
Operations Research Seminar: Nonlinear Programming
Speaker: Kevin Jurcik

1 Introduction

To this point, we’ve only considered problems that can be modeled as a linear objective
function with linear constraints. While a vast number of problems can be modeled in this
way, there are also many problems that cannot. For instance, when minimizing costs for
a company, the shipping cost may change when a large enough number of units are being
shipped, rather than a single fixed shipping cost. Production rates may have a special
learning property, where we can produce an additional good at a variable cost. Indeed,
there are many problems for which we cannot assume linearity of our objective function
or constraints.

We take a step back from the linear programming standard form to which we have
accustomed ourselves and consider a more general optimization problem:

Maximize: f(x)
Subject to: gi(x) ≤ bi i = 1, 2, ...,m.

where x ∈ Rn, and f(x), gi(x) are real valued functions from Rn to R for i = 1, 2, ...,m.

2 Graphical Illustration of Problems

2.1 Example Problems in 2 Dimensions

Similarly to linear problems, it is quite helpful to look at the graphical representations
of some examples in two variables to get an intuition about the problems. We now look
at some helpful examples from [1] that shed some light on how a problem is altered by
relaxing some of its linearity assumptions. The problems presented here are found in
some way by changing the linear program given by

Maximize: 3x1 +5x2 = z
Subject to: x1 ≤ 4

x2 ≤ 6
3x1 +2x2 ≤ 18
x1, x2 ≥ 0.

Figure 1 shows the feasible region of this problem as well as some typical isoprofit lines.

Now we consider how the problem changes when we replace the second and third con-
straints with the constraint 9x2

1+5x2
2 ≤ 216, shown in Figure 2. We note that the optimal

solution remains the same, but it is no longer a corner point of the feasible region. The

1

important fact to note here is that we no longer have that optimal solutions are limited
to corner point feasible solutions, an important fact that we used with previous methods
of solving LPs.

Next we consider the problem that has the original feasible region but with the new
objective function given by 126x1 − 9x2

1 + 182x2 − 13x2
2. Again we note from Figure 3

that the optimal solution need not be a corner point of the feasible region, even if the
feasible region is given by linear inequalities.

Now consider again a problem with the original feasible region and the objective function
given by 54x1 − 9x2

1 + 78x2 − 13x2
2. Figure 4 reveals that the optimal solution for the

problem is the point (3,3), which lies inside the feasible region. This shows that the
optimal solution of a nonlinear programming problem need not even be a point on the
boundary of the feasible region.

In our last example, we again replace the second and third constraints of the original
problem, this time with 8x1 − x2

1 + 14x2 − x2
2 ≤ 49. We see in Figure 5 that (0,7) is

the optimal solution. More importantly, if we use an algorithm on this problem that
seeks to move from a given point in a direction that increases the objective value, then
the algorithm may conclude that the point (4,3) is optimal (since moving to any nearby
feasible solutions will decrease the objective value). So, a general method for solving
nonlinear problems must be able to distinguish between local and global maxima.

2.2 Convex and Concave Functions

Algorithms for solving nonlinear problems generally are unable to distinguish between
local and global maxima. Recall from calculus that if we have a doubly differentiable
function f , then we can guarantee a local maximum of f is a global maximum of f if we
have d2f

dx2 ≤ 0 for all x. Such a function is called a concave function. Similarly, if d2f
dx2 ≥ 0

for all x, then we say that f is a convex function. Note that linear functions are both
convex and concave.

We can extend the concept of concave and convex functions to multivariable functions
by checking conditions imposed on the partial derivatives of the function. We will not go
into any detail about how to determine if a function is concave, convex, or neither, but
some special types of nonlinear programming methods rely on these properties.

3 Types of Nonlinear Programming Problems

3.1 Unconstrained Optimization

Unconstrained problems require the maximization of an objective function and have no
constraints. These problems are important in that many methods of solving other types
of nonlinear problems start by transforming the problem into an unconstrained problem.
We will learn how to solve some special cases of unconstrained problems in the next
section.

2

3.2 Linearly Constrained Optimization

A linearly constrained problem is a problem with a nonlinear objective function and
linear constraints. A number of algorithms for solving these problems extend the simplex
method.

3.3 Quadratic Programming

Quadratic programming problems again have linear constraints, but require the objec-
tive function f(x) to be quadratic. A common approach to solving gerenal linearly
constrainted problems is to solve a sequence of quadratic programming approximations.

