
Operations Research Seminar: Gröbner Bases and Integer Programming

Speaker: Adam Van Tuyl

Introduction

In this talk I will discuss how to use some of the tools of commutative algebra and algebraic
geometry to solve some integer programs. The key piece of machinery that we will need is a
Gröbner Basis. Gröbner bases were developed by Buchberger in the 1960’s (although there are
some examples of their use before that time). The advent of powerful computing has enabled us to
implement Buchberger’s algorithms to construct Gröbner bases.

There are a number of excellent textbooks that introduce Gröbner Bases. The one which I am
must familiar with is Cox, Little, and O’Shea’s textbook Ideals, Varieties, and Algorithms [3]. The
material of this talk is based upon a sequel of this book, entitled Using Algebraic Geometry [4].
This talk is also heavily indebted to David Cox’s tutorial on Gröbner Bases given at ISAAC 2007
in Waterloo. You can download copies of this tutorial from David Cox’s website [2].

Basic Terminology

Let k denote a field, usually R or C. We then let R = k[x1, . . . , xn] denote the polynomial ring

in the indeterminates x1, . . . , xn over the field k. A monomial is a product of the variables, i.e.,

xα := xa1

1
xa2

2
· · · xan

n

where α := (a1, . . . , an) ∈ N
n. The degree of a monomial xα is a1 + · · · + an. A polynomial of R,

i.e., an element of R, is then a linear combination of monomials, i.e.,

f = c1x
α1 + c2x

α2 + · · · + csx
αs .

In the special case that R = k[x], then all the polynomials of R have the form

f = cdx
d + cd−1x

d−1 + · · · + c1x + c0.

We let d = deg f be the degree of f . So, in R = k[x], each polynomial will have a largest monomial
of degree d. We call cxd the leading term of f , and xd the leading monomial.

We quickly run into difficulty when we try to extend these two terms to a polynomial ring in
many variables. For example, in R = k[x1, x2], consider

f = 4x2
1x2 + 2x1x

2
2 + 3x2

2.

The degrees of the monomials that appear are 3, 3, and 2, respectively. Your intuition probably
tells you that 3x2

2 should be the smallest term. But what term should be the largest? To decide
this, we need to introduce monomial orders.

Definition 1. A monomial order is a total order (i.e., there are no incomparable elements) > on
the set of monomials of R = k[x1, . . . , xn] such that

1. xα > xβ implies xαxγ > xβxγ for all xγ , and
2. xα > 1 for all xα 6= 1.

One can then prove that a monomial ordering is a well-ordering (i.e., every set has a minimal
element) on the set of monomials.
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Definition 2. The lexicographical order is the classical example of a monomial ordering. In R =
k[x1, . . . , xn] we set x1 > x2 > · · · > xn. Then xα >lex xβ if and only if

a1 > b1, or a1 = b1 and a2 > b2, or . . .

or equivalently, the first nonzero entry of α − β ∈ N
n is positive.

We can now generalize the notions of leading term and leading monomial.

Definition 3. Fix a monomial ordering > and let f be a polynomial of k[x1, . . . , xn]. Suppose that

f = cxα + monomial terms of the form xβ with β 6= α

where c 6= 0 and for every term of the form xβ, xα > xβ with respect to the order >. Then

1. LT(f) = cxα is the leading term.

2. LM(f) = xα is the leading monomial.

In our example,

f = 4x2
1x2 + 2x1x

2
2 + 3x2

2

if we use the lexicographical ordering, 4x2
1x2 is the leading term, and x2

1x2 is the leading monomial.

The Division Algorithm

A monomial ordering is needed to generalize the division algorithm of R = k[x] to a polynomial
ring of many variables. Precisely,

Theorem 4 (Division Algorithm). Fix a monomial ordering > in R = k[x1, . . . , xn] and fix

f1, . . . , fs ∈ R. Then, for every f ∈ R, there exists q1, . . . , qs and r in R such that

f = f1q1 + · · · + fsqs + r

where no term of r is divisible by LT (f1), . . . , LT (fs). The polynomial r is called the remainder of

f on division by f1, . . . , fs. The remainder is sometimes written as fF where F = {f1, . . . , fs}.

