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Chromatic numbers via 
commutative algebra

Adam Van Tuyl, McMaster University

C
olouring graphs is a major subbranch of graph theory. We wish 
to illuminate an an overlap between this area and commutative 
algebra. Imagine a department where five committees must 

meet. Because some faculty members are on more than one 
committee, the meetings cannot all be scheduled at the same time 
(our imaginary faculty must attend their meetings!). Since faculty 
want to avoid meetings, we want to minimize the amount of time 
needed for meetings. Variations of this problem is a standard example 
of an application of the chromatic number of a graph. Specifically, 
represent each committee by a vertex, and join two vertices with 
an edge if there is someone who is on both committees. As an 
example, suppose in our fictional department, the corresponding 
graph is given as in Figure 1.

Figure 1. The graph representing committees and shared membership

We assign colours to each vertex so that vertices receive different 

colours if they are joined by an edge. We want the least number 

of colours needed for a valid colouring. Figure 1 can be minimally 

coloured with three colours (e.g., colour Committees 1 and 3 

red, Committees 2 and 4 blue, and Committee 5 green). We can 

schedule our meetings in three hour long slots by scheduling all the 

committees with the same colour during the same hour slot. 

More formally, a finite simple graph G is a pair $G = (V,E)$ 

where V = {x1, . . . , xn}  are the vertices, and E  consists 

of unordered pairs of distinct elements of V , called edges. 

Simple means that loops or multiple edges between vertices 

are not allowed. The chromatic number of G, denoted χ(G),
is the least number of colours in a valid colouring of G.

It can be quite difficult to compute χ(G) (in fact, it is an 

NP-complete problem). 

The commutative algebra community, starting with Villarreal [7], 

has been interested in studying graphs algebraically. One associates 

with G two ideals in the polynomial ring R = Q[x1, . . . , xn].
The edge ideal of G is 

I(G) = 〈xixj | {xi, xj} ∈ E〉.

That is, the generators of the ideal I(G) are in bijection with the 

edges of G. For example, the edge ideal of the graph of Figure 1 is

I(G) = 〈x1x2, x2x3, x3x4, x4x5, x5x1〉.

The second ideal is the cover ideal of G:

J(G) =
⋂

{xi,xj}∈E

〈xi, xj〉.

The nomenclature is due to a correspondence between the 

generators and the vertex covers of G (a subset W ⊆ V  such 

that e ∩W  = ∅ for all e ∈ E ). Within this framework, computing 

χ(G) can now be rephrased as an ideal membership problem, 

i.e., asking when a particular element belongs to an ideal. Below, 
J(G)d = 〈g1 · · · gd | gi ∈ J(G)〉 is the d-th power of J(G). 

Theorem 1. ([3, Theorem 3.2]). Let G = (V,E) be a finite simple 

graph with cover ideal J(G) and  |V | = n. Then

χ(G) = min
{

d
∣

∣ (x1 · · ·xn)
d−1

∈ J(G)d
}

.

The proof of Theorem 1 exploits the fact that the set of vertices 

that do not receive a fixed colour form a vertex cover. What is 

remarkable is χ(G) can be computed without finding a colouring. 

Moreover, programs like Macaulay2 [4] can compute χ(G) using 

the ideal membership property.

We can generalize χ(G) by assigning multiple colours to each 

vertex. For example, the 2-fold colouring of G, denoted χ2(G),
assigns a pair of colours to each vertex so that vertices joined 

by an edge have the property that their corresponding pairs are 

disjoint. Figure 2 gives a 2-fold colouring of our running example G, 

and in particular, χ2(G) = 5. 

Figure 2. A minimal 2-fold colouring of our graph

For our scheduling problem, instead of one hour slots, we now 

use half-hour slots, and allow our meetings to take a break. For 

each slot, schedule all the committees where one of its two colours 
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match the colour of the slot. We can now schedule all of our 

meetings in 2.5 hours! 

The b-fold chromatic number χb(G) is defined analogously. By 

normalizing, the fractional chromatic number of G is

χf (G) = lim
b→∞

χb(G)

b
,

an invariant of fractional graph theory [5]. For our example, 
χf (G) = 5

2
.

The fractional chromatic number also has a commutative algebra 

interpretation. If G is a graph, then the s-th symbolic power of 
I(G) is 

I(G)(s) =
⋂

W is a minimal vertex cover of G

〈xi |xi ∈W 〉s.

For any homogeneous ideal K, we let α(K) be the smallest 

degree of a non-zero element in K. The Waldschmidt constant of 
I(G) is then 

α̂(I(G)) = lim
s→∞

α(I(G)(s))

s
.

The Waldschmidt constant has origins in complex analysis [8] and 

is related to the “ideal containment problem” [2]. Then α̂(I(G)) 
and χf (G) are related:

Theorem 2. ([1, Theorem 4.6]) Let G = (V,E) be a finite simple 

graph with edge ideal I(G). Then

χf (G) =
α̂(I(G))

α̂(I(G))− 1
.

To prove Theorem 2, one uses the fact that both invariants 

can be described in terms of linear programs, which are then 

related to each other. Theorems 1 and 2 hold more generally for 

hypergraphs. There are additional connections between colourings 

and commutative algebra, including the irreducible decomposition 

of J(G)s [3] and secant ideals of I(G) [6].
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