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Abstract

In this thesis we study the Hilbert functions of sets of distinct points in P™ x - - . x P

with k& > 2. This thesis extends the work of Giuffrida, Maggioni, and Ragusa (1992) on the

Hilbert functions of points in P! x P'. The goal of this thesis is to establish the algebraic

foundation for this topic. The main results of this thesis are:

(1)

We describe the eventual behaviour of the Hilbert function of a set of distinct
points in P™ x --. x P, As a consequence of this result, we show that the Hilbert
function of a set of points in P"* X ... X P™ can be determined by computing
the Hilbert function at only a finite number of values. The other values of the
Hilbert function will then follow from our description of the eventual behaviour
of the Hilbert function. The values at which we need to compute the Hilbert
function can be determined from numerical information about the set. Our result
motivates us to define the border of the Hilbert function of a set of points. This
result extends the result that the Hilbert function of a set of points in P stabilizes
at the cardinality of the set of points.

We show that H is the Hilbert function of an arithmetically Cohen-Macaulay
(ACM) set of points in P™ X - - - x P" if and only if AH, the first difference function
of H, is the Hilbert function of an Nf-graded artinian quotient of a polynomial
ring. This result generalizes a theorem of Geramita, Maroscia, and Roberts (1983)
about points in P".

We introduce a new necessary condition on the Hilbert function of a set of points
in P! x P! by uncovering a link between sets of points in P* x P! and (0, 1)-matrices.
By using the Gale-Ryser Theorem, a classical result about (0, 1)-matrices, we can
characterize all borders of points in P! x P!. We also give a new characterization of
the ACM sets of points in P! x P! which depends only upon numerical information

ii
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describing the set of points. The ACM sets of points were first characterized by
Giuffrida, Maggioni, and Ragusa (1992) via different methods.
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CHAPTER 1

Introduction

The Point is a Being like ourselves, but confined to the non-dimensional
Gulf. He is himself his own World, his own Universe; of any other than
himself he can form no conception; he knows not Length, nor Breadth, nor
Height, for he has no experience of them; he has no cognizance even of the
number Two; nor has he a thought of Plurality; for he is himself his One
and All, being really Nothing.

— The Sphere in Flatland

1. Motivation and Overview

Contrary to the above quotation from Edwin Abbott’s novella Flatland [1], a point
in P* = P}, the n-dimensional projective space over the field k, or more generally, a set
of points in P" is anything but “Nothing.” Indeed, to provide a complete listing of the
literature devoted to the study of sets of points in P" would prove to be a Herculean
task. One can, however, consult the conference proceedings [41] [20], especially the survey
article by Geramita [15], for motivation and for a flavour of the past and present research
about points in P". The lecture notes of Geramita [14] and Robbiano [44] provide a gentle
introduction to the topic of points. Even though this field has a long and deep history,

many fascinating problems remain.

The Hilbert function of a set of points in P" is the basis for many questions about
sets of points. To any set of points, we can associate an algebraic object which we call
the coordinate ring. The Hilbert function is used to obtain, among other things, algebraic
information about the coordinate ring and geometric information about the set of points.
The papers [16], [17], [19], [34], [36], [37], and [49] are just a partial list of the papers
that study the connection between a set of points and its Hilbert function. As a tool for
studying sets of points, the Hilbert function is extremely useful due, in part, to a result of

1



1. MOTIVATION AND OVERVIEW 2

Geramita, Maroscia, and Roberts [19] which gives a precise description of which functions

can be the Hilbert function of a set of points in P”.

The goal of this thesis is to study sets of points in a more general ambient setting.
Specifically, we wish to extend the study of collections of points in projective space to
collections of points in the multi-projective space P x ... x P™. This is an area, to
our knowledge, that has seen little exploration. The first foray into this territory, that
we are aware of in modern times, appears to be a series of papers, authored by Giuffrida,
Maggioni, and Ragusa ([24],[25],[26]), on points that lie on the quadric surface Q C P3.
Because Q = P! x P!, some of the results of Giuffrida, et al. can be translated into results
about points in multi-projective space. However, there seems to be more questions about

sets of points in P! x ... x Pt than there are answers.

To narrow the scope of this thesis, we will focus primarily on the Hilbert functions of
sets of points in P"! x - .. x P". Because the characterization of Hilbert functions of points
in P" due to Geramita, et al. [19] plays such an important role in the study of those sets, a
generalization of this characterization should be a primary objective. In fact, this problem

is the underlying question that guides this thesis. We state this question formally:
Question 1.1.1. What can be the Hilbert function of a set of points in P™ x --- x P ?

If £ = 1, then, as already noted, a solution exists. If k¥ > 2, then the problem remains
open. This thesis should be viewed as one attack (of hopefully many) on Question 1.1.1.
Although we were not successful in providing a complete solution, we have made some

progress. Some of our successes are detailed in the later sections of this chapter.

There are many reasons to study sets of point in P"! x -.- x P™ and their Hilbert
functions. We give two such reasons. First, the value of the Hilbert function at certain sets
of points in P™ X --- x P™ has shown up in connection with other problems. For example,
Catalisano, Geramita, and Gimigliano [10] have recently shown that a specific value of the
Hilbert function of a collection of fat points in P™ x- - - X P™ is related to a classical problem
of algebraic geometry concerning the dimension of certain secant varieties of Segre varieties.
Catalisano, et al. were able to compute the desired value for only some sets of points. A

complete understanding of the Hilbert function of a set of points in P™ x ... x P might
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provide us with some understanding about the Hilbert functions of fat points, and thus,

provide us with a complete solution to this problem.

A second motivation for studying the Hilbert function of points in P! x --. x P™ is
to provide a series of examples of Hilbert functions for multi-graded rings. Multi-graded
rings appear throughout algebraic geometry and commutative algebra. Two examples of
a multi-graded ring are: (1) the coordinate ring of a blow-up, and (2) a Rees Algebra
(see [11], [27], [30], [50], [55] for these examples and more). However, we are still only
beginning to understand the structure of multi-graded rings. As a consequence of this fact,
there are many open problems concerning the Hilbert functions of multi-graded rings. Some
results concerning the Hilbert function of multi-graded rings have been established, as is
evident in [2], [5], [7], [33], [45], [62], [53], [54]. However, the question of what functions
can be the Hilbert function of a multi-graded ring remains an open problem, except in the
case of standard graded rings. For the case of standard graded rings, i.e., rings graded in
the usual sense, then we have Macaulay’s Theorem [35] which characterizes all functions
that can be the Hilbert function of a finitely generated graded k-algebra. By studying the
Hilbert functions of points in P™! x --- X P™ we can perhaps get an insight into a multi-
graded version of Macaulay’s Theorem. At the very least, such a study provides a nice

stable of examples.

This thesis is divided into five chapters and one appendix. In Chapter 1, we summarize
the main results of this work. We will emphasize where we have been successful in answering
Question 1.1.1, the underlying question of this thesis. We will also give a series of open
problems. These unanswered question provide ample motivation for future work on points

in P x -.. x P,

In Chapter 2, we build the mathematical framework for the thesis. The topics introduced
in this chapter are: multi-graded rings, Hilbert functions, points in P* and P! x ... x P",
resolutions and projective dimension, and the combinatorics of (0,1)-matrices. With the
exception of the material on points in P"! x ... x P the contents of this chapter are well
known. However, for the convenience of the reader, we have attempted to include as many

of the proofs as possible.

Our primary goal in Chapter 3 is to generalize a classical result about the eventual

behaviour of the Hilbert function of a set of points in P” to sets of points in P™! x - -- x Pk,
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Our result will motivate us to define the border of a Hilbert function of a set of points in
P x ... x P™. The border divides the values of the Hilbert function into two sets: those
values which need to be computed and those values which rely on our result describing
the eventual behaviour of the Hilbert function. We also show how the notion of points in

generic position generalizes to sets of points in P™ x --- x Pk,

In Chapter 4 we explore arithmetically Cohen-Macaulay sets of points in P™ x - - - x Pk,
One of the striking differences between sets of points in P” and P x --- x P* with k > 1
is that the former are always arithmetically Cohen-Macaulay, while the latter can fail to
have this property. We show that if we restrict to arithmetically Cohen-Macaulay sets
of points in P™ x ... x P", then the characterization of Geramita, et al. [19] given
for the Hilbert functions of points in P" can be generalized. We also characterize the
Hilbert functions of all bigraded quotients of k[z1,y1,...,¥ym] and Nf-graded quotients
of k[z1,...,zE]. As a consequence, we can completely describe the Hilbert functions of

arithmetically Cohen-Macaulay sets of points in P! x P™ and P! x ... x P! for any k. Our
—— —

k
results are a generalization of a result about points in P! x P! due to Giuffrida, et al. [26].

In the final chapter, Chapter 5, we continue the program first begun by Giuffrida, et
al. ([24], [25],[26]), by restricting our focus to points in P! x PL. If X is a set of points
in P! x P!, then we show that the border of the Hilbert function of X depends only upon
the combinatorics of X. Moreover, we characterize all possible borders by uncovering a
link between sets of points in P! x P! and (0,1)-matrices. As a consequence, we give a
new necessary condition on the Hilbert function of points in P! x P!. We also give a
combinatorial characterization of arithmetically Cohen-Macaulay points in P! x P!. This
characterization is a new characterization of arithmetically Cohen-Macaulay sets of points
in P! x P. A non-combinatorial characterization of arithmetically Cohen-Macaulay sets of

points in P! x P! is originally due to Giuffrida, et al. [26].

Many of the results in this thesis have their genesis in examples. Instrumental in gen-
erating these examples was the computational commutative algebra program CoCoA [8]. In
Appendix A the code used to compute the Hilbert function of points in P* x P™ is provided.
We also explain the mathematical underpinnings of the code and give some examples of its

use.
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The following notation will be used for the remainder of this chapter. We always use
k to denote an algebraically closed field of characteristic zero. We let P" = P} be the n-
dimensional projective space over k. Unless otherwise specified, X denotes a set of distinct
points either in P” or in the multi-projective space P x - - - x P" . We induce an N¥-grading
on the polynomial ring R = Kk[Z1,0,...,Z1,n1s---+Tk,0,--->Tkn,) Dy setting degz;; = e;,
where e; is the i*» standard basis vector of N¥. If X is a set of points in P*! x ... x P, then
we write Ix for the N¥-homogeneous ideal of R that is generated by the Nf-homogeneous
elements of R that vanish on X. The Hilbert function of X is the numerical function
Hx : N* — N defined by i = (i1,...,%) — dimg(R/Ix);. Finally, if i = (i1,...,i),j =
(j1,---,Jk) € N¥, then we will write i < j if and only if 4, < j, for [ = 1,...,k. A detailed
account of these definitions is given in Chapter 2. Any definitions or terminology used below

which is not explicitly defined can be found in the latter chapters.

2. The Border of the Hilbert Function of a Set of Points

Let X be a set of distinct points in P™! x --- x P™, and suppose that Hx is the Hilbert
function of X. In this section we summarize the main results of Chapters 2 and 3 related

to Question 1.1.1.

Our quest to answer Question 1.1.1 begins in Chapter 2 where we place some necessary

conditions on the values of Hy.

Proposition 1.2.1. Let X be a set of distinct points in P™ x --- x P™ and suppose that
Hx is the Hilbert function of X.

(i) (Proposition 2.2.13) Then for all i = (iy,...,i;) € N¥ we have
Hx(i) < Hx(i+e;) forallj=1,...,k.
(1) (Proposition 2.2.14) Fiz an integer j € {1,...,k}. If Hx(i¢) = Hx(¢ + e;), then
Hx(i + e;) = Hx(i + 2e¢;).

It follows from this proposition that a large number of numerical functions H : N¥ — N

cannot be the Hilbert function of a finite set of points.

If X C P", then Proposition 1.2.1 (i) implies that Hx(i) < Hx(i + 1) for all i € N. The

following well known proposition shows that Hx is also bounded.
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Proposition 1.2.2. (Proposition 2.3.4) Let X C P" be a collection of s distinct points.
Then

Hx(i)=s foralli>s—1.

This proposition has two consequences that makes it extremely interesting. First, to
compute Hx(i) for all 4 € N, it is sufficient to compute the value of Hx at only a finite
number of values. Second, those values at which we need to compute Hx can be derived

from simple numerical information describing X.

Using the case of points in P" as our inspiration, we are led to ask if the values of
the Hilbert function of X C P™ x ... x P™ are also bounded? If so, does Hx have an
analog to Proposition 1.2.27 Moreover, does this analog have the same consequences as

Proposition 1.2.27 In Chapter 3, we give an affirmative answer to all three questions.

Because of the complexity of the notation in the general case, we state the result only
for sets of points in P™ x P™. A complete discussion can be found in Chapter 3. We
let m; : P* x P™ — P" be the projection morphism defined by P x ) — P. We define
mo : P x P™ — P™ to be the other projection morphism. Our first major result is the

following generalization of Proposition 1.2.2.

Theorem 1.2.3. (Corollary 3.1.7) Let X C P™ x P™ be a set of s distinct points. Suppose
that t = |m1(X)| and r = |mo(X)|. Then

s @) > (- 1r—1)
Hx(i,j) =< Hx(t—1,5) ifi>t—1landj<r—1
Hx(i,r—1) ifj>r—1landi<t—1

This result has all the desired ingredients. Indeed, the value of the Hilbert function
is bounded by |X| = s. From this theorem, we deduce that we need to compute Hx(%, j)
for only those (i,7) < (|m1(X)| — 1,|m2(X)| — 1) to completely determine all values of Hx.
Since |71 (X)| (respectively, |m2(X)|) is the number of distinct first (respectively, second)
coordinates of X, the values at which we need to calculate Hx can be ascertained from
numerical information about X. There exists a generalization of this result to points in

Pt x ... x P™ as we show in Theorem 3.2.1 and Corollary 3.2.6.
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For the present, we continue to consider points X C P" x P™. Suppose that |m(X)| =t
and |mp(X)| = r. We can represent Hx as an infinite matrix (m; ;) where m; ; := Hx(3, 7).

In light of Theorem 1.2.3 we have

mo,r—1 mor—1
* mjr_1 mir—1
Hx =
mg 10 Mg11 - Mg 1r-1=8 S
mg—1,0 Mg-11 " S
We define Bc = (mt_1,0,mt_1,1, e ,mt_l,r_l) and BR = (mo,r_l,’m,l’,,-_l, e ,mt_l,,._l)

and set Bx = (B¢, Br). We call Bx the border of the Hilbert function of X. From the
matrix representation of Hx given above, the name is appropriate because the border, the
bold numbers, separates those values (x) at which we must compute Hyx, and those values
which depend only upon Theorem 1.2.3. Note that if we know By, then we know Hx at
all but a finite number of values. The border of the Hilbert function of a set of points in
P™ x ... x P™ is defined similarly (see Definition 3.2.8).

Example 1.2.4. We illustrate some of the above results with the following example. Let
P, :=[1:4] € P! for all ; € N. Similarly, we define Q; := [1 : i] € P!. Let X be the following

collection of points in P! x P!:

X:={P x Q1,P1 x Q2, P x Q3,P; X Q4, Py x Q2, Py X Q3, Py X Q4,P3 x Q4, Py X Q4}.

Then the Hilbert function of X, expressed as a matrix, is

Hx =

=R W NN =
S S Ot N
o 00 N O W
© © 0 N
© © 0o ~

We observe, that in accordance with Proposition 1.2.1, that the values in each row (re-

spectively, column) strictly increase until they stabilize. For this example, B¢ = (4,6,8,9)
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and B = (4,7,8,9), and so, the border is Bx = (B¢, Br). We have written the values
in the border in bold. Since |71 (X)| = 4 and |72(X)| = 4, only the values of Hx(i,7) with
(7,7) < (3,3) need to be calculated, and the remaining values can be computed by using

Theorem 1.2.3.

The fact that the Hilbert function of any set of points X C P™! x --- x P™ has a border
places a new restriction on the numerical functions that can be the Hilbert function of a

set of points. We weaken Question 1.1.1 to the following question:

Question 1.2.5. (Question 3.2.10) What can be the border of the Hilbert function of a set

of points in P™ x --. x P ?

An answer to the above question would impose a severe restriction on what could be
the Hilbert function of a set of points. This question, although weaker, is still difficult.
However, we can answer Question 1.2.5 for the case of points in P! x P! (we discuss this
Section 4 of this chapter). We also show that there are a number of necessary conditions
on the values of the border (for example, Corollary 3.2.4). In general, this weaker question

still requires further work.

We can use the fact that every Hilbert function of a set of points in P"! x ... x P has
a border to deduce the existence of sets of points in generic position. If X C P"t x - .- x P"

is a set of s points, then X is said to be in generic position if

Hx(j1,---,jk) = min{<”1j+ 31) (”k;”’“>,s} for all (ji,...,j,) € N,
1 k

We, in fact, generalize a result of Geramita and Orecchia [21] about points in generic

position in P” to show that “most” sets of points in P™! x --. x P are in generic position.

Theorem 1.2.6. (Theorem 3.3.2) The s-tuples of points of P™ X --- x P™ (Py,..., Ps),
considered as points of (P™ X --- x P™)% which are in generic position form a non-empty

open subset of (P™ X --- x P™)$,

Because questions about generic sets of points in P” command a lot of interest in current
research, it would be useful to determine if generic sets of points in P™! x --. x P™ behave

like generic sets of points in P". For example, one can try to formulate a Minimal Resolution
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Conjecture (see Lorenzini [34]) for generic sets of points in P! X --- x P". We leave that

problem for now but will return to it at a future date.

3. Arithmetically Cohen-Macaulay Sets of Points in P"! x ... x P"

It has already been noted that Question 1.1.1 has a complete answer for sets of points

in P" (see [19]). This result is stated below.

Proposition 1.3.1. (Proposition 2.3.10) Let H : N — N be a numerical function. Then
H is the Hilbert function of a set of distinct points in P™ if and only if the first difference
function AH : N — N, where AH(z) := H(i)— H(i—1) for alli € N, is the Hilbert function
of a graded artinian quotient of k[z1,...,z,]. (H(i) =0 if i <0.)

The proof of Proposition 1.3.1 relies, in part, on the fact that the coordinate ring of a finite
set of points in P" is always Cohen-Macaulay. Unfortunately, any attempt to generalize this
proof to sets of points in P™ x - - - x P" will be hampered by the fact that the corresponding
coordinate ring may fail to be Cohen-Macaulay. We call sets of points in P! x --. x P
with a Cohen-Macaulay coordinate ring an arithmetically Cohen-Macaulay (ACM for short)

set of points.

In Chapter 4, we study the following weaker version of Question 1.1.1:

Question 1.3.2. What can be the Hilbert function of an ACM set of points in P™ X -+ X
Pk 2

The main result of Chapter 4 is to show that if we restrict to ACM sets of points in

P x ... x P then there is a natural generalization of Proposition 1.3.1.
Theorem 1.3.3. (Theorem 4.3.14) Let H : N* — N be a numerical function. Then H is

the Hilbert function of an ACM set of points in P™ X --- x P™ if and only if

AH(i1,. .., i) == > (“DMHG =1, ik — ),
L:(ll,---,lk)g(l,---,l)

where H(iy, ... i) = 0 if (i1,...,3%) # 0, is the Hilbert function of some NF -graded artinian

quotient of S =K[Z11,-- -, Ti sy Th,ly-- -3 Thyng)-
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For ACM sets of points in P*! x --- x P™_ Theorem 1.3.3 enables us to translate

Question 1.3.2 into the following question:

Question 1.3.4. What can be the Hilbert function of an NF-graded artinian quotient of

k[.’I,‘Ll, e ,.’L‘Ln“ e ,-'Ek,l,- .. ;xk,nk]?

Because there is no known analog of Macaulay’s Theorem (see [35] or Theorem 2.1.2) for
multi-graded rings, Theorem 1.3.3 turns one open problem into another open problem.
However, the other main result of Chapter 4 is to show that we can answer Question 1.3.4

if (i) S = k[z1,y1,---,ym] is bigraded, or if (i1) S = k[z1, zo, ..., z)] is N¥-graded.

For (i), we suppose that S = k[z1,y1,...,ym] with degz; = (1,0) and degy; = (0,1).
In Chapter 4, we will give a much stronger result characterizing the Hilbert functions of all
bigraded quotients of S. As a corollary, we answer Question 1.3.4 for S. To prove (i) we
will use some necessary conditions about bigraded rings given by Aramova, Crona, and De
Negri [2].

To state our result, we recall the notion of an i-binomial expansion of an integer. Let ¢

and a be positive integers. Then the ¢-binomial expansion of a is the unique expression

= (1) () e (2)

where a; > a;—1 > --- > a; > j > 1. The function <> . N — N, sometimes called

Macaulay’s function, is defined by

a|—>a<i>=(Cl.i+1>+(ai_1.+1>+---+(a.j+1>
1+1 1 j+1

where a;,a;_1,...,a; are as in the i-binomial expansion of a.