Recall that a subset ∅ 6= I ⊆ R is called an ideal if

• for every x, y ∈ I, then x − y ∈ I, and
• for every x ∈ I and every y ∈ R, then xy ∈ I.

We write (f1, . . . , fs) for the ideal generated by a subset F = {f1, . . . , fs} ⊆ R. In particular

(f1, . . . , fs) = {a1f1 + · · · + asfs | ai ∈ R}.

We can think of (f1, . . . , fs) as the smallest ideal that contains F . A very important theorem in
commutative algebra (the Hilbert Basis Theorem) states that every ideal of R is finitely generated,
that is, given any ideal I ⊆ R, there exists a finite set {f1, . . . , fs} ⊆ I such that (f1, . . . , fs) = I.

We are then led to the problem:

Question 5 (The Ideal Membership Problem). Let I be an ideal of R, and suppose that g ∈ R. Is

g ∈ I?
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One way to answer this question is to use the Division Algorithm. In particular, suppose that
F = {f1, . . . , fs} are generators for I. If gF = 0, that is, if

g = f1q1 + · · · + fsqs for some qi ∈ R

then it is clear that g ∈ (f1, . . . , fs) = I. However, there is a problem. Examples can constructed
where F = {f1, . . . , fs} generate the ideal I, we know that g ∈ I, but the division algorithm applied
to F and g gives gF 6= 0.

This is where Gröbner bases come to our rescue. A Gröbner basis is a “good” set of generators
G = {g1, . . . , gs} of the ideal I. In particular, we get that g ∈ I if and only if gG = 0. We expand
upon this idea in the next section.

Gröbner Bases

We begin by defining the ideal of leading terms.

Definition 6. Fix a monomial order > on R = k[x1, . . . , xn], and let I be an ideal. Then the ideal

of leading terms is the monomial ideal (i.e., generated by monomials)

LT(I) := (LT(f) | f ∈ I).

If {f1, . . . , fs} is a set of generators of I, then

(LT(f1), . . . ,LT(fs)) ⊆ LT(I).

Of course, we may not have an equality. A Gröbner basis is a set of generators that give us equality:

Definition 7. Fix a monomial ideal >. Given an ideal I of R = k[x1, . . . , xn], a finite set G =
{g1, . . . , gs} (where gi 6= 0) is a Gröbner basis if

(LT(g1), . . . ,LT(gs)) = LT(I).

We then have the following important results about Gröbner bases:

Theorem 8. Fix a monomial ideal >. Let I be an ideal of R = k[x1, . . . , xn].

1. There exists a Gröbner basis of I.

2. If G = {g1, . . . , gs} is a Gröbner basis of I, then I = (g1, . . . , gs).
3. If G = {g1, . . . , gs} is Gröbner basis of I, then g ∈ I if and only if gG = 0.

Gröbner bases and integer programming problems

Let us consider the integer program:

Maximize: 11x1 + 15x2

Subject to: 4x1 + 5x2 ≤ 37
2x1 + 3x2 ≤ 20

x1, x2 ≥ 0.

Just as we did in the linear programming situation, we introduce slack variables (in this case, x3

and x4). We then get the equations:

Maximize: 11x1 + 15x2 + 0x3 + 0x4

Subject to: 4x1 + 5x2 + x3 = 37
2x1 + 3x2 + x4 = 20

x1, x2, x3, x4 ≥ 0.
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We define a map ϕ : k[w1, w2, w3, w4] → k[z1, z2] by sending

w1 7→ z4
1z2

2

w2 7→ z5
1z3

2

w3 7→ z1

w4 7→ z2.

We can extend this to a ring homomorphism, i.e., the map ϕ has the properties ϕ(a+b) = ϕ(a)+ϕ(b)
and ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ k[w1, w2, w3, w4].

The map ϕ is onto; indeed, consider any polynomial f(z1, z2) ∈ k[z1, z2]. Note that f(w3, w4)
will map to the polynomial. For example, consider f(z1, z2) = 3z3

1 + 4z1z
4
2 . Then f(w3, w4) =

3w3
3 + 4w3w

4
4 ∈ k[w1, w2, w3, w4], and

ϕ(f(w3, w4)) = ϕ(3w3
3) + ϕ(4w3w

4
4) = 3ϕ(w3)

3 + 4ϕ(w3)ϕ(w4)
4 = 3z3

1 + 4z1z
4
2 .

