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Introduction

Last class we were introduced to the notion of nonlinear programming, i.e., a mathematical
programming problem where either the constraints or objective function (or both) are given
by nonlinear functions. In today’s class we will focus on a special subclass, namely, the
quadratic programming (QP) problems. Quadratic programing problems are very similar to
linear programming problems. The main difference between the two is that our objective
function is now a quadratic function (the constraints are still linear). The goal of this talk is
to introduce quadratic programming problems, and a variation of the simplex method that
can be used to solve these problems when the objective function is concave. The material
of this talk is based upon [1, Section 14.7]. The example that I used is [1, Exercise 44, pg.
572]. I also found the notes of Jensen and Bard [2] to be helpful.

Quadratic Programming

Quadratic Programs (QP) have the form

Maximize: cx −
1

2
xT Qx = f(x)

Subject to: Ax ≤ b

x ≥ 0

where c is a row vector, x and b are column vectors, and A and Q are matrices.

A few words on the matrix Q. The matrix Q is chosen so that Q is an n × n symmetric
matrix , i.e., qi,j = qj,i for all i, j. Finding the matrix Q is described in many linear algebra
books under the topic of quadratic forms. We illustrate with an example.

Example 1. Consider the quadratic function

f(x1, x2, x3) = 15x1 + 30x2 + 17x3 + 5x2

1
+ 3x2

2
+ 2x2

3
− x1x2 + 8x2x3.

The linear part is simply given by

[

15 30 17
]





x1

x2

x3



 = 15x1 + 30x2 + 17x3.

To make the matrix Q, we make a 3 × 3 matrix where in positions qi,j = qj,i we put the
negative of the coefficient of xixj . (If i = j, qi,i is −2 times the coefficient of x2

i .) So, in our
example

Q =





−10 1 0
1 −6 −8
0 −8 −4



 .

1



2

So,

−
1

2
xT Qx = −

1

2

[

x1 x2 x3

]





−10 1 0
1 −6 −8
0 −8 −4









x1

x2

x3





= −
1

2
(−10x2

1
+ 2x1x2 − 6x2

2
− 16x2x3 − 4x2

3
)

= 5x2

1
+ 3x2

2
+ 2x2

3
− x1x2 + 8x2x3.

The method that we will describe will give a global maximum provided that our objective
function is concave for all x.

Definition 2. A symmetric matrix Q is semi-positive definite if xT Qx > 0 for all x ≥ 0.

We have the following theorem:

Theorem 3. The objective function

f(x) = cx −
1

2
xT Qx

is concave if Q is semi-positive definite. Moreover, Q is semi-positive definite if and only if
all the eigenvalues of Q are nonnegative.

KTT Conditions applied to QP

We begin with a result independently due to Karush and to Kuhn and Tucker, usually
called the KTT conditions. The KTT conditions describe some of the properties that an
optimal solution to a nonlinear program must satisfy.

Theorem 4. Suppose that we have a nonlinear program of the form

maximize f(x)

subject to the constraints gi(x) ≤ bi for i = 1, . . . , m and x ≥ 0. Furthermore, assume that
f and the gi’s are differentiable. If x⋆ = (x⋆

1
, . . . , x⋆

n) is an optimal solution, then there exists
m numbers u1, . . . , um such that all the following conditions are satisfied:

1. At x⋆

∂f

∂xj

−

m
∑

i=1

ui

∂gi

∂xj

≤ 0 for j = 1, . . . , n.

2.

x⋆
j

(

∂f

∂xj

−

m
∑

i=1

ui

∂gi

∂xj

)

= 0 for j = 1, . . . , n.

3. gi(x
⋆) − bi ≤ 0 for i = 1, . . . , m.

4. ui(gi(x
⋆) − bi) = 0 for i = 1, . . . , m.

5. x⋆
j ≥ 0 for j = 1, . . . , n.

6. ui ≥ 0 for i = 1, . . . , m.
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Note that this describes the properties of the optimal solution, but it in general, this list
does not completely describe the optimal solution. However, in some cases, the above list
completely describes the optimal solution.

Corollary 5. Let f(x) be a concave function, and suppose that the constraints gi(x) are
convex functions for all i. Then x⋆ = (x⋆

1
, . . . , x⋆

n) is an optimal solution if and only if all of
the conditions 1 − 6 of Theorem 4 are satisfied.

Before working out the details of a specific example, we sketch out our approach to solving
a QP. We begin with a QP whose objective function is concave. We can use Theorem 3 to
verify this condition. Since linear constraints are convex, we can apply Corollary 5. In
particular, we want to solve conditions 1-6 of Theorem 4 when we start with a QP. Note
that when we take derivatives, we are going to get a series of linear equations (almost! there
are some subtleties), and we can then solve these equations using a modified version of the
simplex method.

