1 Basic Terminology

Definition 1.1. A graph is a set V of objects, called vertices, together with a set E of unordered pairs of distinct vertices in V, called edges. The edge corresponding to the unordered pair $\{u, v\}$ is denoted $u v$.

It is often useful to consider a visual interpretation of a graph. We represent the vertices by points on the plane, and edges as lines connecting the points representing the two vertices in the unordered pair.

Example 1.2. Let $V=\{a, b, c, d, e, f, g\}$, and $E=\{a b, a c, a e, a f, b g, b f, c d, c g, d e, d f, d g$, $e g, f g\}$. Then $G=(V, E)$ is a graph. A graphical representation of G is given by

Definition 1.3. Let $G=(V, E)$ be a graph.

1. We say that vertices $u \in V$ and $v \in V$ are adjacent if $u v \in E$.
2. Given an edge $e=u v \in E$, we say that e is incident to u and v.
3. Given a vertex $v \in V$, we say the neighbours of v are $\{u \in V: u$ is adjacent to $v\}$.
4. Given a vertex $v \in V$, we say the degree of v is $\mid\{u \in V: u$ is adjacent to $v\} \mid$.

Example 1.4. In our graph G above, a is adjacent to b, c, e and f, so b, c, e and f are the neighbours of a. a has degree 4. The vertex c has degree 3 , and has three incident edges: $a c, c d$, and $c g$.

2 Walks and Paths

Definition 2.1. A walk in a graph $G=(V, E)$ is an alternating sequence of vertices and edges $v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{n-1}, e_{n}, v_{n}$ where each $e_{i}=v_{i-1} v_{i}$ is an edge in the graph for all $i=1,2, \ldots, n$. The length of a walk is the number of edges in the walk (in this case, n). We often denote a walk by its edges only (which uniquely determine the vertices in the walk), as $v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n-1} v_{n}$.

Definition 2.2. A path in a graph is a walk in which all vertices are distinct.
Definition 2.3. A cycle in a graph is a walk $v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n-1} v_{0}$ in which every v_{i} is distinct.

Theorem 2.4. Let $G=(V, E)$ be a graph, and u, v be vertices in G. If there is a walk between u and v, then there is a path between u and v.

Example 2.5. In our graph G above, a walk of length 5 between b and f is given by $b g, g d, d c, c g, g f$. A path of length 3 between a and f is given by $a f, f d, d e$. A cycle of length 4 in the graph G is given by $g e, e d, d c, c g$.

3 Subgraphs and Connectivity

Definition 3.1. Let $G=(V, E)$ be a graph. A subgraph of G is a set of vertices $V^{\prime} \subseteq V$ together with a set of edges $E^{\prime} \subseteq E$ where each edge has vertices only from V^{\prime}.

Definition 3.2. We say that a graph G is connected if, for any vertices u and v in G, there is a path between u and v. A connected component of G is a maximal (by inclusion) connected subgraph of G.

Definition 3.3. Let $G=(V, E)$ be a connected graph. We say that an edge e is a bridge if $G-e=(V, E \backslash\{e\})$ is not connected.

Definition 3.4. We say a graph G is a tree if it is connected and does not contain any cycles.

Definition 3.5. Let $G=(V, E)$ be a connected graph. We say a subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G is a spanning tree if $V^{\prime}=V$ and G^{\prime} is a tree.

Theorem 3.6. Every connected graph has a spanning tree.
Example 3.7. In our graph G above, $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=\{a, b, d, f, g\}$ and $E^{\prime}=\{a b, b g, g f, g d\}$ is a connected subgraph of G. It is in fact a tree. The edge $g b$ is a bridge of G^{\prime}. The graph $G^{\prime \prime}=\left(V, E^{\prime \prime}\right)$ where $E^{\prime \prime}=\{a b, b g, g f, g d, d e, g c\}$ is a spanning tree of G.

4 Bipartitions and Weightings

Definition 4.1. Let $G=(V, E)$ be a graph. A cut is a partition (A, B) of V into two sets, where $A \cup B=V$ and $A \cap B=\emptyset$. The size of the cut is the number of edges $u v \in E$ where $u \in S, v \in T$.