The feasible region of our integer program can then be described in terms of the map ϕ. In
particular, (A,B,C,D) is in the feasible region if and only if ϕ(wA

1 wB
2 wC

3 wD
4 ) = z37

1 z20
2 . To see why

this is true, note that

ϕ(wA
1 wB

2 wC
3 wD

4 ) = ϕ(w1)
Aϕ(w2)

Bϕ(w3)
Cϕ(w4)

D

= (z4A
1 z2A

2 )(z5B
1 z3B

2 )(zC
1 )(zD

2 )

= z4A+5B+C
1

z2A+3B+D
2

.

So ϕ(wA
1 wB

2 wC
3 wD

4 ) = z37
1 z20

2 if and only if 4A + 5B + C = 37 and 2A + 3B + D = 20. So, what we
want to do is describe all monomials wA

1 wB
2 wC

3 wD
4 that map to z37

1 z20
2 , and in particular, we want

to identify the monomial that also maximizes our objective function 11x1 + 15x2.

We will now describe an elegant solution to this problem based upon the ideas of Conti and
Traverso [1] who originally devised this method. Consider the larger polynomial ring k[z1, z2, w1, w2, w3, w4],
and put an monomial ordering on this ring such that any monomial containing any of the zi’s is
greater than any containing the of the wjs (the lex ordering with zi > wj for all i and j is such an
order). Let G be a Gröbner basis for the ideal

(z4
1z2 − w1, z

5
1z3

2 − w2, z1 − w3, z2 − w4) ⊆ k[z1, z2, w1, w2, w3, w4].

Claim. Consider f = z37
1 z20

2 and let g = fG. Then g is a monomial of k[w1, w2, w3, w4], i.e.,
g = wA

1 wB
2 wC

3 wD
4 , and furthermore, (A,B,C,D) is a feasible solution.

Proof. The fact that g is a monomial belonging to k[w1, w2, w3, w4] is a consequence of the more
general theory of Gröbner bases. See, in particular, Theorem 1.11 of Chapter 8 in [4]. We will show
that the second part of the claim. Let G = {g1, . . . , gs} be the Gröbner basis. Then we are given
that

z37
1 z20

2 = g1f1 + · · · + gsfs + g

where fi ∈ k[z1, z2, w1, w2, w3, w4]. Note that g = g(w1, w2, w3, w4) and for each i,

gifi = gi(z1, z2, w1, w2, w3, w4)fi(z1, z2, w1, w2, w3, w4).
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Now substitute wi with ϕ(wi). That is, we have

z37
1 z20

2 = g1(z1, z2, z
4
1z2, z

5
1z3

2 , z1, z2)f1(z1, z2, z
4
1z2, z

5
1z3

2 , z1, z2) + · · · +

gs(z1, z2, z
4
1z2, z

5
1z3

2 , z1, z2)fs(z1, z2, z
4
1z2, z

5
1z3

2 , z1, z2) + g(z4
1z2, z

5
1z3

2 , z1, z2).

But each gi is in (z4
1z2 − w1, z

5
1z3

2 − w2, z1 − w3, z2 − w4), that is,

gi = a1(z
4
1z2 − w1) + a2(z

5
1z3

2 − w2) + a3(z1 − w2) + a4(z2−4),

for some polynomials ai. Thus, for each i, gi(z1, z2, z
4
1z2, z

5
1z3

2 , z1, z2) = 0, and so

z37
1 z20

2 = g(z4
1z2, z

5
1z3

2 , z1, z2) = ϕ(g) = ϕ(wA
1 wB

2 wC
3 wD

4 ).

�

Gröbner bases therefore allow us to get our hands on one feasible solution. To get the optimal
solution, the key idea is to use the objective function in constructing the monomial ordering.
Before doing this, we are going to change our objective function slightly. Notice that to maximize
ℓ(x1, x2) = 11x1 + 15x2, it is enough to minimize the function ℓ′(x1, x2) = −11x1 − 15x2. So, we
can turn our maximizing problem into a minimizing problem.