Theorem 1.3.5. (Theorem 4.4.11) Suppose that S = k[z1,y1...,Ym], where degz; =
(1,0) and degy; = (0,1) fori = 1,...,m, and let H : N> — N be a numerical function.
Then there ezists a bihomogeneous ideal I C S = k[z1,y1,.--,Ym]| Such that the Hilbert
function Hg/y = H if and only if
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As a corollary of this theorem, we can give a complete answer to Question 1.1.1 for the case

of ACM sets of points in P! x P™,

Corollary 1.3.6. (Corollary 4.4.15) Let H : N> — N be a numerical function. Then H
is the Hilbert function of an ACM set of points in P' x P™ if and only if the numerical

function

where H(i,7) = 0 if (i,7) # (0,0), satisfies:

(i) AH(0,0) =

(i) AH(0,1) <
(11) AH(i+1 j) < AH(z ) for all (i,5) € N2,

(iv) AH(i,j+1) < AH(3,5)<7> for all (i,7) € N> with j > 1,
(v) there exists a positive integer t such that AH(t,0) =0, and
(vi) there exists a positive integer v such that AH(0,7) = 0.

The above corollary generalizes the characterization of Hilbert functions of ACM sets of

points in P! x P! first given by Giuffrida, Maggioni, and Ragusa [26].

We also characterize the Hilbert functions of the N¥-graded quotients of the ring k[z1, . . ., zx].

As a corollary, we can answer Question 1.1.1 for the case of ACM sets of points in P! x - -- x P!
———

for any k£ € N.

Theorem 1.3.7.  (Theorem 4.4.16) Let S = k[zy,...,z}] be an NF-graded ring with
degz; = e;, the i standard basis vector of N¥, and let H : N — N be a numerical
function. Then there exists a proper ideal I C S such that the Hilbert function Hg)y = H if

and only if
(1) H(0,...,0) =1,

(#9) H(%1,..-,1) =1 or 0 4f (i1,...,1x) > (0,...,0), and
(40d) if H(i1, .., ix) =0, then H(ji,---,j5) = 0 for all (ji,---,jx) > (i1, .. ix).

Corollary 1.3.8. (Corollary 4.4.18) Let H : N* — N be a numerical function. Then H
is the Hilbert function of an ACM set of distinct points in P* x --- x P! if and only if the
N————
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numerical function

AH (i, ... i) == oo (DUHG — b, — ),
I=(l1, i) <(1,..,1)

where H(i1,...,ig) =0 if (i1,...,9%) 2 0, satisfies:

(i) AH(,...,0)=1,

() AH(“, o ik) =1 0r 0 if (i1y..ryip) > (0,...,0),

(291) if AH(41,...,1x) =0, then H(j1,...,5%) = 0 for all (j1,-..,7k) > (i1,...,ix), and

(1v) for each integer 1 < i < k, there exists an integer t; such that AH (t1,0,...,0) =
AH(0,12,0,...,0) = --- = AH(0,...,0,t;) = 0.

One question that is not answered within this thesis is whether Theorem 1.3.3 classifies

the ACM sets of points in P™ x ... x P . That is,

Question 1.3.9. If Hx is the Hilbert function of a set of points X in P™ x ... x P  qnd if
AHy is the Hilbert function of an NF-graded artinian quotient of K[Z1 1, -y T1nyy--- 5 Tk,

- Zkn, ], then is X necessarily an ACM set of points?

We can give a positive answer to Question 1.3.9 for sets of points in P! x P! (see Theo-

rem 5.4.4). This result is expanded upon in the next section.

4. The Hilbert Function of Points in P! x P!

Sets of points in P! x P! have enjoyed more exposure than sets of points in more general
multi-projective spaces. This is because Q = P! x P!, where Q is the quadric surface in P3.
As already noted, the Hilbert function of points in Q = P! x P! was first studied, among
other things, by Giuffrida, Maggioni, and Ragusa [24], [25], [26]. There has also been other
work on sets of points on Q. For example, Guardo studied fat points in P! x P! [28], [29];
Paxia, Raciti, and Ragusa considered the uniform position property for points on Q [42];
and Ragusa and Zappald have recently examined, among other things, Gorenstein sets of
points on Q [43]. So, unlike sets of points in an arbitrary multi-projective space, much

more is understood about points in P! x P
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Although Giuffrida, et al. introduced a number of necessary conditions on the Hilbert
function of points in P! x P! in [26], it remains an open problem to give a complete charac-
terization even in this case. Our goal in Chapter 5 is to continue and to extend the program

begun by Giuffrida, et al. by studying the Hilbert functions of points in P! x P!,

Our first contribution to this program is to introduce a new necessary condition on the

Hilbert function of points in P! x P! by answering Question 1.2.5.

To answer Question 1.2.5, we demonstrate that the border of a Hilbert function of a
set of points X in P! x P! can be determined from crude numerical information describing
X. To state our result, we need to define some appropriate notation and introduce some

concepts from combinatorics, specifically, the notion of a partition and its conjugate.

Suppose that X C P! x P! is a collection of s distinct points. Let 7 : P! x P! — P!
be the projection morphism defined by P x Q — P, and let 1y : P! x P! — P! be the
other projection morphism. We associate to X two tuples, ax and Bx, as follows. For
each P, € m(X) = {Pi,..., P} we set o := |m; (P;)|- After relabelling the a;’s so
that a; > «a;q1 for i = 1,...,t — 1, we set ax := (a1,...,a). Analogously, for every
Qi € m(X) = {Q1,...,Qr} we set B = |7, (Q;)|. After relabelling the §;’s so that
Bi > Biy1 fori=1,...,r — 1, we let Bx be the r-tuple fBx := (B1,...,05;)-

Definition 1.4.1. (Definition 2.5.1) A tuple A = (\1,..., A;) of positive integers is a par-
tition of an integer s if Y A\; = s and \; > A;j41 for every i. We write A = (A1,...,Ay) F s.
The conjugate of A is the Aj-tuple A* = (A],..., A} ) where Xf = #{)\; € A | \; > i}.

Furthermore, \* I s.

Example 1.4.2. Suppose A = (4,4,3,1) - 12. Then the conjugate of A is A* = (4,3, 3,2).
In Section 5 of Chapter 2, we will show how to compute the conjugate of a partition from

the Ferrers diagram of the partition.

The tuples ax and fx are both partitions of the integer s = |X|. For any tuple p =
(p1,p2,---,px) we define Ap := (p1,p2 — p1,-..,Pk — Pk—1)- With this notation we show

Proposition 1.4.3. (Corollary 5.2.3) Let X C P! x P! be s distinct points with ax and
Bx. Suppose that Bx = (B¢, Bg) is the border of the Hilbert function of X. Then
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(i) ABc = ok.
(i1) ABg = .

Example 1.4.4. Let X be the set of points from Example 1.2.4. That is, X is the following

collection of points in P! x P':

X:={P1 xQ1,P1 x Q2,P1 X Q3,P1 X Qu, P> x Q2,P> x Q3,P> X Qu,P3 x Qu, Py X Qu},

where P; = Q; := [1 : i] € P'. For this example, 7((X) = {P;, P,, P3, P;}. Furthermore,
|77 (P)| = 4, |77 H(P2)| = 3, |77 H(Ps)] = 1, and |77 (Py)| = 1, and hence, ax = (4,3, 1,1).
The conjugate of ax is the tuple o = (4,2,2,1). Hence, by Proposition 1.4.3, we have
AB¢ = (4,2,2,1), or equivalently, Bc = (4,6,8,9). We see that this agrees with Exam-

ple 1.2.4. A similar computation will enable to us to compute By directly from X.

We show in Theorem 5.2.8 that there exists a link between sets of points in P! x P! and
(0,1)-matrices. Then, by using a classical result about (0,1)-matrices due to Gale and
Ryser (see Theorem 2.5.6) we can answer Question 1.2.5 for sets of points in P! x P!. But

first, we need to define majorization.

Definition 1.4.5. (Definition 2.5.4) Let A = (A1,..., ) and § = (61,...,6,) be two par-
titions of s. If one partition is longer, we add zeros to the shorter one until they have the

same length. We say A majorizes §, written A > 4, if

M+ 4+ N>+ +6  fori=1,..., max{t,r}.

Example 1.4.6. Let A = (4,3,2,1) and § = (4,2,2,1,1). Then A, - 10, and A > §. Now
let v = (5,2,1,1,1) - 10. Then v X because 4 < 5but 4+3+2 >5+2+ 1. It is also
immediate that A\ By.

Theorem 1.4.7. (Corollary 5.2.11) Suppose B¢ = (bg,...,b,—1) and Br = (bj,--.,b,_1)
are two tuples such that by = t, by, = r, and ABc,ABr &+ s. Then B = (B¢, BR) is the
border of a Hilbert function of a set of s points X C P! x P! if and only if ABc > (ABR)*.
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As one application of the above theorem, we can answer Question 1.1.1 for a particular

class of points in P! x P!. In particular, we have

Theorem 1.4.8. (Theorem 5.3.3) Let H : N> — N be a numerical function. Then H
is the Hilbert function of a set of points X C P! x P! with |m(X)| = 2 if and only if the

following conditions hold:

(4)

1 2 3 e r—1 r r
2 my; my2 -+ My, 2 S 8

H = ,
2 my1 my2 cr Mig_2 8

(7)) r <s,

(i13) 2<mqi1 <. <myyo<s,andmi; <2(j+1) forj=1,...,r—2,, and

(iv) if By = (2,m1,,...,m1,—2,5) and By = (r,s), then AB1,ABy - s, and AB;, >
(ABy)*.

Example 1.4.9. Consider the matrix

The matrix H cannot be the Hilbert function of any set of points in P! x P! because it fails
to meet condition (iv) of the above theorem. Indeed, from H, we have B; = (2,3,5), and
thus, AB; = (2,1,2). But this is not a partition of 5, so this cannot be the Hilbert function
of a set of points in P! x P! with |71 (X)| = 2. On the other hand, the matrix

(1 2
2 3
2 3

I N
W

is the Hilbert function of a set of points in P! x P!,
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The second major result of Chapter 5 is a classification of the arithmetically Cohen-
Macaulay sets of points in P! x P'. Giuffrida, et al. originally classified ACM sets of
points in P! x P! via the first difference function AH where H is the Hilbert function of
a set of points (see [26]). We present not only a new proof of this result, but we give a
new characterization of ACM sets of points via the numerical information describing X. In

particular, we show

Theorem 1.4.10. (Theorem 5.4.4) Let X C P! x P! be a set of s distinct points, let ax
and Bx be constructed as above, and let Hx be the Hilbert function of X. Then the following

are equivalent:

(6) X is ACM.
(#4) The function

AHX(ZaJ) = HX(%J) - HX(IL - 15.7) - HX(%] - 1) + HX(Z - 15.7 - 1)

is the Hilbert function of a bigraded artinian quotient of k[z1,y1].

(iii) o = Px.

The equivalence of (i) and (z7) was first demonstrated by Giuffrida, et al. (Theorem 4.1 [26]).

By using Theorem 1.4.10, we show that ACM sets of points in P! x P! are similar, in
some respects, to sets of points in PL. In particular, we show that like a set of points in P!,
the Hilbert function and the graded Betti numbers in the resolution of an ACM set of points
depend only upon crude numerical information about X and not upon the coordinates of

the set of points themselves. Our results are given below.
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Theorem 1.4.11.  (Theorem 5.4.9) Let X be an ACM set of points in P x P! with

ax = (ai,...ap). Then

1 2

_ = O O
NN OO

Theorem 1.4.12. (Theorem 5.4.11) Suppose that X is an ACM set of points in P! x P!

041—1

ap — 1

Oég—].

043—1

with ax = (a1, ...,a4). Define

aq

a1

a3

a3

aq

a1

a3

as

_= = O
N N O

—_
N

0 0 0
042—1 a2 Q92

Oé2—1 a2 (9

0 0
at—l (677

Oét—l (a7

Cx :={(¢,0),(0,a1)} U{(i —1,04) | i — ;—1 < 0},

and

Vx:={(t,a)} U{( — 1, ti—1) | @i — j—1 < O0}.

Then the bigraded minimal free resolution of Ix is given by

00— @ R(—’Ul,—’UQ) —

(v1,v2)€Vx

@ R(—Cl, —CQ) — Ix — 0.

ay

gy




CHAPTER 2

Preliminaries

In this chapter we lay the mathematical foundation for the thesis by collecting the
definitions, results, and techniques that we require for the later chapters. As a consequence,
most of the material in this chapter is well known, the main exception being the contents

of Section 2 which introduces points in P x ... x P7,

The chapter is divided into five sections. In Section 1 we discuss multi-graded rings
S with a special emphasis on the case that S is the quotient of a polynomial ring, or
more generally, a finitely generated k-algebra. We also extend the definition of the Hilbert
function to this context. In Section 2 we introduce the main object of study in this thesis,
namely, points in P™ x --- x P". Because we periodically require results about points
in P", we assemble in Section 3 the needed propositions. Section 4 is a collection of facts
concerning resolutions and projective dimension that we use in Chapter 5. The final section
introduces some concepts from combinatorics, specifically the notions of a partition and a

(0,1)-matrix. These results are required in Chapter 5.

Throughout this thesis k will denote an algebraically closed field of characteristic zero.

1. Multi-graded Rings and Hilbert Functions

In this section we extend the theory of graded rings to the theory of multi-graded rings.
Although a more general theory exists, we have elected to only describe multi-graded rings
in the case that the ring S is a finitely generated k-algebra. We also define a multi-graded
analog of the Hilbert function.

Let N := {0,1,2,...}. If (i1,...,i;) € N¥, then we denote (i1,...,iz) by i. We set
li| == 3 in. Ifi,j € N¥ then i+ j := (i1 + fi, ..., 05 + jx). We write & > j if i > jp
for every h = 1,...,k. This ordering is a partial ordering on the elements of N¥. We also

18
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observe that N¥ is a semi-group generated by {e1,...,ex} where e; is the i standard basis

vector of N¥, that is, e; := (0,...,1,...,0) with 1 being in the i** position.

An NF-graded ring (or simply a multi-graded ring if k is clear from the context) is a ring

R that has a direct sum decomposition R = @ R; such that R;R; C R,y foralli,j € I\
icNk

We sometimes write R;, := R, as R;,,.. ;, to simplify our notation. An element z € R

i)
is said to be Nf-homogeneous (or simply homogeneous if it is clear that R is NF-graded) if
z € R; for some 1 € N, If z is homogeneous, then degz := 4. If k = 2, then we sometimes

say that R is bigraded and x is bihomogeneous.

We now will assume that R = K[Z1,0,--.,%1,n,,%2,05---1%2,n91- - -1 Lk,01 - - - » Thyny)- WE
induce an NF-grading on R by setting deg z; ; = e;. If k = 2, then we sometimes write R as

R =XK[zo,...,%n,Y0,---,Yym] with degz; = (1,0) and degy; = (0, 1).
If m € R is a monomial, then

_ G610 Gl,ny G2,0 02,ny ak,0 Ok,
M=T1o """ Tin, To20 """ TLony """ Lo " Tipy, -

We sometimes denote m by XIQIXQQ2 . --X,%’“ where a; € N% 1. Tt follows that degm =
(la1], |asls---,lag])- If F € R, then we can write F' = F; + --- + F, where each Fj is

homogeneous. The F;’s are called the homogeneous terms of F.

For every i € N¥ the set R, is a finite dimensional vector space over k. A basis for R; as a

vector space is the set of monomials {m = X7*X3?--- X* € R| degm = (|a,|, |as],- - -, |ax|)
It follows that dimy R; = (",F*) ("3f72) - ().

Suppose that I = (Fi,...,F,) C R is an ideal. If each F; is NFf-homogeneous, then we
say I is an NF-homogeneous ideal (or simply, a homogeneous ideal). Tt can be shown that T

is homogeneous if and only if for every F' € I, all of F’s homogeneous terms are in I.

If I C R is any ideal, then we define I; := I N R; for every i € Nf. It follows that each
I; is a subvector space of R;. Clearly I O @P I;. If T is N*-homogeneous, then I = @ I;
i€ENk iENk
because the homogeneous terms of F belong to I if F' € 1.
Let I C R be a homogeneous ideal and consider the quotient ring S = R/I. The
ring S inherits an N¥-graded ring structure if we define S; = (R/I); := R;/I;, and hence,

S= @R/

i1€ENF
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Example 2.1.1. Let R = k[zg, 21, Yo, ¥y1] with degz; = (1,0) and degy; = (0,1). Then R

is N’-graded, i.e., R = GB R; ;. The element F' = T3yoy? + 071y} € Ra 3, and hence,
(1.5)eN?
F is a bihomogeneous element of R. The degree of F is deg FF = (2,3). The element

G = zdyo + zoz1yoy1 is not N2-homogeneous because z3yy € R31 and zoz1y0y1 € Ropo.
Note, however, that G is a homogeneous element of R of degree 4 if we give R the normal

grading.

Suppose that the polynomial ring R is being considered as an Nf-graded ring. For every
1 € N, define R; := @ R;. We can then consider R as an N!-graded ring as well.

{gent| 141=i}
Similarly, an N¥-homogeneous ideal I of R is also an N!-homogeneous ideal of R. Note

however, that an N'-homogeneous ideal need not be an NF-homogeneous ideal. It follows

that the multi-graded quotient S = R/I is also N'-graded.

For the remainder of this thesis we restrict our focus to multi-graded rings of the form
S = R/I, where R is the N*-graded polynomial ring and I is an N¥-homogeneous ideal of R.
In the later chapters we restrict our study even further to the case that I is the homogeneous
ideal defining a set of points in P"! X --- x P . For the remainder of this section we simply
assume that I is a homogeneous ideal of R. We now introduce the multi-graded analog of

the Hilbert function.

Let S = R/I be an N¥-graded ring. The numerical function Hg : N* — N defined by
Hg(i) := dimy (R/I); = dimyg R; — dimy I;
is the Hilbert function of S. The Hilbert-Poincaré series of S is the infinite series
HPs(t1,...,tx) = Z Hg(i)t!  where t* := tlf t;c’“
€Nk

If we can compute H Pg, then we know Hg. For a comprehensive account on the computation

of HPg, one can consult Bigatti [3].

If H : N¥ — N is a numerical function, then we call AH : N* — N the first difference

function of H where

AH(3) := > (D)W H@G —1,. .. i — 1),

QSL:(ll ,---,lk)S(l,---,l)
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where H(j) = 0if j 2 0. If k = 1, then our definition reverts to the classical definition.
Indeed,

AHG) = Y (-)'H@E—1)=(-1)°H(i —0)+ (-1)'H(i — 1) = H(i) — H(i - 1).
0<iI<1

If k = 2, then we write AH as

AH(i,5) =H(i,j) —H(Gi—1,5) —H(,j— 1)+ H(i—1,5 — 1).

We fix, once and for all, a monomial ordering > on the monomials of R (see Definition
2.2.1 of Cox, et al. [13]). If F € R, then the leading monomial of F, denoted Lms (F), is
the monomial term in the support of F' that is maximal with respect to >. The coeflicient
of Lms (F) is 1. The leading coefficient of F, denoted Lc (F'), is the coefficient of Lms (F')
in F. We set Lt~ (F) = Les (F) Lims (F'), and we call Lt (F) the leading term of F. If the
monomial ordering is clear, then we shall simply write Lt(F). If I C R is an ideal, then
Lt(I) := ({Lt(F) | F € I}) is the leading term ideal of I. If T is any N¥-homogeneous ideal
of the multi-graded ring R, then Hp/; = Hp 14y (see Caboara, et al. [7] and Stanley [52]).

The Hilbert functions of finitely generated N!-graded k-algebras, i.e., rings of the form
R/I where I is homogeneous, were originally characterized by Macaulay. To state the result
we require some notation. Let ¢ and a be positive integers. Then the i-binomial expansion

of a is the unique expression

= (1) () e (9)

where a; > a;_1 > .-+ > a; > j > 1. The function <> : N — N, sometimes called

Macaulay’s function, is defined by
0 g<P> — a'z'-i-l " ai_1'+1 ot a'j—i-l
1+1 1 j+1
where a;,a;_1,...,a; are as in the i-binomial expansion of a.

Theorem 2.1.2. (Macaulay) Let H : N — N be a numerical function. Then there ezists
a homogeneous ideal I in the N-graded ring R = k[zo,...,zs] such that Hg)y = H if and
only if H0) =1, H1) =n+1, and H(i +1) < H(E)<* for all i > 1.

