
Operations Research Seminar: Intro to Graph Theory
Speaker: Kevin Jurcik

1 Basic Terminology

Definition 1.1. A graph is a set V of objects, called vertices, together with a set E of
unordered pairs of distinct vertices in V , called edges. The edge corresponding to the
unordered pair {u, v} is denoted uv.

It is often useful to consider a visual interpretation of a graph. We represent the vertices
by points on the plane, and edges as lines connecting the points representing the two
vertices in the unordered pair.

Example 1.2. Let V = {a, b, c, d, e, f, g}, and E = {ab, ac, ae, af, bg, bf, cd, cg, de, df, dg,
eg, fg}. Then G = (V, E) is a graph. A graphical representation of G is given by

Definition 1.3. Let G = (V, E) be a graph.
1. We say that vertices u ∈ V and v ∈ V are adjacent if uv ∈ E.
2. Given an edge e = uv ∈ E, we say that e is incident to u and v.
3. Given a vertex v ∈ V , we say the neighbours of v are {u ∈ V : u is adjacent to v}.
4. Given a vertex v ∈ V , we say the degree of v is |{u ∈ V : u is adjacent to v}|.

Example 1.4. In our graph G above, a is adjacent to b, c, e and f , so b, c, e and f are
the neighbours of a. a has degree 4. The vertex c has degree 3, and has three incident
edges: ac, cd, and cg.

2 Walks and Paths

Definition 2.1. A walk in a graph G = (V, E) is an alternating sequence of vertices
and edges v0, e1, v1, e2, ..., vn−1, en, vn where each ei = vi−1vi is an edge in the graph for
all i = 1, 2, ..., n. The length of a walk is the number of edges in the walk (in this case,
n). We often denote a walk by its edges only (which uniquely determine the vertices in
the walk), as v0v1, v1v2, ..., vn−1vn.
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Definition 2.2. A path in a graph is a walk in which all vertices are distinct.

Definition 2.3. A cycle in a graph is a walk v0v1, v1v2, ..., vn−1v0 in which every vi is
distinct.

Theorem 2.4. Let G = (V, E) be a graph, and u,v be vertices in G. If there is a walk
between u and v, then there is a path between u and v.

Example 2.5. In our graph G above, a walk of length 5 between b and f is given by
bg, gd, dc, cg, gf . A path of length 3 between a and f is given by af, fd, de. A cycle of
length 4 in the graph G is given by ge, ed, dc, cg.

3 Subgraphs and Connectivity

Definition 3.1. Let G = (V, E) be a graph. A subgraph of G is a set of vertices V ′ ⊆ V
together with a set of edges E ′ ⊆ E where each edge has vertices only from V ′.

Definition 3.2. We say that a graph G is connected if, for any vertices u and v in
G, there is a path between u and v. A connected component of G is a maximal (by
inclusion) connected subgraph of G.

Definition 3.3. Let G = (V, E) be a connected graph. We say that an edge e is a bridge
if G− e = (V, E\{e}) is not connected.

Definition 3.4. We say a graph G is a tree if it is connected and does not contain any
cycles.

Definition 3.5. Let G = (V, E) be a connected graph. We say a subgraph G′ = (V ′, E ′)
of G is a spanning tree if V ′ = V and G′ is a tree.

Theorem 3.6. Every connected graph has a spanning tree.

Example 3.7. In our graph G above, G′ = (V ′, E ′) where V ′ = {a, b, d, f, g} and
E ′ = {ab, bg, gf, gd} is a connected subgraph of G. It is in fact a tree. The edge gb is a
bridge of G′. The graph G′′ = (V, E ′′) where E ′′ = {ab, bg, gf, gd, de, gc} is a spanning
tree of G.

4 Bipartitions and Weightings

Definition 4.1. Let G = (V, E) be a graph. A cut is a partition (A, B) of V into two
sets, where A∪B = V and A∩B = ∅. The size of the cut is the number of edges uv ∈ E
where u ∈ S, v ∈ T .

Definition 4.2. A graph G = (V, E) is called bipartite if V can be partitioned into
(A, B) where A ∪B = V and A ∩B = ∅, andevery edge uv has u ∈ A, v ∈ B.

Definition 4.3. A weighted graph is a graph G = (V, E) together with a function
w : E → R that maps edges to values called edge weights (or edge costs).

We will see in later lectures how the weight function is vital in formulating optimization
problems.
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5 Sample Theorems

Theorem 5.1. In a tree T , for any vertices u and v, there is a unique path between u
and v.

Proof. If u = v, then the only path from u to v is the trivial path containing no edges,
and we are done. So, we assume u 6= v.

Let u = x0 = y0. Suppose there are two distinct paths p1 = x0x1, x1x2, ..., xkv and
p2 = y0y1, y1y2, ..., ylv. Let n be the largest value such that xi = yi for all i = 0, 1, 2, ..., n
(so then xn+1 6= yn+1). Such n exists since p1 6= p2.

Let m1 be the smallest value larger than n for which there is some m2 such that xm1 = ym2

(such a vertex exists since both paths arrive at v).

Then xnxn+1, ..., xm1−1xm1 and ynyn+1, ..., ym2−1ym2 are two paths from xn to xm1 , with
no vertices in common. Thus, C = xnxn+1, ..., xxm−1xm1 , ym2ym2−1, ym2−1ym2−2, ..., yn+1yn

is a cycle in T . This is a contradiction to the assumption that T is a tree and does not
contain any cycles. Thus, there is a unique path from u to v in T .

Theorem 5.2. A graph G = (V, E) is bipartite iff it has no cycles of odd length.

Proof. (⇒) Let (A, B) be a bipartition of V . Suppose C = x1x2, x2x3, ..., xkx1 is a cycle
of odd length (that is, k is odd). Assume WLOG that x1 ∈ A. Then since x1x2 ∈ E,
x2 ∈ B. Since x2x3 ∈ E, x3 ∈ A. Continuing this reasoning, then xi ∈ A if i is odd, and
xi ∈ B is i is even. Since C is a cycle of odd length, k is odd. Thus, xk ∈ A. But then
the edge xkx1 has both endpoints in A, a contradiction. Thus, a bipartite graph cannot
contain a cycle of odd length.

(⇐) Assume G is connected, otherwise we can apply the following method to each of its
connected components to get partitions (A1, B1), ..., (An, Bn), and thus (∪n

i=1Ai,∪n
i=1Bi)

is a partition of G.

Choose any vertex r, and label it A. While there are still unlabelled vertices, find an
unlabelled vertex v with a labelled neighbour. If the neighbour is labelled A, then label
v with B, and if the neighbour is labelled B, then label v with A.

Suppose v has a neighbour u with the same label as v. Then the path from v to r
through alternating labels intersects the path from u to r through alternating labels at
some vertex w. Let p1 be the path from v to w through alternating labels, and p2 be the
path from w to u through alternating labels. Since u and v share the same label, then
the number of edges in p1 and p2 are both odd or both even. Thus, the concatenation
of p1 and p2, together with the edge uv must be an odd cycle, a contradiction. Thus, no
two adjacent vertices have the same label.

When there are no more unlabelled vertices, then (A, B) is bipartition of V , so G is
bipartite.
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