3.4 Convex Programming

Convex programming problems require two special properties of the functions it involves.
First, the objective function must be concave. Second, each constraint must be a convex
function. These assumptions ensure that any local maximum is a global maximum.

3.5 Separable Programming

Separable programming is a special case of convex programming that requires one ad-
ditional property – the objective function and constraints must be separable functions.
That is, each term of each function involves only one variable, so that each function can
be rewritten as the sum of functions in one variable.

3.6 Nonconvex Programming

Nonconvex programming includes all problems that do not satisfy the requirements of
a convex programming problem. Many methods for these problems settle on obtaining
local maxima, as no algorithm can find the global maxima for all nonconvex problems.

4 One-Variable Unconstrained Optimization

We discuss how to solve the previously mentioned problems by starting with the simplest
case – unconstrained optimization in a single variable x, where the differentiable function
to be maximized, f(x), is concave. Recall from calculus that a solution x∗ is optimal
(a global maximum) if and only if df

dx
= 0 at x = x∗. In some cases, we can solve this

equation to find our optimal value, but for slightly more complex functions, we must use
a different method.

3

4.1 The One-Dimensional Search Procedure

The idea behind the one-dimensional search procedure is as follows. First, we find the
rate of change, m = df

dx
at x = x′ for some value x′. If m ≥ 0, then x′ ≤ x∗ (since f is

concave). If m ≤ 0, then x′ ≥ x∗. By updating our trial solution x′ appropriately and
applying this test repeatedly, then we can find a sequence of solutions that converge to
the optimal solution x∗. Notice that since we are finding a sequence of solutions that
converge to x∗, we may not find x∗ exactly, and thus need some sort of error tolerance
for this method.

First, we give some notation:

• Let x′ denote our current trial solution.

• Let xl denote a lower bound on x∗.

• Let xu denote an upper bound on x∗.

• Let ε denote the error tolerance for x∗.

Then the one-dimensional search procedure is as follows.

Initialization: Select ε > 0. Find an initial xl and xu by inspection (or by finding values
of x at which the derivative is positive and negative, respectively). Let x′ = xl+xu

2
.

1. Let m = df
dx

at x = x′.

(a) If m ≥ 0, then xl ← x′.

(b) If m ≤ 0, then xu ← x′.

2. x′ ← xl+xu

2

Stopping rule: If xu−xl < 2ε, then x′ is within ε of x∗; stop. Otherwise, perform another
iteration.

4.2 Example

Suppose we are required to maximize the function f(x) = 12x− 3x4− 2x6. The first two
derivatives of f are

df(x)

dx
= 12(1− x3 − x5)

d2f(x)

dx2
= −12(3x2 + 5x4).

We have that the second derivative is nonpositive for all values of x, so f is concave
and we may use the one-dimensional search procedure. We’ll choose ε = 0.05 to be our
error tolerance. We check the slope of the function at x = 0 and x = 1 and find that

4

f ′(0) > 0, f ′(1) < 0, so we let xl = 0, xu = 1 be our initial lower and upper bounds on
the optimal solution respectively.

This means that our first trial solution is 0+1
2

= 1
2
. The slope at this point is f ′(1

2
) =

81
8
> 0, so we let xl = 1

2
. 1− 1

2
= 0.5 > 2ε, so we continue the procedure. Our new trial

solution is x′ = 3
4
.

The slope at x′ is f ′(3
4
) ≈ 4.09 > 0, so we let xl = 3

4
. We have xu − xl = 1.25, so we

continue. Our new trial solution is x′ = 7
8
.

The slope at x′ is f ′(7
8
) ≈ −2.19 < 0, so we let xu = 7

8
. We now have that xu − xl =

0.875 < 2ε, so conclude that the next trial solution x′ = 13
16

is within ε of the optimal
solution x∗ and stop.

5 Multivariable Unconstrained Optimization

We extend the previous problem to the case in multiple variables (say x = (x1, ..., xn)).
Suppose again that f(x) is concave and differentiable. We get a similar condition for
optimality; namely, x∗ is an optimal solution if ∂f

∂xj
= 0 for j = 1, 2, ..., n.

If it is the case that each ∂f
∂xj

is linear in the remaining variables, then we can solve the

system of n equations to get our optimal solution x∗. If not, we must apply a more clever
method to find our solution.