PROOF. See the paper of Macaulay [35] or Chapter 4 of Bruns and Herzog [6]. O
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Remark 2.1.3. It remains an open problem to find an analog of Macaulay’s result for
NF-graded rings with k& > 2. Aramova, et al. [2] give some results in this direction by
demonstrating some necessary conditions in the case that k = 2. In Chapter 4, we will give
a Macaulay-type result for N2-graded quotients of k[z1,y1, ..., ym] and N¥-graded quotients

of k[zy,...,zg].

2. The Multi-Projective Space P"! x --- x P"* and Subsets of Points

The goal of this thesis is to understand sets of distinct points in P"* X ... x P". In
this section we set up the needed algebraic and geometric structures associated to sets of
points in P™ x ... x P . To define these points, we proceed in a manner analogous to the
definition of points in P”. We begin by extending the classical definition of projective space

to multi-projective space.

We define the multi-projective space P™ x --- x P™ to be

P s oo 5 P ((@1,05---,@1,m1)5- > (Ak05 - -+ Ckmy)) € kit xo.oox knetL
with no a; = (ai0,...,0in;) =0 / ~
where (ay,...,a;) ~ (by,...,b;) if there exists non-zero Ai,...,Ar € k such that for all
i=1,....k
by = (big,- -5 bin;) = (M@0, ---, i n;) Where a; = (a;0,...,aip;)

An element of P™ x --. x P is called a point. We sometimes denote the equivalence class

of ((a1,0,---,01,m1)5-+-5(Ak0s---1akpm,)) DY [@10 1 - -t Q1) X oo X [ago t --- t Gy It
follows that [a; 0 : -+ : ajpn,] is a point of P™ for every i.
We give the polynomial ring R = K[Z1,0,...,Z1n1s---1Tk,0-- - Thyn,) A0 NF-grading by

setting degx; ; = e;, where e; is the " standard basis vector of N¥. If F € R is an Nt-
homogeneous element of degree (d1,...,dy) and P = [a10: - : @15, X X[k - Q)

is a point of P! x --- x P™_ then
diyd d
F()\lal,o, e ,)\20,2,0, ‘e ,/\kak’o, e ) = )\11)\22 ne )\kkF(al’O, <3820, -,0K,05 - - )

To say that F' vanishes at a point of P! x --. x P" is, therefore, a well-defined notion.
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If T is any collection of N¥-homogeneous elements of R, then define
V(T):={PeP" x---xP" | F(P) =0 for all F € T}.

If T is an N¥F-homogeneous ideal of R, then V(I) = V(T') where T is the set of all homoge-
neous elements of I. If I = (Fy,..., F,), then V(I) = V(Fy,..., F,).

The multi-projective space P™ x --- x P™ can be endowed with a topology by defining
the closed sets to be all subsets of P! x --- x P" of the form V(T') where T' is a collection
of NF-homogeneous elements of R. If Y is a subset of P™ x --- x P™ that is closed and
irreducible with respect to this topology, then we say Y is a multi-projective variety, or

simply, a variety.

If Y is any subset of P™ X --- x P™ then we set
I(Y):={FeR|F(P)=0forall PeY}.

The set I(Y) is an NF-homogeneous ideal of R. We call I(Y) the N¥-homogeneous ideal
associated to Y, or simply, the ideal associated to Y. If Y C P™ x --- x P then we set
Iy := I(Y), and we call R/Iy the Nf-homogeneous coordinate ring of Y, or simply, the
coordinate ring of Y. If Hp/y, is the Hilbert function of R/Iy, then we sometimes write

Hy for Hg/r, , and we say Hy is the Hilbert function of Y.

By adopting the proofs of the well known homogeneous case, it can be shown that

Proposition 2.2.1.

(i) If I, C I are NF-homogeneous ideals, then V(I;) D V(I5).
(#3) If Y1 CYs are subsets of P™" x --- x P™  then I(Y1) D I(Y2).
(#31) For any two subsets Y1,Ys of P" x --- x P™ I(Y; UYs) = I(Y1) NI(Y2).

The NF-graded analog of the Nullstellensatz also holds in this context. Again, the proof

follows as in the graded case.

Theorem 2.2.2. (Nf-homogeneous Nullstellensatz) If I C R is an NF-homogeneous ideal
and F € R is an NF-homogeneous polynomial with deg F > 0 such that F(P) = 0 for all
PeV() CP" x ... x P then F' € T some t > 0.
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Set m; = (240, %i1,...,Tipn;) fori=1,... k. An Nf-homogeneous ideal I of R is called
projectively irrelevant if m¢ C I for some ¢ € {1,...,k} and some positive integer a. An
ideal I C R is projectively relevant if it is not projectively irrelevant. By employing the NF-
homogeneous Nullstellensatz, there is a one-to-one correspondence between the non-empty
closed subsets of P*! x --- x P* and the N*-homogeneous ideals of R that are radical and
projectively relevant. The correspondence is given by Y — I(Y) and I + V(I). This is
analogous to the well known graded case. For the case k = 2, this correspondence can be
found in Van der Waerden [53],[54]. Van der Waerden also asserts that for arbitrary & the

results are analogous to the case k = 2.

Remark 2.2.3. Our construction of P™ x ... x P™ and its subsets follows the classical
definition of the projective space P" as described, for example, in Section 1.2 of Hartshorne’s
book [31]. The paper of Van der Waerden [53] gives a construction similar to the approach
we have given above. The multi-projective space P™ X --- x P can also be constructed via
the modern methods of schemes. For details, see the thesis of Vidal [55]. We will not use
the language of schemes because we wish to focus on sets of distinct points. In the language
of schemes, a set of distinct points is a reduced scheme, and hence, the classical approach

is equivalent to the schematic approach.

We now restrict our attention to subsets X of P™ x --- x P™ gsuch that X is a finite

collection of distinct points. If P € P x ... x P we define

Ip:=1(P)={F € R| F(P) =0}.

If Ix is the ideal associated to X, then the goal of this thesis is to study the Hilbert function
of the coordinate ring of X, that is, of the ring R/Ix. The remainder of this section is a
collection of results concerning the structure of the ring R/Ix that will be used throughout

the thesis.

We begin by describing the generators of Ip. To do so, we require some results about

Groebner bases. Our primary reference is Cox, Little, and O’Shea [13].

Theorem 2.2.4. (Division Algorithm, [13] Theorem 2.3.3) Let R = k[z1,...,z,]. Fiz a

monomial ordering > and let (Fy,...,F,) be an ordered tuple of polynomials in R. Then
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every F' € R can by written as
F=GiFi+---+G,F,+ H

where G;, H € R and either H =0, or H is a linear combination, with coefficients in k, of
monomials, none of which is divisible by any of Lt(F1),...,Lt(F,). We call H a remainder
of F on division by (F1,..., F,).

Definition 2.2.5. Fix a monomial ordering. A finite subset G = {G4y,...,G,} of an ideal
I is said to be a Groebner basis if (Lt(G1),...,Lt(G,)) = (Lt(I)).

Theorem 2.2.6. ([13] Theorem 2.6.6) Let I be an ideal of R = k[z1,...,z,]. Then a
basis G = {G1,...,Gy} for I is a Groebner basis for I if and only if for all pairs i # j, the

remainder on division of
M M

Lt(Gy) ' Lt(G,) G
where M = LCM(Lm(G;),Lm(Gj)), by the tuple (G1,...,G,) is zero.

Proposition 2.2.7. For any point P € P X --- x P et Ip be the ideal associated to
the point P. Then

(2) Ip is a prime ideal.

(n) IP = (L1,1; . ,Ll’nl,LQ,l, . ,LQ,nz, . ,Lk,l, . aLk,nk) where degLi,j = €;.

ProoF. (i) If FG € Ip, then (FG)(P) = F(P)G(P) = 0. Hence, either F' or G must

vanish at P, and thus is an element of Ip.

(1) Suppose that P =[a10: - -t aip;| X - - X[ago: +:agp,]. Foreachie {1,...,k}
there exists a; ; # 0. Assume for the moment that a;,;, # 0 for all i. We can then assume
that P = [al’o Tt lQlpy—1 - 1] X [0,2’0 Y R T 1] X e X [ak70 N )R 1] Set

Z1,0 — 1,021,n15 T1,1 — @1,1%1,n95---5T1n1—1 — B1n;—1T1,ny >
I 2,0 — 02,0T2,n5922,1 — 02,1T2n35---3L2no—1 — A2,;ns—1T2,ns>
Tk,0 — Qk,0Tkng, Lkl — Ok, 1Tkngs - -9 Lhng—1 — Ckng—1Tk,ng,

Then I C Ip because all of the generators of I vanish at P. If we show that Ip C I, then we

will be finished because deg(z; ; — a; ;i n;) = €;. To accomplish this, we need two claims.
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Claim 1. The generators of I are a Groebner basis for 1.

Proof of the Claim. Let x;; — a; jT;yn;, and Ty j1 — a; j1Tit n, be two distinct generators of
I. By Theorem 2.2.6, we need to check that the division of

_ TijTi g TijTi 5

S (Tij — @i,jTim;) — (i — ai T py,)

Ti,j T 5

by the generators of I has a remainder of zero. A routine calculation will verify that
S = ai:jwilaj’l‘i:ni - ai’ﬂjlxixjmi':ni’ = aiajxiani (xilajl - ai’ﬂjlwi’ani’) —ay 7j’$i’5ni’ (xl,] - aiajl‘i,ni)'
Hence, division of S by the generators of I results in a remainder of zero. O

Claim 2. 1 is a prime ideal.

Proof of the Claim. Suppose that F,G ¢ I. Since F,G ¢ I, the division of F' and G by
the generators of I yields

F=F'+F" and G=G+G"

where F',G' € I and F",G" ¢ I. Furthermore, since the generators of I are a Groebner
basis by Claim 1, F”,G"” must be polynomials in the indeterminates z1,,,Z2n,,- -, Tkn,
alone. If FG = F'G' + F"G' + F'G" + F"G" € I, then this would imply that F"G" € I.
But the leading term of F”’G" is a monomial only in the indeterminates i p,, ..., Tk n,
and so Lt(F"G") ¢ Lt(I). But this contradicts the fact F"G"” € I. So FG ¢ I and hence,
I is prime. O

We now demonstrate that Ip C I. Let F' € Ip. Because V(I) = V(Ip) = P, the

Nullstellensatz (Theorem 2.2.2) implies that F* € I for some positive integer . By Claim
2, we then have F' € I, as desired.

To complete the proof of (i), if a;,;, = 0, then there exists an integer 0 < j < n; such
that a; ; # 0. We then repeat the above argument, but use z; ; instead of z;,, to form the
generators of I, and use a monomial ordering so that z, s > x;; if r > 4 and if r = 4, then

zis > zij forall s € {0,...,7,...,mi}. O

Definition 2.2.8. Let p be a prime ideal of a ring S. The height of p, denoted htg(p), is the
integer ¢ such that we can find prime ideals p; of S such that p =g D 1 2 - 2 01 2 Ko
and no longer such chain can be found. If S is a ring, then the Krull dimension of S, denoted

K-dim S, is the number K- dim S := sup{htg(p) | p a prime ideal of S}.
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Proposition 2.2.9. Let X = {Py,...,P;} CP™ x --- x P"% be a set of s distinct points

and suppose that Ip, is the ideal associated to the point P;. Then
(Z) Ix=1IpNIp,N---N1Ip,.
(i5) K-dim R/Ix = k.
PROOF. Statement (7) is an immediate consequence of statement (i4i) of Proposition 2.2.1.

For (i), the grading of a ring S does not affect the Krull dimension. We therefore
consider the multi-graded ring R/Ix as N*-graded.

For each i € {1,...,k}, it follows from Proposition 2.2.7 that the ideal Ip,, as an N'-
graded ideal in the N!'-graded ring R, is generated by linear polynomials. Furthermore,

the polynomials are also linearly independent. Thus, the variety V(Ip,) C PN~ where

k
N = Z(nJ + 1), is a linear variety. Moreover,
j=1

k
dimV(Ip)=N-1-) nj=k-1.
j=1

The ideal Iy, as an N'-homogeneous ideal, corresponds to the variety V(Ix) C PN~1 where

V(Ix) = U V(Ip,;). Thus, dimV(Ix) = max{dimV(ij)}j.:1 =k — 1. But then
j=1

K-dim(R/Ix) = dim V(Ix) + 1 = k.

This is the desired result. O
For each 7 € {1,...,k}, we define the projective morphism 7; : P™ X --- x P — Pn
by
(1,0t - 1@y ) X o X (@0 - Qi) X X [Ag0 e k] F (@0 Tt Qi)

If X is a finite collection of distinct points in P™ X --- x P then m;(X) C P™ is the finite
set of distinct i*® coordinates that appear in X. The Hilbert function of 7;(X) can be read

from the Hilbert function of X as we show below.

Proposition 2.2.10. Suppose that X C P™ x ... x P is a finite set of points with Hilbert
function Hx := Hp/r,. Fiz an integer i € {1,...,k}. Then the sequence H = {hj}jen,



2. THE MULTI-PROJECTIVE SPACE P"1 x ... x P"x AND SUBSETS OF POINTS 28

where hj := Hx(0,...,7,...,0) with j in the i*" position, is the Hilbert function of m;(X) C
P,

PRrROOF. We will prove the statement for the case i = 1. The other cases follow similarly.
Let I =I(m (X)) C S =k[z1,0,-..,Z1,n,]. We wish to show that (R/Ix);o...0 = (S/I); for
all j € N. Since Rj,.. o= S; for all j € N, it is enough to show that (Ix);,..0 = I; for all
JjEN

If P is a point of X C P™ x --. x P™_ then, by Proposition 2.2.7, the ideal associated
toPisIp = (Liji,...,Lipn, Loit,...sLopysenos Lg,. .., Ly, ) where deg L; j = e;. Let P’
denote 71 (P) € P™. Then the ideal associated to P' in S is Ipr = (L1,1,...,L1p,) where
we consider Ly 1,...,L1y, as N!-graded elements of S. There is then an isomorphism of

vector spaces (Ip)jo,..0 = (Li,1,---5 Lin)j0,..0 = (Ipr); for each positive integer j.

Thus, if X = {Py,..., P}, then m(X) = {m(P1),...,m(Ps)}, and hence

S S
(Ix)j,0,..0 = ﬂ (Ip)j0,...0 = ﬂ 1 ( pl =1I; foralljeN
i=1 =1
O

We end this section by giving some necessary conditions on the Hilbert function of a

set of points X in P™ x ... x P™*. We will first require the following lemmas.

Lemma 2.2.11. Let V be a vector space over a field k with |k| = co. Let V; TV be any
n

proper subvector space. Then V # U Vi for any collection of n < oo subvector spaces.
i=1

PROOF. We consider the cases n = 2 and n > 2 separately. Suppose that there exists
Vi,Va € V such that V = V3 U V4. Then there exists elements 1 € V\V; and z2 € V\Va.
Since V.= Vi UV;, 29 € V7 and 21 € V5. But now consider the element 1 + zo € V.
If z1 + o € Vi, then z; € Vq, which is a contradiction. Hence, z1 + zo ¢ Vi. Similarly,
z1+ zo & Va. So z1 + z2 € V\(V1 U V3), a contradiction.

Now suppose there are n subvector spaces Vi,...,V, C V, with 2 < n < oo, such that
n

V= U Vi. We assume that n is minimal, that is, there is no j € {1,...,n} such that
i=1
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U V= U Vi. Thus, for each i we can find an element z; € V;\ U Vi |. Because V is a
{ 1] J#i
vector space, c1z1 + coxo € V for all ¢1,co € k.

Claim. 1If cg # 0, then c1z1 + coxs & V4. If ¢1 # 0, then c1x1 + cazo € Vo.

Proof of the Claim. 1If ciz1 4+ caxo € Vi, then coxo € V4. If ¢o # 0, then 2o € Vi which
contradicts our choice of z2. The second statement is proved similarly. O
Let X := {z1 +dz2 | d € k} C V. By the above claim, no enlement of X can be in either
V1 or V5. On the other hand, because k is infinite and V = U Vi, there exists a subvector

i=1
space V;, with 7 > 3, such that V; contains an infinite number of elements of X. Thus,

within this V; there exists 1 + diz2 and z1 + dexe with di # da. It then follows that

pR— (z1 + dize — 31 — domo) = 12 € V;.

n

But this contradicts our choice of 9, and hence V # U V. O
i=1

Lemma 2.2.12. Suppose X C P x --- x P is a finite set of distinct points. Then there

exists a form L € R of degree ey such that L is a non-zero divisor in R/Ix.

PROOF. The primary decomposition of Ix is Ix = g1 N --- N g, where p; is an Nk-
homogeneous prime ideal associated to a point of X. The set of zero divisors of R/Ix,
denoted Z(R/Ix), are precisely the elements of Z(R/Ix) = |J;_,p;. We want to show

S
Z(R/Ix)e; S (R/Ix)e,, or equivalently, U(@i)m C R.,. By Proposition 2.2.7 it is clear

=
=1

that (p;)e; € Re, for each i =1,...,s, and thus, by Lemma 2.2.11, the desired conclusion

=

follows. L]

Proposition 2.2.13. Let X be a set of distinct points in P™ x - -+ x P™ and suppose that
Hyx is the Hilbert function of X. Then for all i = (iy,...,i;) € N¥ we have

Hx(i) < Hx(i+e;) forallj=1,...,k.

PROOF. We will only demonstrate that Hx(i) < Hx(i + e1) = Hx(i1 + 1,42,...,1k)

since the other cases follow similarly. By Lemma 2.2.12 there exists a form L € R such that



3. SOME RESULTS ABOUT POINTS IN P" 30

deg L = e; and L is a non-zero divisor is R/Ix. Hence, for any i € N* the multiplication

map (R/Ix); xk (R/Ix) is an injective map of vector spaces. Therefore

i+e1
Hx (i) = dimy (R/Ix); < dimy(R/Ix)(,41,4,...0,) = Hx(i + e1).

O

Proposition 2.2.14. Let X be a set of distinct points in P™ X --- X P™* and suppose that
Hx is the Hilbert function of X. Fiz an integer j € {1,...,k}. If Hx(i) = Hx(i + e;), for
some j € {1,...,k}, then Hx(i + ;) = Hx(i + 2¢;).

ProOOF. We will only consider the case that j = 1 since the other cases are proved
similarly. By Lemma 2.2.12 there exists a form L € R such that degL = e; and L is a
non-zero divisor in R/Ix. Thus, for each i = (iy,...,i;) € N¥, we have the following short

exact sequence of vector spaces:
T
0 — (R/Ix); == (R/Tx)j4e, — (R/(Ix, L)1, — O

If Hx(i) = Hx(i+e1), then this implies that the morphism x L is an isomorphism of vector
spaces, and thus, (R/(Ix,L))ite;, = 0. So (R/(Ix,L))it2e; = 0 as well. Hence, from the

short exact sequence

0 — (R/Ix)i10, -5 (R/I)1490, — (B/(Ix, L))490, — 0

i+eq i+2e1 i+2eq

we deduce that (R/Ix)ite, = (R/Ix)it2e: - O

Remark 2.2.15. The above proposition is a generalization of a result for points in P"

found in Geramita and Maroscia (cf. Proposition 1.1 (2) of [18]).

3. Some Results about Points in P"

Although sets of points in P! x - - - x P™* are our primary object of study, we occasionally
need some results about sets of points in P™. In this section we collect the needed facts.
Many of these results, if not all, are well known. However, for the convenience of the reader,

we have included most of the proofs.

It follows from Proposition 2.2.7 that if P is a point of P”, then the ideal associated to
P, say Ip, is a prime ideal that is generated by n linear forms. If X = {Py,..., P} is a
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collection of s distinct points, then the ideal associated to X is Ix = Ip, N--- N Ip,. More

properties of the ideal Ix are found in the paper of Geramita and Maroscia [18].

Proposition 2.3.1. Let X={Py,...,P;} CP" R =XK[zy,...,z,], and Ix C R the ideal
of forms that vanish on X. For any j > 0, let {m1,... ,m(n;”)} be the (";’J) monomials of
R of degree j. Set
mi(P1) --- m(n;_rj)(Pl)
M; =
mi(Py) - mntdy (Py)

Then tk M; = Hx(j) where Hx is the Hilbert function of R/Ix.

PROOF. To compute Hx(j), we need to determine the number of linearly independent
forms of degree j that pass through X. A general form of degree j looks like F' = ¢cym1 +
R C(ntd) M (n+3) where ¢; € k. If F(P;) = 0, we get a linear relation among the ¢;’s,

J J

namely

cmi(P) +---+ C(nﬂ)m(n-@-j) (P;) =0.