Definition 4.2. A graph $G=(V, E)$ is called bipartite if V can be partitioned into (A, B) where $A \cup B=V$ and $A \cap B=\emptyset$, andevery edge $u v$ has $u \in A, v \in B$.

Definition 4.3. A weighted graph is a graph $G=(V, E)$ together with a function $w: E \rightarrow \mathbb{R}$ that maps edges to values called edge weights (or edge costs).

We will see in later lectures how the weight function is vital in formulating optimization problems.

5 Sample Theorems

Theorem 5.1. In a tree T, for any vertices u and v, there is a unique path between u and v.

Proof. If $u=v$, then the only path from u to v is the trivial path containing no edges, and we are done. So, we assume $u \neq v$.

Let $u=x_{0}=y_{0}$. Suppose there are two distinct paths $p_{1}=x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{k} v$ and $p_{2}=y_{0} y_{1}, y_{1} y_{2}, \ldots, y_{l} v$. Let n be the largest value such that $x_{i}=y_{i}$ for all $i=0,1,2, \ldots, n$ (so then $x_{n+1} \neq y_{n+1}$). Such n exists since $p_{1} \neq p_{2}$.

Let m_{1} be the smallest value larger than n for which there is some m_{2} such that $x_{m_{1}}=y_{m_{2}}$ (such a vertex exists since both paths arrive at v).

Then $x_{n} x_{n+1}, \ldots, x_{m_{1}-1} x_{m_{1}}$ and $y_{n} y_{n+1}, \ldots, y_{m_{2}-1} y_{m_{2}}$ are two paths from x_{n} to $x_{m_{1}}$, with no vertices in common. Thus, $C=x_{n} x_{n+1}, \ldots, x_{x_{m}-1} x_{m_{1}}, y_{m_{2}} y_{m_{2}-1}, y_{m_{2}-1} y_{m_{2}-2}, \ldots, y_{n+1} y_{n}$ is a cycle in T. This is a contradiction to the assumption that T is a tree and does not contain any cycles. Thus, there is a unique path from u to v in T.

Theorem 5.2. A graph $G=(V, E)$ is bipartite iff it has no cycles of odd length.
Proof. (\Rightarrow) Let (A, B) be a bipartition of V. Suppose $C=x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{k} x_{1}$ is a cycle of odd length (that is, k is odd). Assume WLOG that $x_{1} \in A$. Then since $x_{1} x_{2} \in E$, $x_{2} \in B$. Since $x_{2} x_{3} \in E, x_{3} \in A$. Continuing this reasoning, then $x_{i} \in A$ if i is odd, and $x_{i} \in B$ is i is even. Since C is a cycle of odd length, k is odd. Thus, $x_{k} \in A$. But then the edge $x_{k} x_{1}$ has both endpoints in A, a contradiction. Thus, a bipartite graph cannot contain a cycle of odd length.
(\Leftarrow) Assume G is connected, otherwise we can apply the following method to each of its connected components to get partitions $\left(A_{1}, B_{1}\right), \ldots,\left(A_{n}, B_{n}\right)$, and thus $\left(\cup_{i=1}^{n} A_{i}, \cup_{i=1}^{n} B_{i}\right)$ is a partition of G.

Choose any vertex r, and label it A. While there are still unlabelled vertices, find an unlabelled vertex v with a labelled neighbour. If the neighbour is labelled A, then label v with B, and if the neighbour is labelled B, then label v with A.

Suppose v has a neighbour u with the same label as v. Then the path from v to r through alternating labels intersects the path from u to r through alternating labels at some vertex w. Let p_{1} be the path from v to w through alternating labels, and p_{2} be the path from w to u through alternating labels. Since u and v share the same label, then the number of edges in p_{1} and p_{2} are both odd or both even. Thus, the concatenation of p_{1} and p_{2}, together with the edge $u v$ must be an odd cycle, a contradiction. Thus, no two adjacent vertices have the same label.

When there are no more unlabelled vertices, then (A, B) is bipartition of V, so G is bipartite.

