
Operations Research Seminar: Maximum Flow Problem
Speaker: Kevin Jurcik

1 Introduction

1.1 Motivation

Many problems in optimization deal with delivering units of some sort from a source
to a destination through some network, be it coffee from warehouses to retail locations
through transport routes, traffic from one city to another through highways, or signals
from a computer to a server through wires. Such problems are Network Flow problems,
which we will look at in this lecture.

1.2 Networks versus Graphs

It is important to make a distinction between networks and graphs. A network, like a
graph, is a set of objects and pairs of these objects, which we call nodes and arcs (rather
than vertices and edges), the distinction being that the pairs are ordered; that is, in a
graph, the edge uv is the same as the edge vu, but in a network, uv and vu represent
distinct arcs.

For this reason, we must also make a distinction between objects dealing with edges and
similar objects dealing with arcs (such as paths, cycles, trees, etc.). For the purposes
of the the maximum flow problem, we need only worry about paths. Here, we define a
path as a sequence v0v1, v1v2, ..., vk−1vk where each vi−1vi is an arc in our network for
i = 1, 2, ..., k, whereas an unordered path is a sequence v0v1, v1v2, ..., vk−1vk where, for
each i, one of vi−1vi and vivi−1 is an arc in our network.

2 Formulating the Problem

2.1 Flow Requirements

For a problem to be classified as a maximum flow problem, we need some data in addition
to a set of nodes and a set of arcs. We must have some node s with no incoming arcs
which we will call a source node, and a node t with no outgoing arcs which we will call
the sink node. The problem must relate to sending as many particles from s to t as
possible through the network. Furthermore, we will require that for any node u in our
network, there is a (directed) path from s to u.

Each arc a in our network must have some sort of upper bound on the number of units
of good that can be sent through it. We call this the capacity of arc a, and denote it
c(a).

2.2 Definition of Flow

Definition 2.1. Let G = (N, A) be a network where every uv ∈ A has capacity c(uv) > 0.
For every (u, v) ∈ N × N , where uv 6∈ A, let c(uv) = 0. Let s ∈ N be our source node,
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and let t ∈ N be our sink node.

A flow is a function f : N ×N → R satisfying

• f(uv) = −f(vu) for all (u, v) ∈ N ×N (skew symmetry)

•
∑

v∈N f(uv) = 0 for all u ∈ N, u 6= s, t (flow conservation)

Additionally, we say that a flow is feasible if it satisfies 0 ≤ f(uv) ≤ c(uv) for all arcs
uv ∈ A (we call this the feasibility constraint). We say that the value of the flow is∑

v∈N f(sv) =
∑

v∈N f(vt) (note that this equality holds as a result of flow conservation
and skew symmetry).

Note that if, for vertices u and v, we have uv ∈ A, vu /∈ A, we need only track the value
f(uv) since we can calculate the value f(vu) from f(uv) by the skew symmetry property.
If we have uv /∈ A, vu /∈ A, then we needn’t track either value if we are concerned only
with feasible flows, since for any feasible flow, we must have f(uv) = f(vu) = 0.

2.3 The Residual Network

Definition 2.2. Let the residual capacity of (u, v) ∈ N × N be given by cf (uv) =
c(uv) − f(uv). This defines the residual network Gf = (N, Af ), where uv ∈ Af if
cf (uv) > 0.

Example 2.3. Suppose we have the following network, where the capacities of the arcs
are written in black and are marked next to the arcs, together with a feasible flow of
value 5, where the flow on an arc (if nonzero) is marked in red next to the arc (recall
that by signifying f(SB) = 5, this implies f(BS) = −5):

Then the residual graph is as follows, where arcs appearing in the residual graph but not
the original graph are marked in blue:
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2.4 Augmenting Paths

Definition 2.4. An augmenting path is a (directed) path P = v0v1, ..., vk−1vk in
the residual graph where v0 = s, vk = t. We say that the residual capacity of P is
cP = mini{cf (vi−1vi)}.

Note that the residual capacity of a path P is the largest value of flow we can push along
the path P while maintaining a feasible flow.

Example 2.5. In the residual graph above, P = SA,AB,BD,DT is an augmenting path
with residual capacity min{5, 1, 4, 4} = 1.

3 Ford-Fulkerson Algorithm

Given a network G = (N, A) with capacities c, a source node s, and a sink node t, the
following algorithm with return a flow from s to t of maximum value.