J J

The elements of (Ix); are given by solutions of the system of linear equations F(P;) = --- =

F(P;) = 0. The matrix of this system of equations is

J

my(Py) - m(n+j)(P1)

mi (Ps) e m(n;r]) (PS)

which is M;. Now the number of linearly independent solutions = dimy (/x);. Hence

dimg(Ix); = #columns of M; —rkM; = (n +j) —rk M;.
J
Since dimy R; = ("}7), we have Hx(j) = rk M;, as desired. O
Remark 2.3.2. This proposition is generalized to points in P™ x ... x P" in Proposi-

tion 3.2.2.

Proposition 2.3.3. Suppose X = {Py,...,P;} CP", R = kl[zg,...,zy), and Ix C R is
the ideal of forms that vanish on X. Then there exists polynomials Fy,. .., Fs of degree s—1
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such that F;(P;) = 0 if i # j, but F;(P;) # 0. Furthermore, the F; are linearly independent

modulo TIx.

PROOF. This result is found in the proof of Theorem 3.4 of Sabourin [49]. O

Proposition 2.3.4. Let X ={Py,...,P;} CP" be a collection of s distinct points. Let Ix
be the ideal in R = K[z, ...,zy] of forms that vanish on X. If Hx is the Hilbert function
of R/Ix, then Hx(i) = s for all i > s — 1.

PROOF. Let M; be the matrix from Proposition 2.3.1. It then follows that Hx(j) < s
for all j because rk M; < s.

By Proposition 2.3.3 there exists s forms Fi,..., Fs of degree s — 1 that are linearly
independent modulo Ix. But this implies that dimyg(R/Ix)s—1 = Hx(s — 1) > s. Now let
i € Nbe such that ¢ > s—1. Then, by Proposition 2.2.13, we have s < Hx(s—1) < Hx(i) < s.

Hence, the conclusion holds. O

Remark 2.3.5. The main result of Chapter 3 is a generalization of the above result to sets

of points in P"* x ... x P"k,

Proposition 2.3.6. Let X = {Py,...,Ps} C P", R = K[zo,...,%y], and Ix C R the
ideal of forms vanishing at X. Suppose Hx(j) = k. Then we can find a subset X' C X of k
elements, say X' = {Py,..., P} (after a possible reordering), such that there exist k forms
G1,...,Gy of degree j with the property that for every 1 <1 <k, Gi(P) =0 ifi #1, and
Gi(P) #0.

PRrOOF. Let {mi,... ,m(nﬂ)} be the ("jj) monomials of degree j in R. By Proposi-
J

tion 2.3.1 the matrix

ml(Pl) T m(nj-g)(Pl)

my(Ps) - m(n;rj) (Ps)
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has rank rk M; = Hx(j) = k. Without loss of generality, we can assume that the first &
rows are linearly independent. So, let X' = {Py,..., P} C X, and let
m1 (P1) et m(n-!-j) (P1)
J
r_
M; =
my(P) - m(nﬂ')(Pk)
J
Fix an ¢ € {1,...,k} and let X = {Pl,...,lgi,...,Pk}. If we remove the i** row of M,
then the rank of the resulting matrix decreases by one. Since the rank of the new matrix
is equal to the Hilbert function of Xj, it follows that dimy(Ix/); + 1 = dimi(Ix;);. Thus,

there exists an element G; € (IX;)j such that G; passes through the points of X! but not
P;. We repeat this argument for each 7 € {1,...,k} to get the desired forms. O

Remark 2.3.7. This result is generalized in Proposition 3.2.3 to points in P! x ... x P",

Proposition 2.3.8. Let X ={Py,...,P,} CP'. Then

) 1+1 0<1<s—1
Hx(z):{

s 1>8
ProOF. If P; € X, then Ip, = (Lp,) C R = k[zg, 1] where deg Lp, = 1. Since each Ip, is
S
a principal ideal, Ix = n Ip, = (Lp, --- Lp,). Because Ix is a principal ideal, R;_, = (Ix);
i=1

via the map F — F - (Lp, --- Lp,). But then

1+1 ifi<s—1

dimk(R/Ix)i = dimk Ri - dimk Rz’—s =
i+l—(i—s+1)=s ifi>s

This computes Hx for all i. d

The Hilbert functions of finite sets of distinct points in P have been characterized. To

state the result, we require a definition.

Definition 2.3.9. A homogeneous ideal I C R = K[z, ...,Zy] is an artinian ideal if any

of the following equivalent statements hold:

(i) K-dimR/I = 0.
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(”) \/j: ($0,---a$n)-
(131) acz € I for some positive integer ¢ and all 0 < j < n.
(’L’U) HR/[(Z) = 0 fOI' al] 'L > 0

A ring S = R/I is a graded artinian quotient if the homogeneous ideal I is an artinian ideal.

Proposition 2.3.10. Let H : N — N be a numerical function. Then H is the Hilbert
function of a set of distinct points in P™ if and only if the first difference function AH :
N — N, where AH(i) := H(i) — H(i — 1) for all i € N, is the Hilbert function of a graded
artinian quotient of kK[z1,...,zy]. (H(i) =0 14fi <0.)

PROOF. See Geramita, Maroscia, and Roberts [19], or Corollary 2.5 of Geramita, Gre-
gory, and Roberts [16]. O

Remark 2.3.11. The result of Geramita, Maroscia, and Roberts [19] is a generaliza-
tion of earlier results due to Maroscia [37] and Roberts [47]. The original formulation of
Proposition 2.3.10 in [19] makes no reference to artinian quotients, but instead classifies
the Hilbert function of points via the properties of AH. The connection between Hilbert
functions of points and artinian quotients appears to be first made in Geramita, Gregory,

and Roberts [16].

4. Resolutions and Projective Dimension

For this section we assume that R = k[zo, ..., z,] is an N'-graded ring. In Chapter 5 we
will require some results about the resolution and projective dimension of an R-module. In
this section we will recall the necessary results and definitions. Cox, Little, and O’Shea [12],

Geramita and Small [22], and Weibel [56] are our main references for this material.

Definition 2.4.1. An R-module M is a graded R-module if (i) the module M has a direct

sum decomposition M = @ M; where each M; is an additive abelian group, and (i7) the
1E€EZ
decomposition of M in (i) is compatible with the multiplication of R in the sense that

R;M; C M;; for all i € N and all j € Z.
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If I is a homogeneous ideal of R, then I can be viewed as a graded R-module if we take
I; = 0 for i < 0. Similarly, for any homogeneous ideal I C R, the ring R/I is a graded
R-module. If M is any R-graded module, and d is any integer, we let M(d) denote the
direct sum M (d) = @ Mgyy;. Then M(d) is also a graded R-module, and it is sometimes

1E€EZ

referred to as the twisted graded module.
Definition 2.4.2. Let M and N be graded R-modules. A homomorphism ¢ : M — N is
said to be a graded homomorphism of degree d if p(M;) C N; 4 for all i € Z.

Definition 2.4.3. If M is a graded R-module, then a graded free resolution of M is an

exact sequence of the form
e BB R AR M —0

where each F; = R(—d;1) @ -+ ® R(—d;p,;) for some integers d; 1,...,d;p;, and each ¢; is
a graded homomorphism of degree zero. If there exists an [ such that F; # 0, but F;4; =0
for all ¢ > 1, then we say the resolution is finite of length I.

If M is a finitely generated graded R-module, then a classical theorem of Hilbert, specif-
ically, the Hilbert Syzygy Theorem (see Theorem 6.3.8 of Cox, et al. [12]), says that there
exists some graded free resolution of M of length at most n+1, the number of indeterminates

of R. We give a name to the minimal length in the next definition.

Definition 2.4.4. Let M be a finitely generated graded R-module. We say that the
projective dimension of M is d, and we write proj. dimp M = d if (i) there is a graded free

resolution of M

0 —Fa 24 .. B 2B RS M—0
d 3

and (4¢) there is no shorter graded free resolution. If R is clear, then we may simply write

proj.dim M = d.

Example 2.4.5. Let d € Z and let M be the graded R-module M = R(d). Then

proj. dimp M = 0 because we have the graded free resolution 0 — R(d) - M — 0.
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Suppose that 0 — M; f) My — M3 — 0 is an exact sequence of graded R-modules.

Furthermore, suppose that we know the graded free resolutions of M; and Mo, i.e.,

Hfgﬂ)flgfoﬂ)Mlﬁﬂ

—>g2ﬂ)glﬂ>goﬂ)M2—)O.

The mapping cone construction enables us to build a graded free resolution of M3 from the
graded free resolutions of M; and Ms. The main idea behind this construction is as follows:
for each 7 € N, define H; = F;_1 & G; where F_1 = 0. Then, from the maps ¢ : M1 — Mo,
©i—1, and 1); we can construct a map §; : H; — H;—1. (We omit the details behind the

construction of the maps §; since we do not require the maps.) Then the sequence
03 02 o1 do
oo —Ho —H1 — Ho — M3 — 0

is a graded free resolution of M3. See Section 1.5 of Weibel [56] for more details.

The following proposition gives some well known properties about the projective dimen-

sion of a finitely generated graded R-module that we will require in this thesis.

Proposition 2.4.6.

(¢) If I is a homogeneous ideal of R, then proj.dimg(R/I) = proj.dimp I +1
(#8) If 0 - My — My — Ms — 0 is an ezxact sequence of graded R-modules with
degree zero maps, and if proj.dimp M < proj.dimp My, then proj.dimp My =
proj.dimp M3.
(#91) If M and N are graded R-modules, then

proj.dimp(M @ N) = max {proj. dimg (M), proj. dimg(N)} .

PROOF. To prove (i), one needs to consider the cases that I is free and I is not free
separately. The case that I is free is shown in Example 17.9(2) of Geramita and Small [22].
The other case is a consequence of Theorem 18.1 of [22]. Statement (i) is one part of
Theorem 18.1 of [22]. Statement (i4i) is a standard exercise of most homological algebra

texts. See, for example, Exercise 4.1.3 of Weibel [56]. O
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5. Some Combinatorics

We end this chapter by introducing some definitions and results from combinatorics.

These facts are used in Chapter 5. Our main reference is Ryser [48].

Definition 2.5.1. A tuple A = (Ay1,..., ;) of positive integers is a partition of an integer
sif Y A =sand \; > Ay for every i. We write A = (A1,..., ;) F s. The conjugate of A
is the tuple \* = (A],..., A} ) where A7 = #{)\; € X\ | A\; > i}. Furthermore, \* - s.

Definition 2.5.2. To any partition A = (A1,...,A,) F s we can associate the following
diagram: on an r X A; grid, place A; points on the first line, Ao points on the second, and

so on. The resulting diagram is called the Ferrers diagram of X.

Example 2.5.3. Suppose A = (4,4,3,1) - 12. Then the Ferrers diagram is

The conjugate of A can be read off the Ferrers diagram by counting the number of dots in

each column as opposed to each row. In this example A* = (4,3, 3,2).

Definition 2.5.4. Let A = (A\1,..., ) and 6§ = (d1,...,d,) be two partitions of s. If one
partition is longer, we add zeros to the shorter one until they have the same length. We

say A majorizes 0, written A > ¢, if
M+ + N >0 4+ fori= 1,...,max{t,r}.
Majorization induces a partial ordering on the set of all partitions of s.

Definition 2.5.5. A matrix A of size m x n is a (0, 1)-matriz if all of its entries are either
zero or one. The sum of the entries in column j will be denoted by «;, and the sum of the
entries of row 7 will be denoted by £;. We call the vector ay = (a1, ...,a,) the column

sum vector and the vector 4 = (f1,...,0m) the row sum vector.
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Given a (0, 1)-matrix, we can rearrange the rows and columns so that a4 (respectively,
Ba) has the property a; > ;1 (respectively 8; > B;+1) for every i. Observe that a4 and

B4 are partitions of the number of 1’s in A. Unless otherwise specified, we assume that any

(0, 1)-matrix has been rearranged into this form.

If o and 8 are any two partitions of s, then we define
M(a, B) == {(0,1) -matrices A | a4 = o, fa = (}.

It is not evident that such a set is nonempty. The following result is a classical result, due

to Gale and Ryser, that gives us a criterion to determine if M(a, 8) = 0.

Theorem 2.5.6. (Gale-Ryser Theorem) Let a and 8 be two partitions of s. The class
M(a, B) is nonempty if and only if o > B.

PROOF. See Theorem 1.1 in Chapter 6 of Ryser’s book [48]. O

The proof given by Ryser to demonstrate that o* > 8 implies M(«, §) is nonempty is

a constructive proof. We illustrate this construction with an example.

Example 2.5.7. Let a = (3,3,2,1) and 8 = (3,3,1,1,1). A routine check will show that
o = (4,3,2) > (3,3,1,1,1) = B. We construct a (0, 1)-matrix with column sum vector «
and row sum vector 8. Let M be an empty |8| x |a| = 5 x 4 matrix. On top of the j*

column place the integer «;. Beside the ith row, place B; 1’s. For our example we have

33 21
111
111

Starting with the rightmost column, we see that this column needs one 1. Move a 1 from
the row with the largest number of 1’s to this column and fill the remainder of the column

with zeroes. If two rows have the same number of ones, we take the first such row. So, after
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one step,

111
111

1
1
1

3

3

2

1
a
0

0

0
0

39

We now repeat the above procedure on the next to last column. We place two 1’s in the

third column, taking our 1’s from the rows that contain the largest number of ones. Thus,

our example becomes

1A A
114
1

1
1

We continue the above method for the remaining columns to get

ALA
AL
1
1
1

3
0
1
0
1
1

O O = = =

(= L

0

O O O = =N

o O o o =

S O O O = =

It follows immediately that our matrix is an element of M(«, 3). The proof of the Gale-

Ryser Theorem shows that if o* I> 8, then this algorithm always works.



CHAPTER 3

The Border of a Hilbert Function of a Set of Points

The goal of this chapter is to generalize the following result for sets of points in P to

sets of points in P™* x ... x P",

Proposition 3.0.1. Let X C P" be a collection of s distinct points. Let Ix be the
homogeneous ideal in R = K[z, ...,z,] of forms that vanish on X. If Hx is the Hilbert
function of R/Ix, then Hx(i) = s for alli > s — 1.

This proposition was proved in Chapter 2 (cf. Proposition 2.3.4). We observe that the
above proposition has two consequences for the Hilbert function of a set of points in P™.
First, to calculate Hx(7) for all i € N, we need to calculate Hx(7) for only a finite number
of 7. Second, numerical information about X, in this case the cardinality of X, tells us for

which 7 we need to compute Hx(i) in order to determine the Hilbert function for all 4 € N.

The generalization for a set of distinct points X C P™ x ... x P™ that we present
in this chapter will also have analogous consequences. Specifically, we demonstrate that
to compute Hx(i) for all i € N¥, we need to compute Hx(i) for only a finite number of
i € N¥. The other values of Hx(i) are then easily determined from our generalization of
Proposition 3.0.1. Moreover, the i for which we need to compute Hx(i) can be determined

from the combinatorial properties of X.

The proof of the generalization of Proposition 3.0.1 for sets of points in P"! x - .. x P,
while similar to the proof for points in P”, is more complicated notationally. Hence, to
prevent the reader from drowning in notation, we have decided to consider the case of
points in P™ x P™ separately so that the reader can follow the idea of the proof. Then, for
completeness, we give a proof for sets of points in P™ x ... x P™. In both cases, the proof

is a variation on the original proof for Proposition 3.0.1.

In this chapter we also define the border of the Hilbert function for a set of points. The

border of the Hilbert function divides the values of the Hilbert function into two sets. The

40
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first set, which consists of an infinite number of elements, contains the values of the Hilbert
function which depend only upon our description of the eventual growth of the Hilbert
function. The second set, which is finite, is the set of values at which the Hilbert function

has not attained this eventual growth, and therefore, must be calculated.

In the final section we introduce sets of points in P™ X --- X P™ in generic position.
Since the Hilbert function of a set of points has a border, we deduce that there are only a
finite number of distinct Hilbert functions for sets of s points in P"! x - -- x Pk, This leads
us to calculate an expected Hilbert function. Proceeding as in the case of points in P", we
say that those points in P™ X --. x P" which satisfy this expected Hilbert function are in

generic position.

1. The Border of the Hilbert Function for Points in P" x P™

Let X C P" X P be a collection of s distinct points. Let Ix be the bihomogeneous ideal
associated to X in the bigraded ring R = k[zg, ..., Zn,Y0,---,Ym] where degz; = (1,0) and
degy; = (0,1).

If 71 : P* x P — P" is the projection morphism, then 71(X) C P" is a collection of
t < s points. The set m1(X) is the set of distinct first coordinates that appear in X. For
every P; € m(X), we have

w1 (P) ={Pi x Qiys.., Pix Qip, } € X,

That is, 7] *(P;) is the subset of X consisting of all the points which have P; as its first
coordinate. Observe that «; := |71 (P;)| > 1 for all P; € m;(X). We also note that the sets
77 (P;) partition X, specifically,

x= |J =)

Pemi(X)

Let mo : P™ x P™ — P™ be the other projection map. For each P; € 71(X), the set
Qp, := mo(r ' (P) = {Qy; |Pi x Qi; € 771 (P)}
is a collection of «; distinct points in P”*. With the above notation, we have

Proposition 3.1.1. Let X C P" x P™ be a set of s distinct points and suppose that
m(X) = {P1,..., P} is the set of t < s distinct first coordinates in X. Fiz any integer
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j > 0. Then, for all integers | >t —1 = |m(X)| — 1,
dim(R/Tx)i; = Y, Hgp,(4)
Pemi(X)

where Hq,, is the Hilbert function of the set of points Qp; = 7r2(7r1_1(Pi)) cpm,

PrOOF. Fix a 7 € N and set
# = 3 Henl).
Pemi(X)
We will first show that dimy(R/Ix);; < (*) for all l € N. Let {X1,... ,X(n+l)} be all the
1

monomials of degree (1,0) in R and let {Y7,... ,Y(mgrj)} be the (mjﬂ ) monomials of degree
J

(0,7) in R. For any [ € N, an element L € R, ; has the form

L = (01’1X1 + -+ Cl’(n+l)X(n?—1)) Y + (02’1X1 + -+ 02’(n+l)X(n-l+—l)) Yo +---

1 1

(s okt e i X Yoy

j l l J
with coefficients c;, ;, € k. By setting 4; := ¢; 1 X1 +-- +¢; (n+l)X(n+l) fori=1,..., (m;-rj),
(AN 1
we can rewrite L as L = A1Y] + AyYo +--- + A(m+j)Y(m+j).
j j

Claim. Each subset 7] ' (P;) C X puts at most Hg p,(7) linear restrictions on the forms of
R, ; that pass through X.

Proof of the Claim. Suppose 7r1_1(P,~) ={P X Qi,,...,P; x Qiai} C X, and thus the set
Qp, = {Qi\,- .. ,Qiai} C P™. If L € R, vanishes at the s points of X, then it vanishes on
771 (P;), and thus

L(P; x Qi) = Ai(P)Y1(Qiy) +---+ A(mjjf‘j)(-F)i)Y(m]ff‘j)(Qil) =0

L(P; x Qi,,) = Ai(P)Y1(Qi,,) +---+ A(m;rj)(ﬂ)y(m;rj)(Qiai) = 0.
We can rewrite this system of equations as

Y1(Qiy) - ¥(meiy (Qiy) Aq(P;) 0

Vi(Qig,) o+ Y(mti)(Qio,) A iy (Fi) 0

J
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The maximum number of linear restrictions 7} ' (P;) can place on the elements of Ry ; that
pass through X is simply the rank of the matrix on the left. But by Proposition 2.3.1, the
rank of this matrix is equal to Hg,, (j). This gives the desired result. O

By the claim, for each P; € 71(X), the set m, *(P;) imposes at most Hgq,,(j) linear
restrictions on the forms of R;; that pass through X. Hence, the set X imposes at most
Z Hgqp, (j) linear restrictions. It then follows that

Pem (X)

dimk(IX)l,j > dimk Rl,j - (*),
or equivalently, dimy (R/Ix);; < (*) for all integers /.

We now show that if [ = ¢ — 1, then the bound (x) is attained. The set m(X) =
{P1,..., P} is a subset of P". By Proposition 2.3.3, there exist ¢ forms Fp,,..., Fp, of
degree t — 1 in k[zo,...,zy] such that Fp,(P;) # 0 and Fp,(P;) = 0 if i # j. Under
the natural inclusion k[zo,...,zn] — k[zo,...,Zn,Y0,---,Ym] We can consider the forms

Fp,,...,Fp, as forms of degree (t —1,0).