We will now discuss a specific example for the remainder of the talk.

Example 6. We want to solve the following QP:

Maximize: 8x1 − x2

1
+ 4x2 − x2

2
= f(x1, x2)

Subject to: x1 + x2 ≤ 2
x1, x2 ≥ 0.

Rewriting this equation, we get

f(x1, x2) =
[

8 4
]

[

x1

x2

]

−
1

2

[

x1 x2

]

[

2 0
0 2

] [

x1

x2

]

.

The matrix Q =

[

2 0
0 2

]

is semi-positive definite since its only eigenvalue is 2.

By apply the KTT conditions, we are looking for numbers x1, x2 and u1 such that

8 − 2x1 − u1 ≤ 0
4 − 2x2 − u1 ≤ 0

x1(8 − 2x1 − u1) = 0
x2(4 − 2x2 − u1) = 0

x1 + x2 − 2 ≤ 0
u1(x1 + x2 − 2) = 0

x1, x2, u1 ≥ 0.
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We add slack variables y1, y2 and v1 for each of three inequalities as follows, and after
rearranging, we get:

−2x1 − u1 + y1 = −8
−2x2 − u1 + y2 = −4

x1(8 − 2x1 − u1) = 0
x2(4 − 2x2 − u1) = 0

x1 + x2 + v1 = 2
u1(x1 + x2 − 2) = 0

x1, x2, u1 ≥ 0.

Since y1 = −8 + 2x1 + u1, the third equation can be rewritten as x1y1 = 0 (technically, we
have x1(−y1) = 0, but note that the sign doesn’t change the fact that the third equation
is true if and only if either x1 = 0 or y1 = 0). Similarly, the fourth equation becomes x2y2

and the sixth equation becomes u1v1 = 0. The pairs (x1, y1), (x2, y2) and (u1, v1) are the
complementary variables. We can combine the third, fourth, and sixth equations into one
constraint

x1y1 + x2y2 + u1v1 = 0

which is called the complementary constraint. Given a pair of complementary variables, at
most one can be nonzero.

After rearrangement, our set of conditions become:

2x1 + u1 − y1 = 8
2x2 + u1 − y2 = 4
x1 + x2 + v1 = 2

x1y1 + x2y2 + u1v1 = 0
x1, x2, u1, y1, y2, v1 ≥ 0.

These look almost like linear constraints, except for the fourth condition.

We pause from our example to summarize the above procedure for the general case.

Theorem 7. Given any quadratic program of the form

Maximize: cx −
1

2
xT Qx = f(x)

Subject to: Ax ≤ b

x ≥ 0,

the KTT conditions can be expressed as

Qx + ATu − y = cT

Ax + v = b

x,u,v,y ≥ 0 (of the appropriate size)

xTy + uTv = 0

where u is the column vector of ui’s and v and y are the column vectors of slack variables.
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Example 8. (Continued) Our next step is to find any solution to the system of equations given
before Theorem 7. By Corollary 5, such a solution will correspond to an optimal solution of
our original QP. We therefore want to get our hands on one solution to this system.

Our strategy is to use the simplex method to find such a solution. We will view the
equations as the linear constraints of some linear programming problem. The role of the
complementary constraint is to change our criterion for deciding the entry variable in the
simplex method.

To turn this problem into a linear programming problem, we need an objective function.
We introduce artificial variables to each equation such that ci > 0 or bj < 0.1 In our problem,
we get

2x1 + u1 − y1 + z1 = 8
2x2 + u1 − y2 + z2 = 4

x1 + x2 + v1 = 2
x1y1 + x2y2 + u1v1 = 0

x1, x2, u1, y1, y2, v1, z1, z2 ≥ 0.

Note that if set all the variables except z1 and z2 to zero, then we get a solution to the above
system, namely z1 = 8, z2 = 4, and all other variables are equal to zero. We, however, want
a solution where z1 = z2 = 0. So, we want to move to an alternative basic solution where z1

and z2 become non-basic variables. Notice that such a solution will also satisfy our original
system (i.e., the equations before Theorem 7).

We then want to minimize the equation

Minimize Z = z1 + z2.

To turn this into a linear programming problem we can solve with the simplex method, we
turn it into a maximizing problem, i.e., we want to

Maximize Z ′ = (−Z) = −z1 − z2.

By rearranging our linear conditions, we get

Z = (8 − 2x1 − u1 + y1) + (4 − 2x2 − u1 + y2) = 12 − 2x1 − 2x2 − 2u1 + y1 + y2.

So, to solve our original quadratic program, we use the simplex method to solve the following
linear program:

Maximize: −12 + 2x1 + 2x2 + 2u1 − y1 − y2 = Z ′

Subject to: x1 + u1 − y1 + z1 = 8
2x2 + u1 − y2 + z2 = 4

x1 + x2 + v1 = 2
x1, x2, u1, y1, y2, v1, z1, z2 ≥ 0.