1. Initiate f(uv) = 0 ∀uv ∈ A.

2. Construct the residual graph Gf .

3. If no augmenting path exists in Gf , stop; f is maximal.

4. Find an augmenting path P in Gf and let its residual capacity be cP .

5. For each arc uv ∈ P ,

(a) f(uv)← f(uv) + cP

(b) f(vu)← f(vu)− cP

6. Go to (2).
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4 Max-Flow Min-Cut Theorem

We must now justify why the Ford-Fulkerson algorithm returns a maximal flow.

Definition 4.1. We say that a cut of our network is a division of our nodes into (S, T )
where s ∈ S, t ∈ T , S ∪ T = N , and S ∩ T = ∅. We say that the capacity of the cut is∑

u∈S,v∈T,uv∈A c(uv).

Note that this definition of a cut differs slightly from the definition of a cut we’ve seen
previously; here, we require that s ∈ S and t ∈ T .

Theorem 4.2 (Max-Flow Min-Cut Theorem). The maximal flow value in a network is
equal to the minimal cut capacity of all cuts in the network.

Proof. Since, for any feasible flow, we have f(a) ≤ c(a) ∀ a ∈ A, then, for any cut, the
amount of flow that can cross the cut is bounded above by the capacity of the cut. Thus
it suffices to show that equality holds for some flow and some cut in the network.

Take the flow returned by the Ford-Fulkerson algorithm such that there is no augmenting
path in the residual graph. Let S be the set of all vertices u for which there is a (directed)
path from s to u in the residual graph. Let T be N\S. Note that t ∈ T since otherwise,
there is a path from s to t, and such a path would be an augmenting path which we have
assumed does not exist.

Similarly, no arc uv ∈ A where u ∈ S, v ∈ T is in the residual graph, else the path
from s to u together with the arc uv would be a path from s to v, meaning v ∈ S.
This means that for all such arcs uv ∈ A where u ∈ S, v ∈ T , f(uv) = c(uv) (since
cf (uv) = c(uv)− f(uv) = 0).

For any arc uv ∈ A where u ∈ T, v ∈ S, the flow on uv must be zero, else the residual
capacity of the arc vu would be positive, and thus the path from s to v together with
the arc vu is a path from s to u in the residual graph, meaning u ∈ S. So, for any arc
uv ∈ A where u ∈ T, v ∈ S, f(uv) = 0.

We note that the value of a flow f is given by
∑

u∈S,v∈T,uv∈A f(uv)−
∑

u∈T,v∈S,vu∈A f(uv)
(that is, the amount of flow going from s to t is the amount of flow going from S into
T , minus the amount that comes back from T into S). By our arguments above, this is
equal to

∑
u∈S,v∈T,uv∈A c(uv)−

∑
u∈T,v∈S,vu∈A 0, which is precisely the capacity of the cut

(S, T ).

Hence, we have found a flow and a cut for which the value of the flow is equal to the
capacity of the cut, finishing our proof.

4.1 Example Problem

Consider the following network, with the capacity of each arc is marked beside the arc:
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We first initialize the flow f by setting f(a) = 0 for all arcs a. Since the flow is zero, the
residual graph is the same as the original graph. We choose the path SB,BE, ED,DT
with capacity 5 on which to send flow, to obtain the flow f(SB) = f(BE) = f(ED) =
f(DT ) = 5 (we note only the flow values that have changed from the previous flow).

Doing so gives us a new residual graph. We again mark the arcs that are in only the
residual graph in blue, and mark the arcs with the residual capacities:

We choose the augmenting path SA, AD, DT with capacity 3 from the residual graph
and change the flow values of the associated arcs: f(SA) = f(AD) = 3, f(DT ) = 8. our
new residual graph is as follows:
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We choose the augmenting path SC,CE,ET with capacity 4. Then f(SC) = f(CE) =
f(ET ) = 4. Our new residual graph is as follows:

Now we choose the augmenting path SB,BD, DE, ET with capacity 2. Then f(SB) =
7, f(BD) = 2, f(ED) = 3, f(ET ) = 6. Notice that in this case, we have actually
decreased the flow on the arc ED, but in doing so we have increased the overall value of
the flow. We get the following residual graph:
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We choose the augmenting path SA, AB, BD,DT with capacity 1. Now f(SA) =
4, f(AB) = 1, f(BD) = 3, f(DT ) = 9. The residual graph is as follows:

We see the the residual graph has no s, t-path, and conclude that our current flow is
maximal. This flow has value 15. To find a cut whose capacity is equal to 15, we can
take the cut ({S, A}, {B, C,D, E, T}) which has capacity 3 + 1 + 7 + 4 = 15.

5 Further Reading

[1] David G. Luenberger, Linear and Nonlinear Programming, 2nd Edition, 1984
[2] F. Hillier, G. Lieberman, Introduction to Operations Research, McGraw Hill, 2001
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