For our fixed j, we partition the points of 71 (X) as follows:

Sy = {P,- € m(X) ‘ Hoy (j) = k} for k=1,..., (m;”>
Pick a point P; € m1(X) and suppose that P; € Si. Furthermore, suppose that Qp, =
{Qi1,---,Qiq;} € P™. Proposition 2.3.6 implies the existence of a subset @ C Qp, of k
elements, say Q@ = {Q;,1,...,Qir} after a possible reordering, such that for every Q;q €
Q we can find a form Ggq,, € k[yo,-..,ym] of degree j such that Gg, ,(Q;q4) # 0 but
G, 4(Qie) = 0if Qi # Qiq and Q; . € Q. Under the natural inclusion klyo, ..., Ym] —
k[To, .-, Tn, Y0, - - -, Ym] We consider each G, , as an element of R of degree (0,j). With

this P; and subset Q C QQp, we construct the set of forms
Bp, := {FPiGQi,l’ FPiGQi,2’ s ’FPiGQi,k} :

We observe that each Fp,Gq,, ¢ Ix for d = 1,...,k because it fails to vanish at P; x Q; 4.
Moreover, each element of Bp, has degree (¢ — 1,j) and [Bp,| = Hg,, (j) = k-

We repeat the above construction for every P; € m1(X) and let

B= |J Bp.

Pemi(X)
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Claim. The elements of B are linearly independent modulo Ix.

Proof of the Claim. It is enough to show that for each Fp,();; € B, the point P; x Q;; does
not vanish at Fp,(Q);; but vanishes at all the other elements Fp, @y € B. But this follows

immediately from our construction of B. O

By this claim, the elements of B are linearly independent modulo Ix of degree (¢t — 1, 7),
and hence, dimy (R/Ix);—1,; > |B|. Because
Bl= Y IBpl= )Y Hgp()=(%
Piemi(X) Piemi(X)
we have dimy (R/Ix)—1,; > (*). Combining this inequality with our earlier inequality gives
dimy (R/Ix)¢—1,; = (*).
To complete the proof we note that we can always pick a form L in R of degree (1,0)

that does not vanish at any P; € m1(X). Then for any [ >t — 1, the set
LB ={L"""'B | B € B}

is a set of (%) elements of degree (I, j) that is linearly independent modulo Ix. O

Remark 3.1.2. Fix an integer j > 0, let m(X) = {Py,..., P}, andlet (x) = > Hg, (j)-
P;em (X)
It is sometimes useful to note that (x) is equal to

) =#{Pem@ | anG) =1}t (" T ) {Reme | Han) = (")},
and that () is also equal to

#{Pem®) [Hon) 21} + #{Pem) |Ho,l) 22} +--

4 #{R- € m(X) ‘HQPi(j) z (m;”)}

Corollary 3.1.3. Let X C P™ x P™ be a set of s distinct points and suppose that
m1(X) = {P1,..., P} is the set of t < s distinct first coordinates in X. Then

(2) for all integers ] >t — 1, Hx(l,0) =t.

(#3) for j>0andl>t—1, Hx(l,j) = s.
(iii) Hx(t—1,1) — Hx(t —1,0) > # {P € m(X)| o = |n] (P)| > 2}.
(iv) AHx(i,§) =0 ifi > t.
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PROOF. For (2) it is sufficient to note that for every P; € m1(X), Hg,, (0) = 1. To prove
(i1) we observe that for every Qp;, the Hilbert function Hg, (j) = |Qr| = o; for j > 0.

¢
Since Z a; = s, the result follows by applying Proposition 3.1.1.
i=1
To prove (i7i) we use Remark 3.1.2 to show that

Hy(t—1,1) — Hx(t — 1,0) > #{P, € m(X) | Ho,, (1) > 2}.

The only P; € m1(X) that are not counted in the set on the right are those in the set
{P; € m(X) | Hgp, (1) = 1}. Since Hg, (1) = 1 if and only if o = |77 (P;)| = 1, the result

now follows.

For (iv), we recall that
AHX(Za]) = HX(ZaJ) - HX(%J - 1) - HX(Z - ]-7.7) +HX(Z - ]-7.7 - 1)

If 4 > ¢, then Hx(%,j) = Hx(i—1,j) and Hx(i,j—1) = Hx(i—1,5—1). A simple calculation
will then show that AHx(%,j) = 0. O

If we partition the set of points X C P" x P™ with respect to the second coordinates
rather than the first coordinates, then we can derive a result identical to Proposition 3.1.1.
Indeed, let mo(X) = {Q1,-...,Qr} be the r < s distinct second coordinates of X. For every
Qi € mo(X), the subset

Qi) = {H X Qis- .., Pig. X Qi} cX

contains the B; := |m, *(Q;)| points of X whose second coordinate is @;. Define Py, to be
the set of points P, := m1(m5 " (Qs)) = {P;,- - - ; Pig } € P". With this notation we have

Proposition 3.1.4. Let X C P* x P™ be a set of s distinct points, and suppose that
mo(X) = {Q1,...,Q} is the set of r < s distinct second coordinates in X. Fizx any integer
i > 0. Then, for all integers I > 1 — 1 = |mo(X)| — 1,

dim(R/Ix)iy = Y, Hp, (i)
Qrem(X)

where Hka is the Hilbert function of the set of points Py, C IP".

In this context Corollary 3.1.3 becomes



1. THE BORDER OF THE HILBERT FUNCTION FOR POINTS IN P"™ x P™ 46

Corollary 3.1.5. Let X C P" xP™ be a set of s distinct points. Let mo(X) = {Q1,...,Qr}

be the set of r < s distinct second coordinates in X. Then

(i) for all integers | > r — 1, Hx(0,1) =r.

(#) fori>0andl>r—1, Hx(i,l) = s.
(i) Hx(1,r —1) — Hx(0,r — 1) > #{Q;i € m(X) | 8i = |75 (Qs)| > 2}.
(iv) AHx(i,j) =0 if j > .

Remark 3.1.6. Corollary 3.1.3 (i) and Corollary 3.1.5 (i4) can be combined to show that
Hx(i,7) = s for all (4,7) > (t — 1,7 — 1).

By combining Propositions 3.1.1 and 3.1.4 we derive a generalization of Proposition 2.3.4

for sets of points in P™ x P™. We state this generalization formally as a corollary.

Corollary 3.1.7. Let X C P" x P™ be a set of s distinct points, and set t = |71(X)| and
r = |m2(X)|. Then

s i) > (-1r—1)
Hx(i,j) = Hx(t—1,7) ifi>t—landj<r—1
Hx(i,r—1) ifj>r—1landi<t—1

Remark 3.1.8. This corollary has the two desired properties that we wanted our gener-
alization to have. First, to compute Hx(i,7) for all (4,j) we need to compute the Hilbert
function for only a finite number of (i,j) € N?, specifically, those (i,5) < (t — 1,7 — 1).
Second, since ¢ = |71 (X)| and r = |m2(X)|, the values for which we need to compute the

Hilbert function can be determined solely from numerical information about X.

The above corollary implies that if we know Hx(t — 1,7) for j = 0,...,7 — 1 and
Hx(i,r — 1) for 4 = 0,...,t — 1, then we know the Hilbert function for all but a finite

number of (i,5) € N2. This observation motivates the next definition.

Definition 3.1.9. Suppose X C P" x P™ is a set of s distinct points and let ¢ = |1 (X))
and r = |mo(X)|. Suppose that Hx is the Hilbert function of X. We call the tuples

Bc = (HX(t - laO)aHX(t -1, 1)a R aHX(t -1,r— 1))
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and
Bpg := (Hx(0,r — 1), Hx(1,7 — 1),..., Hx(t — 1,7 — 1))
the eventual column vector and eventual row vector respectively. Let Bx := (B¢, Br). We

call Bx the border of the Hilbert function of X C P x P™,

The term border is inspired by the “picture” of Hx if we visualize Hx as an infinite

matrix (m; ;) where m; j = Hx(i,j). Indeed, if X C P" x P™ with |7 (X)| = ¢ and |m(X)| =

r, then
mor-1 mo,r—1
* mjr_1 mir—1
Hx =
mg 10 Mg_11 - Mg 1r-1=8 S
m¢—1,0 Mt-1,1 -°° S S

The bold numbers form the border Bx. The entries m;; with (i,5) < (t — 1,7 — 1) are
either “inside” the border or entries of the border, and need to be determined. Entries with
(1,7) > (¢,0) or (i,7) > (0,7) are “outside” the border. These values depend only on values
in the border Bx.

The term eventual column vector is given to B¢ = (m¢—1,0,-..,Mi—1,—1) because the
i" entry of Bc is the value at which the (i — 1) column stabilizes (because our indexing
starts at zero). We christen Bp the eventual row vector to capture a similar result about

the rows. From Corollaries 3.1.3 and 3.1.5 we always have
Be = (t,mt_1,1, cee s M1 02, s) and Bgr= (T,ml,r—h ce M2 1, s).

Moreover, part (ii7) of Corollaries 3.1.3 and 3.1.5 also impose a necessary condition on

my—1,1 and my,_1.

A natural question about the entries in the border arises:
Question 3.1.10. What tuples can be the border of a set of points in P™ x P™?

We would like to classify those tuples that arise as the border of a set of points in
P™ x P™. If we can answer the above question, then we will have a new necessary condition

on the Hilbert functions of sets of points in P x P™. In Chapter 5 we answer Question 3.1.10
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for sets of points in P! x P!. QOur answer depends on forging a link between sets of points

in P! x P! and the theory of (0, 1)-matrices.

2. The Border of the Hilbert Function for Points in P"! x --- x P™

In this section we demonstrate a generalization of Proposition 3.0.1 for sets of points
P™ x --- x P" with k > 2. The proof is similar to the proof of Proposition 3.1.1. We begin

by introducing some suitable notation.

Suppose X C P™ x --- x P is a collection of s distinct points. Let Ix be the NF-
homogeneous ideal associated to X in the N¥-graded ring R = K[Z1,0y-- 3 Z1n1s---r Th0y- -5

Tk.n,) Where degz; j = e;, the ith standard basis vector of N¥.

Let mp : P™ X --- x P™ — P™ be the projection morphism. The image of 71(X) in P™
is a collection of t; := |7 (X)| < s points. The set of points 71 (X) is the set of distinct first

coordinates that appear in X. For every P; € 71(X), we have
i H(P) ={P x Qi,..., P xQ;, } CX

where Q;; € P" x --- x P". Set ; = |77 (P;)| > 1 for all P; € 71(X). Note that the
sets wfl(ﬂ) partition X. Let my _j : P" x .-+ x P — P x ... x P™ be the projection

morphism. For each P; € m1(X), the set

Qp, ==, k(r (P)) = {Qy; |Pi x Qi; € 7 '(Py) }
is a collection of «; distinct points in P"2 x - .. x P",

If j = (j1,J2,---, k) € N, then we sometimes write j as (jl,l") where ZJ = (jo,...,Jk) €
Nf—1.  Also, recall that we write Ry, . j, for Rgj, o T j = (jl,l"), then we denote

R )= R; by le e With the above notation, we have

.
(.715.1

Proposition 3.2.1. Let X be a set of s distinct points in P™ X --- X P™ with k > 2, and
suppose that 7 (X) = {P1,..., Py, } is the set of t1 < s distinct first coordinates in X. Fiz
s - k—1 — N(4) — (natiz) (nati +j
any tuple j = (j2,--.,jk) € N°7'. Set N = N(j) := ("2].2]2) ("3j373)--- ("kjkjk). Then, for
all integers 1 > t; — 1 = |m(X)| — 1,
dim(R/Ix); = Y, Hg,(5)
Pem(X)

where HQPi is the Hilbert function of the set of points Qp, C P"2 x ... x Pk,
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To prove this proposition we require the following two results.

Proposition 3.2.2. Let X = {P,...,P;} CP" x--- x P™ be a set of s distinct points.
For any j = (j1,...,j%) € Nt et {my,...,mn} be the N = ("?{jl) ("2th2) e ("’“jtjk)
monomials of R of degree j. Set

Then rk Mj = Hx(j) where Hx is the Hilbert function of R/Ix.

PROOF. To compute Hx(j), we need to determine the number of linearly independent
forms of degree j that pass through X. An element of R of degree j has the form F =
cimi + -+ cymy where ¢; € k. If F(P;) = 0, we get a linear relation among the ¢;’s,
namely, c;m1(F;) +--- + enmpy(FP;) = 0. The elements of (Ix); are given by the solutions
of the system of linear equations F/(P;) = --- = F(P;) = 0. We can rewrite this system of

equations as

ml(Pl) mN(Pl) C1 0

mi(Ps) --- mn(Ps)]| [en 0

The matrix on the left is M;. Now the number of linearly independent solutions is equal to

dimy (Ix);, and hence,

dimy(Ix); = #columns of M; —rk M; = N —rk M;.

Since dimy Rj =N, we have Hx(j) = rk M;, as desired. O

Proposition 3.2.3. Let X = {Py,...,P;} CP™ x--- xP" and suppose that Hx(j) = h.
Then we can find a subset X' C X of h elements, say X' = {Py,...,P,} (after a possible

reordering), such that there exists h forms G1,..., Gy of degree j with the property that for
every 1 <1< h, G;(P) =0 ifi#1, and G;(P;) # 0.
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PROOF. Let {m1,...,my} be the N = ("1;1‘9'1) (”k]ﬂk‘jk) monomials of degree j in R.

By Proposition 3.2.2 the matrix

ml(Pl) e mN(Pl)

ml(Ps) e mN(PS)

has rank rk M; = Hx(j) = h. Without loss of generality, we can assume that the first h
rows are linearly independent. So, let X' = {P1,..., Py} C X, and let

ml(Pl) e mN(Pl)

|,

mq (Ph) e mN(Ph)

Fix an 4 € {1,...,h} and let X} = {P,,...,P,...,P,}. If we remove the i" row of M,
then the rank of the resulting matrix decreases by one. Since the rank of the new matri_x
is equal to the Hilbert function of Xj, it follows that dimy(Ix/); + 1 = dimi(Ix;);. Thus,
there exists an element G; € (IX§)1 such that G; passes through the points of X! but not
through P;. We repeat this argument for each i € {1,...,h} to get the desired forms. O

PROOF. (of Proposition 3.2.1) Fix a j = (j2,...,Jk) € Ne—1 let N = N(j), and set
() = > Hopn()
Pem(X)
We will first show that dimy(R/Ix);; < () for all [ € N. Let {X1,... ,X(n1+l)} be all the
- 1
monomials of degree (/,0) in R and let {Y1,...,Yx} be the N monomials of degree (0, 7)
in R. For any [ € N, a general form L € R; ; looks like
L= (en X+ ey i X ) Yi+ (e X0+ oty gy Xmn ) Yot oo
c1141 + +C1,( 1l+l) ( 1l+l) 1+ (c1&1 + +CQ,( 1l+l) ( 1l+l) 2+
+ (CN’1X1 + -+ cN,("ll'H) X(nllH)) YN
with coefficients ¢; ; € k. By setting 4; :=¢;1 X1+ + ¢ (n1+1)X(n1+1) fori =1,...,N,
’ 1 1
we can rewrite L as L = A1Y] + AYo +--- + AnYn.

Claim. Each subset ; '(P;) C X puts at most Hg p,(J) linear restrictions on the forms of

Ry,; that pass through X.
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Proof of the Claim. Suppose 7r1_1(P,-) ={P; X Qiy,..., P X Qiai} C X, and hence, the set
Qp, = {Qi,- - ,Qiai} CP" x ... x P, If L € R;; vanishes at the s points of X, then it

vanishes on 77 ' (P;), and thus

L(P x Qiy) = Ai(P)Y1(Qiy) +---+ AN(P)YN(Qsiy) =0

L(P; x Qi,;) = A(P)Y1(Qi,,) + -+ + An(P)YN(Qs,,) = 0.
We can rewrite this system of equations as

Y1(Qi) -+ Yn(Qi) | | Au(P2) 0

Vi(Qio,) -+ YNn(Qin,)] LAN(P) 0
The maximum number of linear restrictions m, '(P;) can place on the forms of R;; that
pass through X is simply the rank of the matrix on the left. By Proposition 3.2.2 the_z rank
of this matrix is equal to Hg,, (j)- O

By the claim, for each P; € 71(X), the set m; '(P;) imposes at most Hgqp, (j) linear
restrictions on the elements of R; ; that pass through X. Hence the set X imposes at most

Z Hgq,, (j) linear restrictions. By summing over all P; € m(X), we have
P—iem (X)

dimy (Ix)r,; > dimyg Ry,; — (),
or equivalently, dimy (R/Ix);,; < (x) for all integers /.

We will now show that if [ = ¢; — 1, then the bound (*) is attained. The set 71 (X) =
{P1,..., Py} is a subset of P". By Proposition 2.3.3, there exist ¢; forms Fp,,..., Fp, of
degree t; — 1 in ko, ..., zp,| such that Fp (P;) # 0 and Fp,(P;) = 0 if i # j. Under the
natural inclusion k[z, ..., Zpn,] = R we can consider the forms Fp,, ... , F'p,, as forms of R
of degree (t1,0).

For our fixed j, we partition the points of 71 (X) as follows:

Sp = {PiEm(X)‘HQPi(l'):h} forh=1,...,N.

Pick a point P; € m;(X) and suppose that P; € Sj, and suppose that Qp, = {Q;1,...,Qia;} C
P"2 x ... x P". By using Proposition 3.2.3, there exists a subset @ C @Qp, of h ele-
ments, say Q@ = {Qi1,-..,Qin} after a possible reordering, such that for every Q;q €
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Q there exists a form Gg,, € k[T20,---,T2ny:---Tk,0,---,Tkn,] Of degree j such that
GQ;4(Qia) # 0 but G, ,(Qie) = 0 if Qie # Qi and Q; e € Q. Under the natural inclu-
sion K[z20,...,%Z2mn9s---Zk,0s-- -+ Tkn,) — R we can consider each G, as an element of

R of degree (0, j). From this P; and subset @) C Qp, we construct the set of forms
Bp, := {FPiGQi,l’ - 7FPiGQi,h} :
We observe that Fp,Gq,, ¢ Ix for d = 1,...,h because it fails to vanish at P; X Q; 4.

Moreover, each element of Bp, has degree (t1,) and |Bp,| = Hg,, (j) = h.

We repeat the above construction for every P; € m1(X) and let

B:= U Bpi.

Pemi(X)

Claim. The elements of B are linearly independent modulo Ix.

Proof of the Claim. It is enough to show that for each Fp,Q);; € B, the point P; X Q;; does
not vanish at Fp,Q;; but vanishes at all the other elements Fp,Q; » € B. But this follows

immediately from our construction of the elements of B. 0

Because the elements of B are linearly independent elements modulo Ix of degree (¢; —1, j),

it follows that dimy (R/Ix)i,—1,; > |B|- But since
|B| = Z |BP¢| = Z HQPi (l) = (*)a
Pemi(X) Pemi(X)

the claim implies that dimy (R/Ix)t,—1,j > (*). Combining this inequality with the previous
inequality gives dimy (R/Ix)t,—1,j = (¥)-

To complete the proof we note that we can always pick a form L of degree (1,0), where

0 € N1 such that L does not vanish at any P; € m; (X). Then for any [ > t; — 1, the set
L=t ={I}""~'B | B € B}

is a set of (+) forms of degree (I, j) that is linearly independent modulo Ix. O

For i = 1,...,k we let m; : P™ X --- X P — P™ be the projection morphism. Set
t; := |m;(X)|. If we partition X with respect to any of the other (k — 1) coordinates, then a
result identical to Proposition 3.2.1 holds. Indeed, if j = (j1,...,Jk) € N, and if we fix all
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but the i* coordinate of J, then for all integers | > ¢; — 1

Hy (1,5 Jimto Ly Ji1y - - Jk) = Hx (1, -5 Jim1oti — 1, Jig1s- - -5 Jik)-

Corollary 3.2.4. Let X be a set of s distinct points in P" x---xP™ . Fizani € {1,...,k}.
Let m;(X) = {P1,..., P} be the set of t; < s distinct i'" coordinates in X. Then

(1) for all integers ! > t; — 1, Hx(le;) = t;.
(%) if jp >0 for all h # i and j; > t; — 1, then Hx(j1, -, Jis---,Jk) =S

PROOF. To prove statements (%)-(i4i), we consider only the case that i = 1. The other
cases will follow similarly.

Set Qp, == WQ,___yk(Wfl(]Ji)) CP™ x ... x P™ for every P; € m1(X), and let o = |Qp,|-
For all sets Qp,, Hgp, (0) = 1. The conclusion of (i) will follow if we use Proposition 3.2.1
to compute Hx(le1).

To prove (ii) we observe that by induction on k£ and Proposition 3.2.1, if j, > 0 for

t1

h # 1, then HQPi(j2,,...,jk) = |Qp,| = o; for every P; € m(X). Since Zai = s, the
i=1

result is now a consequence of Proposition 3.2.1.

