. Then we can rewrite the variable
as xi =

∑n
k=1 yk2k−1 where each yk is a binary variable.

2 Brute Force Methods

When trying to develop methods to solve a problem, it is helpful to consider the brute
force approach to get an idea of what our limitations are.

2.1 Enumeration

As stated earlier, the number of feasible solutions for an ILP is finite if the feasible region
is bounded, so enumeration is a possible approach. In a Binary ILP problem with n
variables, there are at most 2n solutions to be considered. Many of these solutions may
not be feasible due to constraints, but the important thing to note here is that the number
of solutions is exponential, and therefore enumeration may not be a desirable solution for
problems with many variables.

2.2 Graphical Approach

As with LP problems, if our ILP has only two variables, a graphical approach can be
used to obtain the optimal solution to the problem.

2.3 Rounding

Another natural thought is to run the simplex method on the LP relaxation of an ILP
and then round the solution to an integer solution. First note that the nearest integer
solution may not be in the feasible region, as in Figure 1 ([1]). Another method worth
considering is rounding to the nearest feasible solution, but Figure 2 ([1])shows that this
may not find the optimal solution for the ILP.

3 The Cutting Plane Algorithm

One popular method for solving ILP problems is the cutting plane algorithm, and it stems
from two main observations ([2]):

• Observation 1: If the LP relaxation of an ILP has an optimal solution x∗ that is
integral, then x∗ is an optimal solution of the ILP.

• Observation 2: There may exist linear inequalities which are satisfied by every
feasible solution of the ILP but violated by some solutions of the LP relaxation.

2



Both of these observations come from the fact stated earlier, that FILP ⊆ FLP . To
find the optimal solution for our ILP, we can add constraints to the problem, leaving the
feasible region intact, until the optimal solution of the LP relaxation is integral. But how
do we find these constraints?

3.1 Finding the Cutting Planes

To find a cutting plane for our problem, we first solve the LP relaxation using the simplex
method as discussed in previous lectures. In our final tableau, there exists some row
corresponding to a basic variable in which the value in the final column of this row (call
it bi) is a non-integer value (if not, then the basic solution to the LP relaxation is integral
and must be an optimal solution to the ILP). There must also exist values in this row
that are non-integer (otherwise we have a sum of integral values being non-integer). We
define the cut as follows:

(ai1 − bai1c)x1 + · · ·+ (ain − bainc)xn ≥ bi − bbic

Putting this in terms of our original decision variables (many of these xis will be
slack variables), we will get a new constraint. If we set aside all questions about why we
are doing this and add this constraint to our original ILP, we see that the feasible region
of the ILP remains the same, while the feasible region of the LP relaxation of this new
problem is smaller than that of the previous problem. Continuing this process, we can
eventually manipulate the LP relaxation to one where the optimal solution is integral.

3.2 The Cutting Plane Algorithm ([2])

(Assume the problem is not unbounded)

1. Solve the LP problem

2. If it is infeasible, stop; the ILP problem is infeasible

3. Let x∗ be a basic optimal solution of the LP problem

3



4. If x∗ is integral, stop; it is optimal for the ILP problem

5. Choose a basic variable, xi such that bi is not integer

6. Form the cut from the xh row

7. Add the cut to the ILP problem and go to step 1

3.3 Example

Consider the following ILP:

Maximize: 2x1 + 3x2 = z
Subject to: −x1 + 2x2 ≤ 6

x1 + 3x2 ≤ 15
2x1 + x2 ≤ 12
x1, x2 ≥ 0
x1, x2 are integers.

Solving the LP relaxation by the simplex method yields the optimal solution (21
5
, 18

5
),

with objective value 96
5

. The final tableau of this simplex method is

0 0 1 −3
5

4
5

33
5

0 1 0 2
5
−1

5
18
5

1 0 0 −1
5

3
5

21
5

0 0 0 4
5

3
5

96
5

From this tableau, we find a row corresponding to a basic variable whose value is
non-integer. Choose x2. The cut from this row is 2

5
s2 + 4

5
s3 ≥ 3

5
. Remembering that

s2 = 15 − x1 − 3x2 and s3 = 12 − 2x1 − x2 and simplifying, we get the inequality
2x1 + 2x2 ≤ 15. We add this to our original problem to get a new ILP:

Maximize: 2x1 + 3x2 = z
Subject to: −x1 + 2x2 ≤ 6

x1 + 3x2 ≤ 15
2x1 + x2 ≤ 12
2x1 + 2x2 ≤ 15
x1, x2 ≥ 0
x1, x2 are integers.