Recall that when dealing with one variable, when faced with a trial solution, we selected
only one of two directions (increase x or decrease x) to move based on the derivative. In
multiple variables, we have innumerably many directions in which to move.

Recall from calculus the gradient of f , denoted ∇f(x), where ∇f(x′) = (∂f
∂x1
, ..., ∂f

∂xn
)

at x′ = x. As a result from calculus, the (infinitesimal) change in x that maximizes the
rate at which f(x) increases is proportional to ∇f(x) ([1]). So, it would be wise to try
to move in the direction of ∇f(x) as much as possible.

5.1 The Gradient Search Procedure

It would be ideal to move in the direction of ∇f(x) continuously, but to do so we would
need to constantly re-evaluate the value of ∇f(x). Instead, when starting from a point
x′, we choose to follow the direction ∇f(x′) until doing so will no longer give us any
benefit (that is, until it no longer increases f(x)). When we reach this point, we reset
our trial solution x′ and find the gradient at this point to find the new direction we will
follow.

In other words, an iteration of this procedure involves updating x′ = x′ + t∗∇f(x′),
where t∗ is the positive value of t that mazimizes f(x′ + t∇f(x′)). Note here that this is
maximization of a function in one variable, t, so we can use the one-dimensional search
procedure to obtain the value t∗ (or analytically, if possible).

5

We continue iterating until the solution that we have is “good enough”. That is, given

ε > 0, we continue to iterate until
∣∣∣ ∂f
∂xj

∣∣∣ < ε for j = 1, 2, ..., n.

5.2 Example

Let f(x) = 2x1x2 + 2x2 − x2
1 − 2x2

2 be the function we require to be maximized. We
will not set an error tolerence ε > 0, but rather run a few iterations to get a feel for the
procedure. It can be verified that f(x) is concave. We have that

∂f

∂x1

= 2x2 − 2x1

∂f

∂x2

= 2x1 + 2− 4x2.

We begin the gradient search procedure by choosing x′ = (0,0) as our initial trial solution.
Since the partial derivatives at this point are 0 and 2 respectively, the gradient at this
point is ∇f(0, 0) = (0, 2).

So, for the first iteration, we must find the value t∗ which maximizes

f(x′ + t∇f(x′)) = f(0 + t(0), 0 + t(2))
= f(0, 2t)
= 2(0)(2t) + 2(2t)− 02 − 2(2t)2

= 4t− 8t2.

The function 4t − 8t2 is concave, so it follows that it is maximized when d
dt

(4t − 8t2) =
4− 16t = 0. Solving for t, we get that t∗ = 1

4
maximizes this function.

So, we get a new trial solution x′ = (0, 0) + 1
4
(0, 2) = (0, 1

2
). For this new trial solution,

the gradient is ∇f(0, 1
2
) = (1, 0). Thus, for the second iteration, we want to find t∗ which

maximizes

f(x′ + t∇f(x′)) = f(0 + t(1), 1
2

+ t(0))
= f(t, 1

2
)

= 2(t)(1
2
) + 2(1

2
)− (t)2 − 2(1

2
)2

= t− t2 + 1
2
.

Again we have that t− t2 + 1
2

is concave, and that it is maximized when d
dt

(t− t2 + 1
2
) =

1− 2t = 0. Solving for t, we get that our optimal solution is t∗ = 1
2
.

Our new trial solution is x′ = (0, 1
2
) + 1

2
(1, 0) = (1

2
, 1

2
), and the gradient at this point is

∇f(1
2
, 1

2
) = (0, 1).

If we continue iterating, we will get the points (1
2
, 3

4
), (3

4
, 3

4
), (3

4
, 7

8
), and so on, converging

to (1,1) (but never reaching the point (1,1)). We can verify that (1,1) is the optimal
solution since ∇f(1, 1) = (0, 0).

6

If we set an error tolerance ε > 0, we will continue to iterate until have have a trial
solution x′ such that

∂f

∂x1

< ε

∂f

∂x2

< ε

when evaluated at x = x′.

6 References

[1] F. Hillier, G. Lieberman, Introduction to Operations Research, McGraw Hill, 2001

7 Figures (from [1])

Figure 1

7

Figure 2

Figure 3

8

Figure 4

Figure 5

9