For (iii) we recall that
AH(.Z) = (_ )(ZJ lj)HX(jl - lla e Ji — l’ia N lk)
(lla a ) ( )
Let £:= {(l1,..., k) € N | (I1,...,lx) < (1,...,1)} We partition £ into the two sets Lo :=

{(lh,...,lx) € L] 11 =0} and £, := {(ll, ...,lg) € L| 11 =1} There is an obvious bijection
@ : Ly — L1 given by map
(07127"'alk) — (17l27"'alk)'
Let I, € Lo and let Iy = ¢(1;) € £1. Now (—1) iz WO Hy (1 —0, jy —la, . .., jx — i) is the
term of AHx(j) corresponding to [; € £ and (-1 )(Z#IZJ)HHX(jl —1,,4o—loy oy j — lg)
is the term of AHx(j) corresponding to I, € £. If j; > t;, then Proposition 3.2.1 implies
HX(jl - Oan - l?a cee ajk - lk) = HX(tl - 11j2 - l27 cee ajk - lk)

= HX(jl - 1,j2 - l25"' ,jk _lk)'
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Since one of (—1)2iz1 )40 ang (—1)Xx1 )+ ig —1 and the other is 1, the two terms
cancel each other out. But then every term of AHx(j) corresponding to [y € Ly is killed
by the term ¢(l;) € £1. Because ¢ is a bijection, it then follows that AHx(j) = 0. O

Remark 3.2.5. By Corollary 3.2.4 (ii) we have Hx(j) = s for all j > (t1 —1,...,tx — 1).

If j = (j1,---,Jk) € NF . then we denote the vector (j1, ..., 5i 1, Ji>Jitls--- k) € NET1

by j.. Using this notation, we have the following consequence of Proposition 3.2.1.

Corollary 3.2.6. Let X be a set of s distinct points in P™ x --- x P™ and let t; = |m;(X)]
for1<i<k. Defineli:=t1—1,....,5 —1,...,tg — 1) fori=1,...,k. Then

(

8 (oo dk) 2 (i —Lita =1, 8 — 1)
HX(tl - 17j23"'7jk) Zf.]l >t —1 a'nd.il Z ll

Hx(j1,- - Ji1.ti = L jig1, -, 0k) fgi>ti—Llandj, 21

| Hx(j1, -5 -1,k — 1) if je >tk — 1 and j, Z I

Remark 3.2.7. Suppose X is a set of distinct points in P™* x---xP™. Let j = (j1,...,Jx) €
N and suppose that j; > t;—1 = | (X)|, and jo > to—1 = |72(X)|—1. Then Corollary 3.2.6
implies that

HX(jlana' o 7jk:) = HX(tl - 1aj2a' o 7jk:) = HX(tl - ]-at2 - ]-7j37"' a]k)

More generally, to compute Hx(j), the above corollary implies that if j; > ¢;—1, then we can

replace j; with ¢; — 1 and compute the Hilbert function at the resulting tuple. Therefore,

to completely determine Hx for all j € N¢. we need to compute the Hilbert function
k

only for j < (t1 —1,...,% — 1). Since there are only (H ti> k-tuples in N¥ that have
=1
this property, we therefore need to compute only a finite number of values. Furthermore,

since t; = |m;(X)|, the k-tuples of N* for which we need to compute the Hilbert function
is determined from crude numerical information about X, namely the sizes of the sets
m;(X). Hence, Corollary 3.2.6 is the desired generalization of Proposition 3.0.1 to points in

Pox ..o x P,
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By the previous remark it follows that if we know the values of Hx(t; — 1, jo, ..., jk) for
all (j2,. .-, dk) < (t2—1,...,tg—1), Hx(j1,t2—1,...,5x) for all (j1, 73, -, k) < (b1 —1,13—
1,...,tx—1),..., and Hx(j1,...,Jk-1,tk — 1) for all (j1,...,5k-1) < (&1 —1,...,tk-1 — 1),
then we know the Hilbert function of X for all but a finite number of j € N¢. From this
observation we can extend the definition of a border of a Hilbert function to sets of points

in P71 x ... x P,

Definition 3.2.8. Let X be a set of s distinct points in P™ x - -- x P and let ¢; = |m;(X)]
for s = 1,...,k. Suppose that Hx is the Hilbert function of X. For each 1 < i < k, let

B; := (b

1 yeeesdi Jk) be the (k — 1)-dimensional array of size t; x +++ x ; X - - - t;, where

bjl:---afi:---ajk = Hx(jl, ce ,ji—l,ti — l,ji+1, e ,jk) Wlth 0 S jh S th — 1.

We call B; the i** border array of the Hilbert function of X. We define Bx := (By, ..., B)
to be the border of the Hilbert function of X.

Remark 3.2.9. If k¥ = 2, then B; and B, are 1-dimensional arrays, i.e., vectors. It is a
simple exercise to verify that B; is equal to the eventual column vector B¢, and Bs = Bp,

the eventual row vector, as defined in Definition 3.1.9.
We end this section by extending Question 3.1.10 to this setting.

Question 3.2.10.  Suppose B = (By,...,By) is a tuple where each B; is a (k — 1)-
dimensional array. Under what conditions is B the border of the Hilbert function of a set

of points in P™ x --- x P ?

3. Generic Sets of Points in P! x ... x P7

In this section we wish to extend the notion of generic sets of points to P x - -. x Pk,

Our discussion follows that of Geramita and Orecchia [21] and Geramita [14].

If X is any set of distinct points in P x --. x P™ then we denote its Hilbert function

by Hx. For every integer s we define

Hs:={Hx| XCP" x-.- x P* and [X| = s} .
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If Hx € M, then, by Lemma 2.2.13, for any j = (j1,...,jx) € N* we have Hx(j) <
Hx(j+e1), Hx(j) < Hx(j+e2), etc. By Corollary 3.2.6, if j £ (71(X) —1,...,m(X)—1) <
(s—1,...,8—1), then Hx(j) is determined by the border. It follows that Hj is a finite set.

Since the number of possible Hilbert functions for s points is finite, but the number of
sets X in P™ x ... x P™ with |X| = s is infinite, we can ask if there exists an expected

Hilbert function for s points. We first fix some notation.

Let R = K[T1,0,--+,T1n1s-»Tk 05Tk, With degz;; = e; be an N¥-graded ring.

For every j € N, we define

N (711 +j1) (’HQ +j2) ('nk +jk>
] L . . tee . .
- J J2 Jk
Note that dimy Rj = Nj. Let {mq,... ,mNj} be the N; monomials of degree j in R. If

F € Rj, then we can write F' as

Nj
F = Z c;m; where ¢; € k.
=1
Suppose that P = [a10: -+ : @1, X --- X [ago - " gp,] EPM X --- x P, For F € R;

to vanish at P we require
Nj
F(P) =) cimi(P) =0.
i=1

If we consider the ¢;’s as unknowns, the above equation gives us one linear condition.

Suppose that X = {P},...,P;}. For F € R; to vanish on X we therefore require that

F(P)) =---=F(P;) = 0. We then have a linear system of equations represented as
ml(Pl) . mNi(Pl) C1 0
mi(Ps) -+ mn;(Ps)] Len, 0

The number of linearly independent solutions is the rank of the matrix on the left. For a
general enough set of points, we expect this matrix to have rank as large as possible. By
Proposition 3.2.2, the rank of this matrix is equal to Hx(j). Hence, we expect a general

enough set of s points X C P™ x --- x P™ to have the Hilbert function
Hy(j) = min {Nj,s}  forall j € N,

Proceeding analogously as in the case of points in P", we make the following definition.
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Definition 3.3.1. Let X = {P;,...,P;} C P™ x ... x P" and suppose that Hx is the
Hilbert function of X. If

Hx(j) = min{Nl,s} for all j € NP,

then the Hilbert function is called mazimal. If X has a maximal Hilbert function, then X is

said to be in generic position.

We have yet to show the existence of a set of points in generic position in P™ x --- X
P". As the next theorem demonstrates, “most” sets of s points in P x --- x P™ are in
generic position. The proof is adapted from the case of points in P” due to Geramita and

Orecchia [21]. We first set some notation. Define
Dsy = {i €N ‘Nl- > s} and D, = {i €N ‘Nl- > s} .

Set

Min D5, :=min{j | j € D>,} and MinDs,:=min{j | j € D5}

with respect to our partial ordering > on N¥. Note that both Min D>¢ and Min D+ are
finite sets. We will also denote (P! x -+ x P™) x -+ x (P™ X -+ x P™) (s times) by
(P™ X - x PE)S,

Theorem 3.3.2.  The s-tuples of points of P x --- x P™ (Py,...,Ps), considered as
points of (P™ x .- x P™)3 which are in generic position form a non-empty open subset of
(P™M X - x Pe)S,

PROOF. Let R = K[T1,0,--+,T1n1y---,Tk0s-+Thkm,] De an Ne-graded ring. Ifj e NE,
then let {mi,...,my;} be the N; monomials of degree j of R. We have a morphism
vj :PMox - X P — PYi~! defined by

[T10 i T1pg] X oo X [Tpo oo e Tppy] = [ma 2o m ]

This induces a morphism

;=i y) s (P X X P)T — (]P’Ni_l)s =Vj.
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We can view an element of V; as an s X N; matrix. Notice that the s-tuple (Pr,...,P) €

(P™ x -.- x P™)* is sent to the “matrix”

mi(Py) -+ my;(P1)
@i(Pr,...,Ps) = M;(Pr,...,Ps):= : :

my(Ps) --- mNi(Ps)
Let T} be the collection of equations describing the situation that every maximal minor of
an s >: N; matrix is zero. Every element of T is N°-homogeneous, that is, the elements are
homogen;ous in each set of variables corresp;)nding to a factor of Vj. It follows that C; :=
V(T;) is a closed subset of V;, and hence, <p]71(Vl-\Ci ) is an open sub;et of (Pt x---x IP’"_’C)S.
Set

U:= [ ¢; ' (V;\Cy).
JENE

If (P1,...,P;) € U, then for all j € N the matrix M;(Pi,. .., Ps) has maximal rank, i..,
tk M;(Py,..., P;) = min {Ni, s}. By Proposition 3.2.2, the Hilbert function of the tuple

(Py,...,P;), considered as a subset of P! X --- x P is maximal.

To finish the proof we need to show that U is open and non-empty. To show that U is

open we require the following claim.

Claim 1. Suppose that j € N¥_ If there exists j' € Min D4 such that j > j', then
0, (Vi\Cy) € 05 ' (Vi\Cy).

Proof of the Claim. Let (Pi,...,Ps) € <pj_,1 (Vi\Cjr). After a suitable change of coordinates

we can assume that each P; € {P,... ,P;} can be written as
Pii=[1:aj11: - :0iim] X[1:aip1: 1 @i2n,] X X [1:@p1: " Qkmngl-
If {mq,... ,mNJ_,} are the N;; monomials of degree j', then the matrix
my(Py) - my, (P)
My(Pi,...,P) =
mi(Ps) - mn, (P)

has rank = min{Nl-/,s} = s. Since j > j', we have (j — j') > 0. Let m be the monomial

m = {757 - - Ty of degree (j — j') = (ao,---,a,). The monomial m does not vanish at
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any of Pp,..., Ps. It follows that

m(Pl)ml(Pl) m(Pl)le,(Pl) ml(Pl) mNi'(Pl)

m(Ps)my(Ps) - m(Ps)le, (Ps) my(Ps) --- MmN (Ps)

is a sub-matrix of M;(Pi,..., Ps). Therefore, the tuple (Pi,..., F;) € ga;l(Vz\Cl) because

the maximal minors describing this sub-matrix fail to vanish at this tuple. O

In light of the claim, we have

U:= [ ¢ (V;\Cy) N 07 (V\Cy).

j Nk
. { N j<j' for some }
jene |

j'€Min D>,
The set {j € N* | j < j' for some j' € Min D} is a finite set, and so U is open in (P"* x
X Pr)s,

To show that U is non-empty, we will show that there exists a tuple (P,...,P) €
(P™ x ... x P")% such that (Pp,...,Ps) € gojfl(‘/}_-\C’Z) for all j € N*. We proceed by
induction on s; the case s = 1 is trivial.

So, let Pp,...,Ps_1 be (s — 1) generic points in P™ x - .. x P". Furthermore, suppose

that j ,...,J, is a complete list of elements in Min D> . For each J; € {il, e ,il} we define
a morphism v; :P™ x .- X P — P~ by

[0t Tipy] X oo X (oot By —> [ma i :lei]
where {m1,...,mpy; } are the N; monomials of degree j.. Let L; be the linear sub-variety
spanned by Vj'(Pl),... I/j (Ps 1). Because vj. (P™ x -.. x P") is not contained in any
linear sub-variety of P2 ™", the set vj (P x e x PRON{y; (P™ X - X PP) N Lj }is a

non-empty set.
From the above morphism we obtain a morphism

Ny, —1 N; —1
¢j1,...,jl:IP’"1X---xIP’"k — PVt x ..o x PN

P — v (P) x e x z/l-l(P).
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Let L = Ll-1 X -ee X Lil C PYii 7! x ... x PY4 ™! From our construction of L, it follows that

Z:=¢j . (P™ x ... x P"%) & L. Hence, the set Y := Z\{Z N L} is non-empty. Pick any

P € ngj_l ; (Y). Note that for our choice of P, v; (Ps) ¢ L; forany j. € {j,...,J,}
Jyrdy 25 25 < L <

We claim that the set {P,..., P} is in generic position. It is sufficient to check that
tk M;(Py, ..., Ps) is maximal for all j € NE,

Case 1. J is such that Ni < s.

The matrix M;(Py,...,Ps) can have at most rank N;. The sub-matrix M;(P,..., P 1)

has this rank by induction. This completes this case. O
Case 2. j is such that N; > s, L.e., j € D>;.

Because j € D>, there exists j' € Min D5, such that j > j'. Tt follows from the proof
of Claim 1 that if rk M/ (Pi,...,Ps) = s, then rkMi(Pl,...,Ps) = s. But by our choice
of Py, vji(Ps) & Lj. B1_1t this is equivalent to saying that Ps is not in the linear span of
vi(P1),...,vy(Ps_y), and hence, tk My (Py, ..., P) =tk My (Py,...,Piy) +1=5. O

Corollary 3.3.3. Let s and k be positive integers. For each i € {1,...,k}, let B; be

a (k — 1)-dimensional array of size s X -+ x s such that every entry of B; is s. Then
———

k—1
B = (By,...,By) is the border of a set of points in P™ x --- x P,

PROOF. A set X of s points in generic position has border Bx = B. O

Remark 3.3.4. For “most” sets X of s points in P™ x --- x P"_ Theorem 3.3.2 shows that
the Hilbert function of X is simply a function of n1,...,n, and s. The Hilbert function,
however, provides us with very coarse information about X. A wealth of information about
X is contained within the minimal free resolution of Ix. This leads us to ask if there is an
expected resolution for a set of s points in generic position in P! x ... x P* _ For points in
P™ this question is known as the Minimal Resolution Conjecture which was first formulated
by Lorenzini [34]. An interesting problem is to determine a minimal resolution conjecture
for points in generic position in P x --- x P"_ As we will see in the next chapter, points
in generic position in P™ x ... x P fail to be arithmetically Cohen-Macaulay. This fact
prevents us from passing to the artinian case and formulating the conjecture in this setting

as was done in [34]. However, because we know the Hilbert function of a set of points in
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generic position, we may be able to make a conjecture about the generators of the defining
ideal. In other words, we can make a conjecture about some of the graded Betti numbers

in the resolution. We are currently considering this problem.

Remark 3.3.5. Because #H; < oo, we can ask if it is possible to explicitly determine
#Hs for all s € N. This turns out to be a difficult problem. L. Roberts posed exactly this
problem for points in P” in [46]. Little progress, however, has been made on this question.
Carlini, Ha, and Van Tuyl [9] point out that by using the n-type vectors of Geramita,
Harima, and Shin [17] then the problem of computing #H; for s points in P? is equivalent
to computing the number of sequences of strictly increasing integers that sum to s. We give

a lower bound for #%; for points in P! x P! (cf. Proposition 5.3.1).



CHAPTER 4

The Hilbert Functions of Arithmetically Cohen-Macaulay
Sets of Points

Cohen-Macaulay rings are the “workhorse of commutative algebra” (page 57 of [6]). If X
is any collection of points in P”, then the graded ring R/Ix is always Cohen-Macaulay. This
fact is used, either directly or indirectly, to prove many results that describe the properties
of points in P". Unfortunately, when we extend our study to sets of points in P x - - - x Pk
with k£ > 1, we encounter the unpleasant fact that the multi-graded ring R/Ix may fail to
be Cohen-Macaulay. The following example, which is found in Giuffrida, Maggioni, and
Ragusa [26], and which is generalized in Lemma 4.2.4, illustrates that even the coordinate

ring of a very simple set of points can fail to be Cohen-Macaulay.

Example 4.0.1. Let R = k[zg, z1, Y0, y1] with degz; = (1,0) and degy; = (0,1), and let
X={[0:1]x[0:1],[1:0] x [1:0]} CP' x P..

Then Ix = (z9,y0) N (1,y1) = (Tox1, Toy1, T1Y0, Yoy1) C R. The element zy + 1 is a non-
zero divisor in R/Ix because the form zy 4+ z1 does not vanish at either point in X. The
non-zero elements g of R/(Ix,zo + 1) are either g = h(yo,y1) where degh = (0,d) and
d > 0, or g = Ty. Both types of elements are annihilated by Z;. Hence, depthR/Ix =1 <
2 = K-dim R/Ix. It then follows from Definition 4.1.6 that R/Ix is not Cohen-Macaulay.
(An alternative proof is to observe that the ideal Ix, as a homogeneous ideal of R, is the

defining ideal of two skew lines in IP?, and hence, R/Ix is not Cohen-Macaulay. (cf. [23]))

A set of points whose coordinate ring is Cohen-Macaulay will be called an arithmetically
Cohen-Macaulay (ACM for short) set of points. Because of the importance of Cohen-
Macaulay rings in commutative algebra and algebraic geometry, it is natural to ask the
following variation on Question 1.1.1:

62
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Question 4.0.2. What can be the Hilbert function of an ACM set of points in P™ x --- X
Pk 2

If £ = 1, then this question is equivalent to Question 1.1.1 because all sets of points in P" are
ACM sets of points. Hence, Question 4.0.2 has been answered by Geramita, Maroscia, and
Roberts [19] for the case k = 1. In light of the above example, if k£ > 1, then Question 4.0.2

is weaker than Question 1.1.1.

The main result of this chapter is the following theorem:

Theorem 4.0.3. (Theorem 4.3.14) Let H : N* — N be a numerical function. Then H is
the Hilbert function of an ACM set of points in P™ X --- x P™ if and only if

AH(Zla,zk) = Z (_1)|L|H(i1_lla"-aik_lk)a
QSL:(h’:lk)S(laal)
where H(i1,... 1) = 0 if (i1,...,1x) 2 0, is the Hilbert function of some multi-graded

artinian quotient of S =K[Z11,..., %1015, Th,1s- -3 Thyny)-

As a consequence of this result, the answer to Question 4.0.2 is equivalent to the answer of

the following question:

Question 4.0.4. What can be the Hilbert function of a multi-graded artinian quotient of

k[l‘l’l, . ,Il’nl, . ,Ik,l,. .. 7$k,nk]?

In this chapter we will also give an answer to Question 4.0.4 for the cases: (i) S =
k[z11,221,...,Z2,m] and (#3) S = Kk[z1,1,22,1,...,%,1]- As a corollary, we give a complete

answer to Question 4.0.2 for ACM sets of points in P! x P™ and P! x .. x P! In each case,
—— —

k
our result is a generalization of an earlier result about ACM sets of points in P! x P! due

to Giuffrida, Maggioni, and Ragusa [26].

This chapter is structured as follows. In the first section, we recall the definition of a
Cohen-Macaulay ring and describe some of its properties. In the second section we make
some general remarks about the depth of R/Ix where R/Ix is the coordinate ring of a
set X of distinct points in P™ X ... x P® . In the third section, we restrict our focus to
ACM sets of points in P™ x --- x P". The main result of this section (Theorem 4.3.14)

demonstrates that the numerical function H : N¥ — N is the Hilbert function of an ACM



1. COHEN-MACAULAY RINGS 64

set of points in P™ x --. x P™ if and only if AH, the first difference function of H, is the
Hilbert function of an N¥-graded artinian quotient of K[T1,1,...,T1,ny,-- )Tk 1y-- -+ Thny)-
This characterization is similar to the characterization of Hilbert functions of points in P"
given by Geramita, Maroscia, and Roberts [19] (also see Proposition 2.3.10). In the fourth
section we characterize the Hilbert functions of bigraded quotients of k[z1,y1,...,Ym]- As
a corollary, we have a precise description of the Hilbert functions of ACM sets of points in
P! xP™. We also answer Question 4.0.4 for the N¥-graded ring S = k[z1,1,%2.1,...,Zk,1]. In

the last section we give the proof of a technical lemma used in the proof of Theorem 4.3.14.