But before you go off and do that, we need to explain how to handle the constraint:

x1y1 + x2y2 + u1v1 = 0.

1In some textbooks, an artificial variable is introduced for every linear equation. Although both methods
are probably equivalent, I couldn’t find a proof of this fact. I will follow the method described in [1].
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Note that if in our simplex method, if x1 is already chosen as a basic variable, then we cannot
chose y1 to also be a basic variable. Indeed, if they were both basic, then (in the majority
of cases), x1 and y1 would be nonzero, contradicting the above constraint equation. So, we
need to change the entry rule (i.e., deciding which column is a pivot column). Precisely, we
have

New Entry Rule. When picking a new basic variable (i.e., pivot column),
eliminate for consideration any variable that is the complementary variable
of any variable that is currently a basic variable.

For completeness, we finish our example. Our initial tableau is

x1 x2 u1 y1 y2 v1 z1 z2

2 0 1 −1 0 0 1 0 8
0 2 1 0 −1 0 0 1 4
1 1 0 0 0 1 0 0 2

−2 −2 −2 1 1 0 0 0 −12

Our initial basic variables are (v1, z1, z2) with initial feasible solution (0, 0, 0, 0, 0, 0, 2, 8, 4).

We pick x1 as our new entering variable (this is okay with new entry rule since y1 is not
a basic variable). The third row is our new pivot column, so v1 is a leaving variable. After
this iteration, our tableau looks like:

x1 x2 u1 y1 y2 v1 z1 z2

0 −2 1 −1 0 −2 1 0 4
0 2 1 0 −1 0 0 1 4
1 1 0 0 0 1 0 0 2
0 0 −2 1 1 2 0 0 −8

Our basic variables are (x1, z1, z2) with basic solution (2, 0, 0, 0, 0, 0, 4, 4).

At the next iteration, y1 is eliminated as a candidate for a basic variable (in this situation,
we wouldn’t even consider y1 since the number in the corresponding column of the objective
row is positive). Our only choice for a basic variable is u1. Our leaving variable is z1 (you
could also choose z2 since there is a tie). After pivoting, we get:

x1 x2 u1 y1 y2 v1 z1 z2

0 −2 1 −1 0 −2 1 0 4
0 4 0 1 −1 2 −1 1 0
1 1 0 0 0 1 0 0 2
0 −4 0 −1 1 −2 2 0 0

Our basic variables are (x1, u1, z2) with basic solution (2, 0, 4, 0, 0, 0, 0, 0).
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At our next iteration, we get x2 is our new basic variable, and z2 is our leaving variable.
Pivoting gives:

x1 x2 u1 y1 y2 v1 z1 z2

0 0 1 −
1

2
−

1

2
−1 1

2

1

2
4

0 1 0 1

4
−

1

4

1

2
−

1

4

1

4
0

1 0 0 −
1

4

1

4

1

2

1

4
−

1

4
2

0 0 0 0 0 0 1 1 0

So, our basic variables are (x1, x2, u1) with feasible solution (2, 0, 4, 0, 0, 0, 0, 0). This is our
optimal solution since our simplex method has completed.

Notice that until the last step, we had either z1 or z2 as a basic variable. However, at the
last step, neither variable is a basic variable, i.e., z1 = z2 = 0. So, our feasible solution is also
a solution to our system of equations given before Theorem 7. By Corollary 5, this solution
now gives an optimal solution to the original QP. In particular, (x1, x2) = (2, 0) gives the
optimal solution.

If, on the other hand, the variable z1 or z2 must always be a basic variable, then there is
no feasible solution only in x1, x2, u1, y1, y2, v1. In this case there is no solution to the QP.

Final Comments

At the heart of QP is the KTT conditions. Note that these conditions hold true for many
nonlinear integer programs. QP have many applications in economics, and is sometimes
considered a separate sub-discipline. A quick search of the web produces many alternative
means to solve a QP. In many cases, software can be downloaded and played with.

Problems from Lecture 7

1. Use the method described in this lecture to solve the QP:

Maximize: 15x1 + 30x2 + 4x1x2 − 2x2

1
− 4x2

2

Subject to: x1 + 2x2 ≤ 30
x1, x2 ≥ 0

Hint: This is the example discussed in [1, Section 14.7].

References

[1] F.S. Hillier, G.J. Lieberman, Introduction to Mathematical Programming. McGraw-Hill, Toronto, 1990.
[2] P.A. Jensen, J.F. Bard, Lecture Notes on Quadratic Programming.

https://www.me.utexas.edu/∼jensen/ORMN/supplements/methods/nlpmethdo/nlp intro.html