It is helpful to see how adding this constraint changes the feasible region graphically.
Solving the LP relaxation of this new problem with the simplex method gives us the
optimal solution (15

4
, 15

4
), with objective value 75

4
. The final tableau is as follows:

0 0 1 −1 0 1 6
0 1 0 1

2
0 −1

4
15
4

0 0 0 1
2

1 −5
4

3
4

1 0 0 −1
2

0 3
4

15
4

0 0 0 1
2

0 3
4

75
4

Forming another cut from the x1-row (though the cut is the same from the x2- and
s3-rows), we get 1

2
s2 + 3

4
s4 ≥ 3

4
, which can be arranged to get 2x1 +3x2 ≤ 18. Adding this

4



to our problem and solving the new LP relaxation gives the optimal solution (3,4) with
optimal value 18. Since this is an integral solution, it is an optimal solution for the ILP.
Since the feasible region and objective function of this latest ILP is not changed from our
original ILP, it is the optimal solution we seek for the original problem.

4 The Branch and Bound Algorithm

Another approach to solving ILP problems is the branch-and-bound method. It is a
method for solving Binary ILP problems, but as we saw above, any ILP can be trans-
formed into a Binary ILP if we can find a bound for each variable. The concept of this
method is that of divide and conquer, where we break down the large difficult problem
into smaller subproblems. In particular, we break the feasible region of the ILP into
smaller and smaller subsets and bound how good the optimal solution can be for each
subset.

4.1 Branching

In the branching step, we choose one of the variables whose value we will fix to create
two new subproblems. For instance, in a problem with n variables, we may choose to fix
the value of x1 to create subproblems where we replace every instance of x1 with 0 and 1
respectively, resulting in problems with one less variable. Solving the LP relaxations to
one of these problems will result in a solution of the form (x2, . . . , xn), which corresponds
to a solution of the original problem of the form (0, x2, . . . , xn) or (1, x2, . . . , xn). In this
way, we are closer to finding an integer solution to the original problem.

4.2 Bounding

Solving the LP relaxation of a subproblem will yield an optimal solution with an asso-
ciated value z∗. By our earlier observation, the value of every integer solution in the
feasible region of this subproblem must be less than or equal to z∗. In this way, we have
bounded the subproblem. If the associated solution is integer, then we know that every
integer solution has value less than or equal to z∗. Otherwise, we can break the problem
down further until doing so will not make any progress.

4.3 Fathoming

There are three situations that will arise that lets us know when we no longer need to
break down problems. We say that a subproblem is fathomed if

1. Its bound is less than or equal to that of any feasible integer solution we have
acquired

2. Its LP relaxation has no feasible solutions

3. Its LP relaxation’s optimal solution is integral

5



4.4 The Branch and Bound Algorithm ([1])

Initialization: Set z∗ = −∞. Apply the bounding step, fathoming step, and optimality
test to the whole problem. If not fathomed, classify it as a subproblem.

For each iteration:

1. Branching: Select an unfathomed subproblem. Branch from this problem by fixing
a remaining variable as either 0 or 1.

2. Bounding: For each new subproblem, obtain its bound by solving the LP relax-
ation and rounding down the value of z for its optimal solution.

3. Fathoming: For each new subproblem, apply the three fathoming tests above.
If its LP relaxation’s solution is integer, compare its value z to z∗; If its value is
greater, than this solution is the new incumbent, and z∗ = z. Reapply fathoming
test 1 to all unfathomed subproblems.

4. Optimality Test: Stop when there are no remaining subproblems; the current
incumbent is optimal to the original problem.