1. Cohen-Macaulay Rings

In this section we define Cohen-Macaulay (CM for short) rings and collect the facts we
need in the later sections. A general theory of CM rings is developed in the wonderful book
of Bruns and Herzog [6]. We use [6], Balcerzyk and Jézefiak [4], and Matsumura [38] as

our primary references for the material of this section.

Unless stated otherwise, we assume that R = K[Z10,..., %101, Tk,0y- -+ LThyny)- We
induce an N¥-grading on R by setting deg x;j = e; where e; is the ith standard basis vector

in N¥. We define m to be the ideal m := @ R;j. We recall that R is Noetherian. We
0#£jENF
will use A to denote an arbitrary Noetherian ring. We recall Definition 2.2.8.

Definition 4.1.1. Let p be a prime ideal of A. The height of p is the integer ¢ such that we
can find prime ideals p; of A such that p = p: 2 pr—1 2 --- 2 p1 2 po and no longer such
chain can be found. We write ht4(p) = t. If I is any ideal of A, then ht4(I) is defined to
be the number ht 4(I) := inf{ht4(p) | ¢ 2 I}. If the ring A is clear from the context, then
we shall omit the subscript A and simply write ht(I). The Krull dimension of A, denoted
K- dim A, is the number K- dim A := sup{ht(p) | p a prime ideal of A}.

Definition 4.1.2. Let Fi, Fy, ..., F,. be a sequence of non-constant elements of R and let
I be an Nf-homogeneous ideal. Then we say Fi,...,F, is a reqular sequence modulo I or

give rise to a reqular sequence in R/I if and only if

(z) (I,Fy,...,F,) Cm,

(4i) F1 is not a zero divisor in R/I, and
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(4i7) F; is not a zero divisor in R/(I, Fy,..., F;_1) for 1 <i <.

The sequence Fi,...,F, is called a mazimal reqular sequence modulo I if Fy,...,F, is a

regular sequence which cannot be made longer.

Remark 4.1.3. A more general notion of a regular sequence exists for R-modules M. See,
for example, Definition 1.1.1 of [6]. Since we do not require this generality, we omit it. For
an arbitrary ring it is not true that all maximal regular sequences have the same length.
However, since we shall only consider N¥-homogeneous ideals of R, the following theorem

applies.

Theorem 4.1.4. ([6] Theorem 1.2.5) Suppose that I C m is an NF-homogeneous ideal of

the Noetherian ring R. Then all mazimal reqular sequences modulo I have the same length.

Because all maximal regular sequences modulo I have the same length, we give a name

to this common value.

Definition 4.1.5. Let I C m be an NF-homogeneous ideal of R. Then the depth of R/I,

written depth R/I, is the length of a maximal regular sequence modulo I.

One can show, using Krull’s Principal Ideal Theorem (see Theorem 15.2 of Sharp [51]),
that depth R/I < K-dim R/I always holds. If equality occurs, then we give the ring R/I a

special name.

Definition 4.1.6. Let I C m be an Nf-homogeneous ideal of R. Then the ring R/I is
called Cohen-Macaulay (or CM for short) if depth R/I = K-dim R/I.

Example 4.1.7. The polynomial ring R = k[Z1,0,...,Z1n;s---Zk,0,-- - Tkn,) is @ Cohen-
Macaulay ring because the indeterminates x19,...,Z1,0,5--+,Tk0,---,Tkn, give rise to a
k
regular sequence in R of length Z:(nZ +1) =K-dimR.
i=1
Definition 4.1.8. Let M be a module over the commutative Noetherian ring A, and let

p be a prime ideal of A. Then we say g is an associated prime ideal of M precisely when
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there exists an element m € M with (0 : m) = p. The set of associated prime ideals of M

is denoted by Ass4(M).

Remark 4.1.9. Suppose that [ is a proper ideal of a commutative Noetherian ring A and
suppose that I = @1 N --- N Q, is the primary decomposition of I. Set p; = +/Q);- Then
Assa(A/I) = {p1,---,pr}. See, for example, Remark 9.33 (¢) of Sharp [51].

Definition 4.1.10. Let A be a commutative Noetherian ring, I an ideal of A, and suppose
that Assa(A/I) = {p1,...,0r}- We say that I is unmized if ht 4(p;) = ht4(I) for all s.

As the next theorem shows, if I is a homogeneous ideal of a graded polynomial ring
k[zo, ..., zy] with the property that the quotient ring k[zo, ..., z,]/I is CM, then the asso-

ciated primes of I all have the same height.

Theorem 4.1.11. Let I be a homogeneous ideal of R = K[zy,...,z,| and suppose that
ICm:=(xg,...,z,). Then

(6) htg(I) + K- dim R/I = K- dim R.
(#3) If R/I is a CM ring, then the ideal I is unmized.

This result appears to be well known. However, we could find no reference for the
graded version that we stated above. For completeness, we will prove Theorem 4.1.11. To
prove this result, we will require the following results about Cohen-Macaulay local rings.

We will only give a reference to their proofs.

Lemma 4.1.12. ([4] Property 10, page 122) If (A,m) is a local CM ring, then for any
ideal I C A, we have ht4(I) + K-dim A/I = K-dim A.

Lemma 4.1.13. ([4] Property 1, page 118) If A is a CM ring, and if S is any multiplica-
tively closed subset S, then S™'A is also CM. In other words, the CM property is preserved

under localization.

Lemma 4.1.14. ([38] Lemma 7.C, page 50) Let S be a multiplicative subset of A, and let
M be a finitely generated A-module. Put A' = S™'A and M' = S~'M. Then there ezists a

1-1 correspondence between the sets

AssA(M)N{p C A | p prime, pN S =0} <> Ass (M)
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via the map p — pPS—1A.

Proposition 4.1.15. ([38] Theorem 30, page 104) Let (A, m) be a Noetherian local ring,
and let M # 0 be a finitely generated CM A-module. Then

depth M = K-dim A/p  for every p € Assa(M).

PROOF. (of Theorem 4.1.11) (i) Let (Rm, mRy,) denote the local ring formed by local-
izing R at the maximal ideal m. By Lemma 4.1.13, the ring (R, mR,y) is CM because R is
a CM ring. Since I C m, it follows that htg_ (IRm) = htg(I) and K-dim Ry, = K-dim R.
Furthermore, since (Rpy,/IRm) =2 (R/I)m, K-dim Ry /IRy = K-dim R/I. By applying

Lemma 4.1.12, we thus have

htp(I) + K-dimR/I = htg, (IRm)+ K-dim Rpm/IRm
= K-dim Ry, = K-dimR.

(17) Let p € Assg(R/I). We need to show that htg(p) = htg(I). Because I C m, g is
homogeneous, i.e., p C m, and hence p € {p C R | p prime, p N (R\m) = (}. Thus, by
Lemma 4.1.14, pRy, € Assg,, (Rm/IRm).

The ring Rym/IRm = (R/I)m is CM by Lemma 4.1.13. So, by Theorem 4.1.15 we
deduce that K- dim Ry, /@pRm = depth Ry /I Rm. But since the ring Ry /IR is CM, we in

fact have
K-dim Ry /pRm = K-dim Ry /IRy = K-dim Ry, — htg, (IRym) = K-dim R — htg([).
On the other hand, we use Lemma 4.1.12 to compute K-dim Ry, /pRm:
K-dim Ry, /pRm = K-dim Ry, — htg,, (pRm) = K-dim R — htg(p).

If we substitute this value for K-dim Ry, /pRm into our previous expression and simplify
the resulting expression, then we find that htr(p) = htr([). Because this is true for any
p € Assr(R/I), the ideal I is unmixed as desired. O

Definition 4.1.16. A variety X C P" is arithmetically Cohen-Macaulay (ACM for short)
if the graded coordinate ring R/Ix is CM. More generally, a variety X C P"! x --- x P ig
ACM if the multi-graded coordinate ring R/Ix is CM.
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Remark 4.1.17. Suppose X C P x - .. x P jg a variety. The multi-homogeneous ideal Ix

in the NF-graded polynomial ring R corresponding to X is also a homogeneous ideal in the
k

normal sense. We let X denote the variety in PV, where N = (z:(nZ + 1)) — 1, defined
i=1
by Ix. The condition of being CM is a condition on the depth of R/Ix. Because the grading

of a ring does not influence the depth of a ring,
X CPY x ... x P% is ACM & X C PV is ACM.

Note that the dimension of the variety X is bigger than dimX. Specifically, if X C P™ x
.+« x P is a variety, then dimX = dim X + k.

The following results about CM rings will be required in the later sections.

Lemma 4.1.18. ([4] Property 4, page 119) If A is a CM ring and x is a non-zero divisor
in A, then the ring A/(x) is also CM. Moreover, K-dimA/(z) = K-dim A — 1.

Lemma 4.1.19. Let J = (Fy,...,F,) C m C R be an N¥-homogeneous ideal. Suppose
that Fy, ..., F, give rise to a regular sequence in R. Then R/J is CM.

ProOF. By Theorem 4.1.4, the regular sequence F1,..., F, can be extended to a max-
imal regular sequence, say Fi,...,F,,Gr11,...,Gy, in R. Because R is Cohen-Macaulay,
k

t= Z(nz +1) = K-dim R. From Lemma 4.1.18 we have
i=1

K-dimR/J =K-dimR —r =t —r = depthR/J.

The conclusion now follows. O

Definition 4.1.20. Suppose that X C P™ x ... x P is a variety. If the N¥-homogeneous
ideal Ix is generated by a regular sequence in R, then we say X is a complete intersection.

By Lemma 4.1.19, a complete intersection is always ACM.

We have defined Cohen-Macaulay rings in terms of the depth of the ring. Alterna-
tively, Cohen-Macaulay rings can be characterized via the projective dimension (see Defini-
tion 2.4.4) of the ring. To demonstrate this characterization, we will require the following

special case of the Auslander-Buchsbaum formula.
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Theorem 4.1.21. (Auslander-Buchsbaum) Let I be a homogeneous ideal in the N' -graded
ring R = Kk[xo,...,z,]. Then

proj.dimp R/I + depth R/I = K-dim R.

PRrROOF. This is a very special case of the Auslander-Buchsbaum formula. See Theorem

4.4.15 of Weibel [56] or Theorem 1.3.3 in Bruns and Herzog [6]. O

Theorem 4.1.22. Let I be a homogeneous ideal in the N'-graded ring R = k[xo, .. ., Z,].
Then R/I is Cohen-Macaulay if and only if proj.dimp R/I =n+ 1 — K-dim R/I.

PRrOOF. The ring R/I is Cohen-Macaulay if and only if depthR/I = K-dimR/I.

Hence, by the Auslander- Buchsbaum formula we have

proj.dimy R/I + K-dim R/I = proj.dimy R/I + depth R/I =n + 1.

O
Remark 4.1.23. The above result will be used in Chapter 5.
2. The Depth of the Coordinate Ring Associated to a Set of Points
Let R = K[z1,0,.--sZ1,n1>-++Tk,0,--->%hkn,] Where degz;; = e; where e; is the ith

standard basis vector of N¥. In this section we study the depth of R/Ix, where X is a set of
distinct points in P™ x --- x P". From the next lemma, it follows that the depth of R/Ix

is always at least one.

Lemma 4.2.1. (Lemma 2.2.12) Suppose X C P™ x ... x P™ is a finite set of distinct
points. Then there exists a form L € R of degree e; such that L is a non-zero divisor in

R/Ix.

Corollary 4.2.2. 1 <depthR/Ix <k.

PROOF. The result follows from the fact that depth R/Ix < K-dim R/Ix = k. O
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Remark 4.2.3. Recall from Proposition 2.2.9 that if X is a set of distinct points in
Pm x ... x P", then K-dim R/Ix = k. So, suppose that X is a set of points in P". Then
Corollary 4.2.2 implies that 1 < depth R/Ix < 1 = K-dim R/Ix. Thus, sets of points
in P" are always ACM. However, if X C P™ x --- x P™ with &k > 2, then X may fail to
be ACM. In fact, as we show below, for every integer [ € {1,...,k} there exists a set of
points X C P" x ... x P with depth R/Ix = [. We begin with a lemma that generalizes
Example 4.0.1.

Lemma 4.2.4. Fiz a positive integer k. We denote by X1 and Xo the two points
X1:=[1:0]x[1:0]x---x[1:0], and Xo:=[0:1] x[0:1] x---x [0: 1],

in P! x --- x P'. Set X :={X1, Xy}. Then depth R/Ix = 1.
N———
k

PROOF. The defining ideal of X is
Ix=Ix NIx, = ({:Ea,omb,l ‘ 1<a<k1<b<L k)})

in the Nk—graded ring R = k[:ﬂl,o, L1,1,L2,05L2,1y-+-3Lk,0 xk,l]- The element Z1,0 + T1,1 S
R/Ix is a non-zero divisor because z1o + 21,1 does not vanish at either point of X. Thus
depth R/Ix > 1. To complete the proof, it suffices to show that every non-zero element of

R/(Ix,z1,0 + z1,1) is a zero divisor.

So, set J = (Ix, 1,0+ x1,1) and suppose that F is a non-zero element of R/J. Without

loss of generality, we can take F' to be NF-homogeneous. We write F as
2
F = Fy(z1,1,%2,0,- - T1) + F1(T1,1, 22,0, - - - Th,1)T1,0 + Fo(T1,1, 22,0, -, T 1 )TT g + - -

Since z10z1,1 € Ix, it follows that :vio = z10(z10 + z11) — T1071,1 € J. Hence, we
can assume that F' = Fy 4+ Fiz19. The element 2,9 ¢ J. For each integer 1 < b < k,
z1,0%p,1 € Ix C J. Furthermore, for each integer 1 < a < k, the element z19z,0 =
Za,0 (Z1,0 + T11) —Zq071,1 € J. Hence, each term of Fyz g is in J, so Fyz1 9 € J. Moreover,
since :1:%,0 € J, we therefore have Fz19 = Fyz10 + Flm%,o € J. So, every non-zero element

of R/J is a zero divisor because it is annihilated by the non-zero element Z o. O
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Proposition 4.2.5. Fiz a positive integer k, and let ny,...,n, be any positive integers.
Then for every integer | € {1,...,k} there ezxists a set X of points in P™ X --- x P" such
that depth R/Ix = 1.

PROOF. For every integer [ € {1,...,k} we will show how to construct a set X C
P™ x ... x P" with the desired depth. Define P;:=[1:0:---:0] € P" for 1 <4 < k and
Qi:=1[0:1:0---:0] € P" for 1 <4 < k. Let [ be an integer in {1,...,k} and let X; and
X5 be the following two points of P™ x --- x P"%:

X1 ::Pl XPQX"'XPk andXQ ::Pl XPQX"'X_Pl_l XQlX...XQk.
If we let X := {X1, X5}, then we will show that depth R/Ix, = 1.
The defining ideal of X| is

T L1+ 9ZLngseesLl=1,15 s Ll—1,my_15L1,25+ - -y Llngs -+ 3 LE,2y -+ s LTk,ng»
X, — .
{Za0zp,1 |1 <a <k, 1<b< k}

in the N¥-graded ring R = K[Z10,---3Z1n1s- > Th,0s--->Thyn,)- 1t then follows that R/Ix, =
S/J where

5/ — k[21,0, 22,0, 3,0, - - - T1=1,05 T1,0, 1,15 T14+1,05 Tl 1,15 - - - » T 0, Th 1]
{Fa0mp1 | 1 <a<kI<b<k})

The indeterminates z19,2y0,...,%—1,0 give rise to a regular sequence in S/J. Thus,
depth R/Ix, = depth §/J > 1 — 1. Set K = (J,210,...,%1—1,0)- Then

S/K = K[27,0, %11, T141,0 Tl1,15 - - - » Th,05 Th,1]
({Za 071 | 1 <a <k, 1 <b< kY)

The ring S/K is then isomorphic to the N¥~!*1_graded coordinate ring of the set of points
{[1:0]x[1:0] x---x[1:0],[0:1] x[0:1] x---x[0:1]}

in P! x .-+ x PL. Tt therefore follows from Lemma 4.2.4 that depth S/K =1, and hence,
—_———
k—l+1

depthR/Ix, =1—-1+1=1.

O

The final result of this section calculates the depth of a set of points in generic position.

The proof will require the following combinatorial lemma.
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Lemma 4.2.6. Let n,l > 1 be integers. Then ("ﬂ“fl) < (";H) (n+1).

PROOF. By definition, (n+l+1) _ (nt+i+1)(n+0)--(I42) and (n;rl) _ (nt)(ntl-1)--(I41) It

I+1 n! ! .
then ol that (117) = (1) 52452 — (1) (1+ ). But because 1> 1, (142 <
(1 + n). The inequality now follows. O

Proposition 4.2.7. Suppose that X is a set of points in generic position in P™ X --- X P™
with k > 1 and |X| = s > 1. Then depthR/Ix = 1.

ProoOF. By Corollary 4.2.2 we know depthR/Ix > 1. We show that equality holds.

>
Without loss of generality, we assume that n; < ng < --- < mg. Let [ be the minimal

integer such that ("1l+l) > s. Then

Hx(l,0,...,0) :min{(nll+ ),s} = s.

Claim. 1If j € N* and j > (I — 1,0,...,0), then Hx(j) = s.

o~

Proof of the Claim. There are two cases to consider: (1) 51 >1—1, and (2) j; =1 — 1.

() ()2 () 2ming () o) =
J1 Tk AN L) ’

and hence, Hx(j) = s.

If j1 > 1 — 1, then ("7') > ("*'). Thus

So, suppose j; = [ — 1. Since j > (I - 1,0,...,0), there exists m € {2,...,k} such that

Jm > 0. Since ny < ngy,, we have the following inequalities:
(m +j1> (nk—l-jk) S (m +j1> (nm—i-jm) S (n1+l—1) (n1+1>
J1 Jk “\ 5 Jm B -1 1)
By Lemma 4.2.6, we also have ("lltlfl) (np+1) > (”1l+l). Hence,
) ()= O ()
J1 Tk ! !
Therefore, Hx(j) = s, as desired. O

By Lemma 2.2.12 there exists a non-zero divisor, say L, of R/Ix such that deg L = e;.
Let J = (Ix, L). From the short exact sequence

0 —s (R/Ix) (-1,0,...,0) X5 R/Ix —s R/(Ix,L) = R/J — 0
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it follows that the Hilbert function of Hg/; is
Hp;(j) = Hx(j) — Hx(j —e1) for all j € N¥,
where Hx(j) = 0 if j 2 0.

From the claim, it follows that if j > (1,0,...,0), then
Hpgyy(j) = Hx(j) — Hx(j —e1) =s — s =

On the other hand, if j = (/,0,...,0), then
. n+1—-1
Hp,;(j) = Hx(ler) — Hx((I — 1)e1) = s — ( 11 ~1 ) =0
Hence, there exists an element F' € Ry, such that 0 # F € R/J.

We claim that all the non-zero elements of R/J are annihilated by F, and hence,
depth R/J = 0. So, suppose that G € R is such that 0 # G € R/J. Without loss of
generality we can take G to be an N¥-homogeneous element. with deg G = (ji,...,jx) > 0.
We need to check that FG € J. Now deg FG = (j1 + 1, j2,---,Jk) > (1,0,...,0). Since
Hp/;(1 + 1, d2,- -+, Jk) = 0, if follows that FG € J, ie, G is annihilated by F. Thus,
depthR/Ix = 1. O

Remark 4.2.8. From the above proposition it follows that a set of s points in generic posi-
tion in P™ x ... xP™ with s,k > 1 is not ACM because depth R/Ix =1 < K-dim R/Ix = k.

By the Auslander-Buchsbaum formula, sets of points in generic position will also have the
k

largest possible projective dimension, specifically, proj.dimgr R/Ix = z:(nZ +1)—1. We
i=1
need to omit the case that |X| = s = 1 in the previous proposition because a point is a

complete intersection, and hence, is ACM.

3. Hilbert Functions of ACM Sets of Points in P! x ... x P"

Theorem 2.3.10 characterizes the Hilbert functions of sets of distinct points in P”.
We recall that if H : N — N is a numerical function, then H is the Hilbert function
of a set of distinct points in P" if and only if the first difference function AH, where
AH(i) :== H(i) — H(i — 1) for all 4+ € N, is the Hilbert function of a graded artinian

quotient of k[z1,...,z,]. This result was first demonstrated by Geramita, Maroscia, and



3. HILBERT FUNCTIONS OF ACM SETS OF POINTS IN P71 x ... x P"k 74

Roberts [19] (also see Corollary 2.5 of Geramita, Gregory, and Roberts [16]). The proof of
the necessary condition relies on the fact that any set of distinct points X C P" is ACM,
and hence, there exists a regular sequence of length K-dim R/Ix = 1 in R/Ix. As we saw
in the previous section, sets of points in P™ X --- x P™ need not be ACM, so we do not
expect a similar result for arbitrary sets of points in P™ x - .- x P*. However, we will show
in this section that if we restrict to the ACM sets of points in P"! x ... x P™, an analogous

result holds. We begin with a preparatory lemma.