Definition 9. Let ℓ(z1, . . . , zn) denote the objective function of the integer program. A monomial
ordering > of k[z1, . . . , zm, w1, . . . , wn] is an adapted monomial order if

1. Any monomial containing one of the zi is greater than any monomial in the wj ’s alone.

2. Suppose that (A1, . . . , An) and (A′

1, . . . , A
′

n) are two tuples such that ϕ(wA1

1
· · ·wAn

n ) =

ϕ(w
A′

1

1
· · ·w

A′

n
n ) and ℓ(A1, . . . , An) > ℓ(A′

1, . . . , A
′

n). Then wA1

1
· · ·wAn

n > w
A′

1

1
· · ·w

A′

n
n .

We now have all the pieces we need to get a minimal solution as summarized in the following
theorem.

Theorem 10. Consider an integer program of the form

Minimize: c1x1 + · · · + cnxn

Subject to: a11x1 + · · · + a1nxn = b1

a21x1 + · · · + a2nxn = b2

...

am1x1 + · · · + amnxn = bm

x1, . . . , xn ≥ 0.

and assume all aij , bi ≥ 0. Let fj =
∏m

i=1
z

aij

i . Let G be a Gröbner Basis of the ideal

(f1 − w1, . . . , fn − wn) ⊆ k[z1, . . . , zm, w1, . . . , wn]

with respect to an adopted monomial ordering. If f = wb1
1
· · ·wbm

m , then the exponents of fG give a

solution to ℓ(x1, . . . , xn) = c1x1 + · · · + cnxn that minimizes ℓ.

To finish our example, a suitable adapted monomial order on k[z1, z2, w1, w2, w3, w4] is the lex
ordering with the variables ordered by

z1 > z2 > w4 > w3 > w2 > w1.

We then use our favorite computer algebra system that can compute Gröbner bases to compute
the the basis of the ideal

(z4
1z2 − w1, z

5
1z3

2 − w2, z1 − w3, z2 − w4) ⊆ k[z1, z2, w1, w2, w3, w4].
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With this basis G = {g1, . . . , gs}, we then compute (z37
1 z20

2 )G and find (z37
1 z20

2 )G = w4
2w

4
1w3, which

gives the optimal solution of x1 = 4 and x2 = 4. (Please note that I skipped many, many details!)

Concluding Remarks

One or two lectures cannot begin to capture all the subtleties of this method. In fact, it is quite
possible to spend an entire semester discussing Gröbner Bases. I am well aware of the limitations
of this lecture; for example, I have not talked about such things as (1) how do I find a Gröbner
Basis? and (2) how do I cook up an adapted order? My hope is that from this lecture you will
take away the fact that commutative algebra and algebraic geometry provide new tools of looking
at this problem. Note that Conti and Traverso’s original paper [1] is not even 20 years old which
makes this a very recent approach to integer programming problems. For more information on this
topic, the references below provide an initial starting point to the literature.
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Problems from Lecture 4

1. Generalize the proof used in the claim to the general case. That is, consider an integer
program of the form

Minimize: c1x1 + · · · + cnxn

Subject to: a11x1 + · · · + a1nxn = b1

a21x1 + · · · + a2nxn = b2

...
am1x1 + · · · + amnxn = bm

x1, . . . , xn ≥ 0.

and assume all aij , bi ≥ 0. Let fj =
∏m

i=1
z

aij

i . Let G be a Gröbner Basis of the ideal

(f1 − w1, . . . , fn − wn) ⊆ k[z1, . . . , zm, w1, . . . , wn]

with respect to a monomial ordering with the elimination property: any monomial contain
one of the zi is greater than any monomial containing only the wj . Let ϕ : k[w1, . . . , wn] →

k[z1, . . . , zm] be the map given by ϕ(wi) = fi. Let f = zb1
1
· · · zbm

m , and suppose that
fG ∈ k[w1, . . . , wn]. Show that ϕ(fG) = f .

For more on Gröbner Bases check out the books:
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