4.5 Example

Let’s solve the same problem as earlier using the Branch and Bound algorithm. First,
however, we must translate from an ILP problem to a binary ILP problem. To do this,
we must first bound our variables x1 and x2. From the third constraint, we can see that
x1 is bounded above by 6, and from the second constraint, we can see that x2 is bounded
above by 5. So, let’s define binary variables y1, ..., y6 where x1 = y1 + 2y2 + 4y3, and
x2 = y4 + 2y5 + 4y6. Now we can restate our problem as

(BILP) Maximize: 2y1 + 4y2 + 8y3 + 3y4 + 6y5 + 12y6 = z
Subject to: −y1 − 2y2 − 4y3 + 2y4 + 2y5 + 2y6 ≤ 6

y1 + 2y2 + 4y3 + 3y4 + 6y5 + 12y6 ≤ 15
2y1 + 4y2 + 8y3 + y4 + 2y5 + 4y6 ≤ 12
y1, y2, y3, y4, y5, y6 ≤ 1
y1, y2, y3, y4, y5, y6 ≥ 0
y1, y2, y3, y4, y5, y6 are integers.

Solving the LP relaxation gives the optimal solution (0, 1
10

, 1, 0, 0, 9
10

) with value 96
5

.

Thus, the bound on this problem is
⌊

96
5

⌋
= 19. 19 6≤ −∞, the LP relaxation is feasible,

and the optimal solution is not integral, so this problem is not fathomed.
Unfortunately, due to the nature of this example, no subproblems are fathomed until

we have fixed at least the first three variables, which leads to the construction of up to 14
subproblems, each with 6 constraints. To save space and time, most of these subproblems
are attached at the end of the lecture notes along with the optimal solutions of their LP
relaxations, and we refer to them to note interesting steps of the algorithm rather than
doing the problem from start to finish.

The first note of interest is that all problems where we have fixed a variable has a
constant in the objective function. While this disrupts the standard form in which we

6



have written LP problems in the past, it is necessary since we are comparing the values
of solutions from related problems.

Notice that on the first page, none of the six problems we encounter are fathomed:
our value z∗ is still −∞, none of these problems are infeasible, and none of the solutions
to the LP relaxations are integral (aren’t you glad you didn’t have to sit through that?).

When we solve the LP relaxation to (BILP(0,1,0)), something finally happens: we get
an integer solution. Its value is noticeably larger than −∞, so the solution (0,1,0,0,0,1)
becomes our incumbent solution and we set z∗ = 16. We can now fathom the problem
(BILP(0,0,0)), since no integer solution will have value greater than 9.

Solving the LP relaxation for (BILP(0,1,1)) gives another integer solution, but its
value is not greater than 16, so it does not become the incumbent solution. The problem
is fathomed since it gave an integral solution.

The problems (BILP(1,0,0)) and (BILP(1,0,1)) will both be fathomed since their
bounds are less than our z∗.

(BILP(1,1,0)) gives an integer solution with a better value than 16, so this solution
becomes our new incumbent, and we set z∗ = 18.

Notice that in (BILP(1,1,1)), the third constraint renders this problem infeasible,
and thus this problem is fathomed.

At this point, (BILP(0,0,1)) remains unfathomed, and we break it down further. The
algorithm will continue until there remain no unfathomed subproblems, at which point
we will be left with the conclusion that (1,1,0,0,0,1) is the optimal solution to our original
BILP. This solution corresponds to the solution (3,4) in our original ILP problem.

5 Closing Remarks

There are many other types of problems that require the use of binary variables. For in-
stance, we may be working with a problem where we would like one of two (or in general,
K of N) constraints to be satisfied. This can be solved by defining new binary variables
in our problem. This example also leads to another question: what do we do if only some
of our variables have integrality constraints? Some work needs to be done before either
of the two methods discussed today may be used to solve such a problem.

I’m sure you’ve also noticed that I’ve skipped over a lot of the mathematics behind
what we are doing, particularly in how we have defined cuts and our lack of a proof that
these cuts will not only be satisfied by all feasible integer solutions, but that there exist
feasible non-integer solutions that do not satisfy these cuts, shrinking the feasible region
for the LP relaxation, guaranteeing termination of our algorithm.

7



6 References

[1] F. Hillier, G. Lieberman, Introduction to Operations Research, McGraw Hill, 2001
[2] Course note for C&O 350, Winter 2006, Department of Combinatorics and Optimiza-
tion, University of Waterloo, Waterloo, Ontario, 2005

8