Lemma 4.3.1. Let X be a set of distinct points in P™ X --- x P™ and let R/Ix be the
Nt _graded coordinate ring associated to X. Suppose that L1, ...,L; give rise to a reqular
sequence in R/Ix with t < k. Furthermore, suppose that deg L; = e;, where e; is the it

standard basis vector for N¥. Then there exists an | € N such that

(xl,()a < Tlmgs e s Tt,05 - - a:L-t,’ILt)l g (IXa Lla L23 .. aLt)'
PROOF. Because L,..., L; give rise to a regular sequence in R/Ix, and because deg L; =
e; for 1 <14 < t, we have the following short exact sequences with degree (0, ...,0) maps:
k
0 —  (R/Ix)(-1,0,...,00 X R/Ix — R/J; — 0

0 — (R/Jl)(O,—l,O,...,O) R/Jl — R/JQ — 0

0 — (R/Ji-1)(0,...,—1,...,0)
where J; := (Ix, L1,...,L;) fori=1,...,1.

R/Jt_l — R/Jt — 0

We derive a formula for dimy(R/J;); = dimyg(R/(Ix, L1,...,L:)); for each tuple ¢ =

(i1,...,4%) € N* from the short exact sequences. Specifically, we have
dlmk(R/Jt)L = Z (_1)(]1++Jt) dimk(R/IX)il7_7'1,...,itfjt,’it+1,...,ik
0<(j1 i) <(L, ..., 1)
N —

t

where we take dimy(R/Ix); =0 if 1 Z 0.
For each integer 1 < j <, set I; = |m;(X)|. By Corollary 3.2.4, if i; > [;, then

dimy (R/Ix)o,...,i;,...0 = dimg (R/Tx)o,...i;~1,...,0 = Ij-
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Hence, if i; = [;, then

dimy (R/(Ix, L1, .- -, Lt))o,...p;,...0 = dimk(R/Ix)o, 1;,...0 — dimk(R/Ix)o,...1;-1,...0
— 51 =0.

This fact implies that Ry ;.0 = (Ix, Ly, ... ,Lt)o,...,lj,...,O, or equivalently, the ideal (z; 0, ... ,mj,nj)li C

(Ix,L1,...,L). Since this holds true for each integer 1 < j < ¢, there exists an integer
[ > 0 such that

(11,‘1’0,... ,Il’nl,. . ,It,o,. . al‘t,nt)l (_: (Ix,Ll,. . ,Lt).

This is the desired conclusion. O

Lemma 4.3.2. ([51] Lemma 3.55) Let p be a prime ideal of a commutative ring A, and
let I, ..., I, be ideals of A. Then the following are equivalent:

(i) I; C p for some j with 1 < j < mn.
n

(@) ()1 € p-
=1

Proposition 4.3.3. Suppose that X C P" X --- x P™ 45 an ACM set of distinct points.
Then there erists elements Ly, ..., Ly in R/Ix such that Ly,..., Ly give rise to a regular

sequence in R/Ix, and deg L; = e;, where e; is the it" standard basis vector of NF.

PROOF. By Lemma 2.2.12 there exists a form L; € R such that L; is a non-zero divisor
of the ring R/Ix and deg L1 = e;.

So, suppose that t is an integer such that 2 < ¢ < k and that we have shown that there
exists forms L,...L;_; in R/Ix such that deg L; = e; and such that Lq,...,L;—; give rise
to a regular sequence in R/Ix. To complete the proof, it is sufficient to show that there

exists an element L; € R, such that L; is a non-zero divisor of the ring R/(Ix, L1, ..., Li_1).

Let (Ix, Ly,...,Li—1) = Q1N---NQ, be the primary decomposition of (Ix, L1, ..., Li_1)-
Set p; :=+1/Q; fori = 1,...,r. Then the set of zero divisors of R/(Ix, L1,...,L;1), denoted
Z(R/(Ix,L1,...,L; 1)), is precisely the elements of

Z(R/(Ix, L1,...,Lt-1)) = U ©i-
i=1
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We want to show that Z(R/(Ix,Li,...,Li-1))e, & (R/(Ix,L1,--.,Lt_1))e,, Or equiva-
s

=

lently, U(Pi)et C R,. If we can demonstrate that (p;)e, & Re, for each 4, then we can

- -
i=1

,
use Lemma 2.2.11 to show that U(Pi)et C R,,. It would then follow that there exists a
i=1

form L; € Re, such that L; is non-zero divisor in R/(Ix, L1,..., Li_1).

So, suppose there exists an 7 in {1,...,7} such that (p;)., = Re,, and hence, the ideal

(®,0,---,%tm;) C pi- By Lemma 4.3.1 there also exists a positive integer [ such that

(xl,()a s Tlpyy -y Tt—1,09- - - 7mt71,’nt71)l g (IXa Lla e 7Lt*1) g QZ

Hence, the ideal (£1,0,..-,T1,n1--+>Tt,05---+Tt,n;) C §4-

The ideal gp; also contains the ideal Ix, and hence Ip, N...N Ip, C gp; where I P; is the
prime ideal associated to the point of P; € X. By Lemma 4.3.2, at least one of the prime

ideals Ipl,...,Ip

8

is contained in p;. We assume, after a possible relabelling, that Ip, C gp;.

By Proposition 2.2.7 we have
Ip, = (L1, Ligngs--os Ly oo s Linyy oo s L1y - o L ny,)

where deg Ly, , = ep,. But then, since Ip, C p; and (z1,...,Z¢n,) C pi, the prime ideal

0= (11,07 <y Tty Lt+1,1a e ’Lt+1,nt+17 . 7Lk,1’ e aLk,nk)

k
is contained within ;. The height of the prime ideal p is htg(p) = (Z nz> +1t, and
i=1

k
therefore, htg(p;) > (Z nz) + t.
i=1

On the other hand, because X is an ACM set of points, the ring R/(Ix, L1,...,L; 1)
is Cohen-Macaulay by Lemma, 4.1.18. Since the N*-homogeneous ideal (Ix, L1, ..., Li_1)

is also homogeneous with respect to the usual N-grading, we can use Theorem 4.1.11 to
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compute the height of (Ix, Lq,...,Li_1):

htR((Ix,Ll,...,Lt_l)) = K-dimR—K-dimR/(Ix,Ll,...,Lt_l)

k
= (Z(nz + 1)) —(k—(t—-1))

=1

() e

Because p; € Assr(R/(Ix, L1,...,L; 1)), from Theorem 4.1.11 it follows that

(Zn,) + (t—1) = htp((Ix, L1, .., Ly—1)) = htr(pi) > (an) +t.

But this is a contradiction. Therefore (p;)e, C Re, for alli =1,...,r. O

=

We can generalize the notion of a graded artinian quotient to an Nf-graded artinian

quotient in the natural way.

Definition 4.3.4. An Nf-homogeneous ideal I C R = K[Z1,0s- s T1 s Thy0s- -+ Thymy)

is an artinian ideal if any of the following equivalent statements hold:

(i) K-dim R/I = 0.
) VI = (Z1,05 -+ T1mrs- v r Th0s-- -2 Thymg)-
(131) For each integer 1 < ¢ < k, there exists a positive integer t; such that the ideal
(@i, --- ,wi,ni)ti C I
(i) Hpg1(i1,0,...,0) = 0 for all iy > 0, Hg/1(0,i2,0,...,0) = 0 for all i3 > 0, ...,
and Hg/7(0,...,0,i;) = 0 for all iz > 0.

A ring S = R/I is an Nf-graded artinian quotient if the N¥-homogeneous ideal I is an

artinian ideal.

Remark 4.3.5. An Nf-graded artinian quotient of R is always Cohen-Macaulay. Indeed,
if R/I is such a ring, then 0 < depth R/I < K-dim R/I =0.

Corollary 4.3.6. Suppose that X is an ACM set of distinct points in P™ X - - - x P with

Hilbert function Hx. Then

AHyx(iy,. .., i) = > (—1)UHx (3 — 1y, .. ip — L),
QSL:(llvvlk)S(lvvl)
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where Hx(iy,...,ix) = 0 if (i1,...,ix) 2 0, is the Hilbert function of some NF-graded

artinian quotient of the ring K11, .., 101y Th1y-- - Thyny)-

PRrOOF. By Proposition 4.3.3 there exist k forms Ly, ..., L; that give rise to a regular
sequence in R/Ix and which have the property that deg L; = e;. After making a linear
change of variables in the z1;’s, a linear change of variables in the z2;’s, etc., we can
assume that {Li,..., Ly} = {z10,...,2k0}. Set J := (Ix,21,0,---,%k0)/(T1,05---,Zk0)-

Then J is an ideal of S =k[z1,1,...,Z1nys-- -, Tk 1y, Thn,)- Set A:=S/J. Then

A’é R/(Il,o,...,.rk’o) ~ R
(IXv’El,Oa .. ’xk,O)/(xl,Oa R 7xk,0) (IXa Z1,09--- ,.’,Uk,())

Jé

Using the fact that z1,...,20 give rise to a regular sequence in R/Ix we have k short
exact sequences of graded R-modules with degree (0, ...,0) morphisms:
k
0 — (R/Ix)(-1,0,...,0) ¥ R/Ix — R/, — 0

0 — (R/J)(0,-1,0,...,0) =¥ R/J, — R/ — 0

0 — (R/J_1)0,...,0,-1) ™ R/J.1 — R/J, — 0
where J; := (Ix, Z1,.--,%ip) for i =1,...,k. From the k short exact sequences it follows

that

HA(il,...,’ik) :AHx(‘il,...,ik) = Z (—1)|L|Hx(7;1—ll,...,‘ik—lk)
1=l o) < (1, 1)
where Hx(i) = 0 if i # 0, for all (iy,...,4;) € N*. That is, AHy is the Hilbert function of
the Nf-graded ring A.

By Lemma, 4.3.1 there exists [ > 0 such that (551,0,---,$1,n1,---,$k,0,---,CCk,nk)l C

(Ix,z1,0,---,Tk0). Therefore,
\/(IX7 Z1,05 22,05 - - - ,.Tk;,()) = (:L.l,()a SRR R PRI R X | PRI 7:L.k',’n,k)a
and hence, A = R/(Ix,z1,...,Tk,p0) is an artinian quotient. O

In light of the previous corollary, it is natural to ask if the converse is true. We show
that this is indeed the case. To demonstrate that the converse statement holds, we need to

describe how to /ift an ideal.
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Definition 4.3.7. Let R =Kk([z10,...,T1n;5---Tk,0s-- -1 Tkyn,] a0d S =K[Z11,...,%1,0,,
s TRy Tl be NF-graded rings. Let I C R and J C S be N¥-homogeneous ideals.
Then we say I is a lifting of J to R if

(¢) I is radical in R

I ...
(”) ( » 21,0, azk,O) ~ 7
(ml,Oa .. axk:,())
(¢13) 1,0,..., Tk, give rise to a regular sequence in R/1T.
If J is a monomial ideal in S = k[z1, ..., z,] (here S is considered as an N-graded ring),

then Hartshorne [32] was the first to show that J could be lifted to an ideal I C R =
k[z1,...,Zpn,u1]. This result was reproved by Geramita, Gregory, and Roberts [16] to show
that if J C § is an artinian monomial ideal, then the lifted ideal I is the ideal of a reduced
set of points in P”. Recently, Migliore and Nagel [40] have generalized the construction
used by Geramita, et al. [16] to show that after making some general choices, if J is a
monomial ideal of S, then J can be lifted to an ideal I C k[z1,...,Zn,u1,...,u] for any ¢
(cf. Theorem 3.4 of [40]). They also show, among other things, how some properties, for

example the graded Betti numbers, are passed from J to the lifted ideal 1.

By using the method of [40] we will construct from a monomial ideal J in S =
K[T11,. s Z1ngs - s Th1y- e Thopy,) AN N¢-homogeneous ideal I C R = K[Z1,0,.- s T100,---
ceesTk0s-- > Tkp, that has properties (i4) and (i7i) of Definition 4.3.7. The main idea is
to use [40] to make a homogeneous ideal from J that is also N¥-homogeneous. We begin
by giving some notation and by describing the construction and results of [40] that we will

require.

Let N = {0,1,2,...}, and suppose that S and R are as above, but that they are N'-
graded. For each indeterminate x; ; with 1 <4 <k and 1 < j < n;, choose infinitely many
linear forms L; ;; € k[z; j,21,0,220,---,%k0] With [ = 1,2,.... We only assume that the

coefficient of z; ; in L; ;j; is not zero. The infinite matrix A, where
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Ligy  Line L1
Lipn,g Lin2 Lin3

Ly Lga2 Lgags

| Lkt Lekngl2  Ling,s

is called a lifting matriz. By using the lifting matrix, we associate to each monomial

— 011 a1,my ag,1 k,ny, .
mM=2T] Ty Ty -z, " of the ring S the element
ni ai g N Qg
= [T (Tl ) | =TT (T 20 ) | € 2
i=1 \j=1 i=1 \j=1

Note that depending on our choice of L;;;’s, m may or may not be NF-homogeneous.
However, m is homogeneous. If J = (m1,...,m;) is a monomial ideal of S, then we use I
to denote the homogeneous ideal (71, ...,m,) C R. Migliore and Nagel gave the following

properties, among others, about S/J and R/I.

Proposition 4.3.8. ([40] Corollary 2.10) Let J = (m1,...,m;) C S be a monomial ideal,

and let I = (y,...,m,) be the ideal constructed from J via any lifting matriz. Then

(z1) S/J is CM if and only if R/I is CM.
I
(”) ( » 21,0, ,$k7()) ~ 7

(21,0, - -+ Tk,0)
(i1) x1,0,-.-,Tk0 give Tise to a regular sequence in R/I.

Remark 4.3.9. Note that the construction of I from J that we have given above does
not guarantee that I is a lifting of J since we do not know if I is reduced. Migliore and

Nagel [40], however, also give some conditions on L; j ; to ensure that I is also reduced.

We will now show how to lift a monomial ideal of S to an N¥-homogeneous ideal of R.

The main idea is to pick the L; j ;s with enough care so that m is also NF-homogeneous.

We begin by describing the needed notation. If

(gla"'agk) = ((al,la"'aal,n1)a"',(ak,l,"'aak,nk)) € NM X -vv x N”lk’
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then we define X7 - Xp* = 13‘11711’1 :v(f,lnzl ---fol’l . fonT;k Since X7 --- X% is NE-
homogeneous, deg X7 --- X;* = (|ayl,...,|a|). Let P be the set of all monomials of S
including the monomial 1. It follows that there exists a bijection between P and N x --- x
N given by the map X7 --- X,%’“ < (aj,.--,0;). We also partially order the elements
of N x ... x N ag follows: If (gl, .. ’ﬁk) == ((b1,1,--» 01,0 )5 -5 (By15- -+, bi g, ), then
we say (aq,...,q) < (B,,.--,8,) if aij <b;jforalld,jwithl <i<kandl<j<n,
The statement (ay,...,a) < (B,,...,8,) is equivalent to the statement that X7t X

divides Xlél - Xg’“.

To each m = X lgl - X ,%’“ € P we associate the following N¥-homogeneous form of R:

ni ay g gk ak,4
m = H H(wl,z’ —(—=Dzio) || --- H H(xkﬂ- —(j = D)agp)
i=1 \j=1 i=1 \j=1
We observe that degm = degm = (|a;],...,|a|)- If J = (m1,...,m;) is a monomial

ideal of S, then we use I to denote the N*-homogeneous ideal (71, ...,m,) C R. Then, by

Proposition 4.3.8, we have

Proposition 4.3.10. Suppose J = (my,...,m;) is a monomial ideal in the NF-graded
ring S. Let I = (Mmy,...,m;) be the N¥-homogeneous ideal of R constructed from J via the

method described above. Then

(i) S/J is CM if and only if R/I is CM.

(I,.’,Cl,(), .. ,.Tk7()) ~ 7
(ml,Oa .. axk:,())
(i13) 1,0,...,Tk,0 give rise to a reqular sequence in R/I.

PROOF. The crucial point is to realize that our construction of 7z from a monomial

m € S is identical to the method described by Migliore and Nagel [40] using the lifting
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matrix
1,1 Tl — T 0 Tl — 2T 0 Tl — 3T1p

Ti2 T12—T10 Ti12—2T10 T12 — 3T1p

Tipy Tlm —T10 Tln — 2710 Zip, — 3T10

Tk1 Tkl — Tko Tkl — 2Tk Tkl — 3Tk,

Tk Tk — Tk Tk — 2Tk Tk — 3Tk

| Tk Tk, = ThO Thony, — 2Zk0  Thng — 3Tk,0 |

The conclusions now follow from Proposition 4.3.8 because this proposition describes the

properties of ideals constructed from a monomial ideal J via any lifting matrix. O

To each tuple (aq,...,04) = ((@1,1,---,81,01)s--- (Ak15 -+, Ak p,)) € NPT X oo X N

we associate the point (ay,...,q;) € P™ x --- x P™ where
(aq,--y0g):=[ltarg:a12::@1p | X - X[l:ag1:ar2: " Qrn,l-

We define deg (ay,...,q;) = deg X' - X * = (|leyl,...,|a|). We note that if m =
X7t --- X% € P and if m is constructed from X7 -+ - X, * as above, then m((ay, ..., qy)) #

0. The following lemma is also a consequence of the definition of (o, ..., a;) and .

Lemma 4.3.11. Let m = Xlgl . --X,%’“ € P. Then

(z) m((gl,...,gk)) =0 if and only if (ay,...,q ) & (gl,...,gk), that is, some coor-
dinate of (gl, ..
(i) m((B,---.B,)) =0 forall (B,,...,B,) with the property: there exists an integer i

in 1 < i <k such that the tuple B, € (ﬁl, ... ,@k) satisfies |§Z| =Bii+ A+ Bin <

.,gk) is strictly less than some coordinate of (ay,--.,qy).

Qi1+ F g, = || (except for the case that ﬁz = ;).

PROOF. Statement (i) follows immediately from the construction of .
(74) Suppose that the point (gl, ... ,gk) € P™ x ... x P" has the property that the

tuple 8. € (B,,...,,) is such that 8, # a; and |B,[ < |e;|. Then, because 8, a; € N*,
there is 3;; with 1 < j < n; in the tuple gz = (Bi1s.--+Bin;) such that 5;; < a;;
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where «; ; is the j* coordinate of o;. But then (ay,...,q;) £ (B,:---,B,), and so by (i),

m((Br---:B,)) = 0. O

If J is a monomial ideal of S, then let N be the set of monomials in J. Set M := P\N.
The elements of M are representatives for a k-basis of the N¥-graded ring S/J. Set

M:={(ay,...,0) EP™ x - xP% | X{"... X;* € M}.
We mimic the proof of Geramita, et al. [16] to show:

Lemma 4.3.12. Let J = (my,...,m;) be a a monomial ideal of S, and let I =

(M1, ...,m;) C R and M be constructed as above. Then

1={fer | f(lar- ) =0{ay,--,a) € M} .

In particular, I is a reduced ideal.

Because the proof of this lemma, is very technical, we will postpone the proof until the

last section of this chapter, Section 5. As a corollary, we have

Corollary 4.3.13. Suppose J = (my,...,m;) is a monomial ideal in the NE-graded ring
S. Let I = (fy,...,m,) be the NF-homogeneous ideal of R constructed from J wvia the
method described above. Then I is a lifting of J to R.

We now state and prove the main result of the chapter.

Theorem 4.3.14. Let H : N = N be a numerical function. Then H is the Hilbert
function of an ACM set of distinct points in P™ x --- X P™ if and only if
AH(ir,...,ip) = S (DUH( by i — 1),
l:(llr“alk)s(la"'ﬂl)
where H(iy, ... i) = 0 if (i1,...,i) # 0, is the Hilbert function of some N¥ -graded artinian

quotient of S =K[Z11,.- ., Ti sy Th,ly- -2 Thyng)-

PROOF. Because of Corollary 4.3.6, we only need to show one direction. So, suppose
AH is the Hilbert function of some NF-graded artinian quotient of S. There then exists an
N¥-homogeneous ideal J C S with AH (i) = Hg/,(i) for all i € N¥. By replacing J with the
leading term ideal of J (see Section 1 of Chapter 2), we can assume that J = (m1,...,m;)

is a monomial ideal of S.
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Let I = (My,...,m,) C R, where m; is the NF-homogeneous form constructed from
the monomial m; via the method described after Proposition 4.3.8. By Proposition 4.3.10,
(I,z1,05---Tk0)/(Z1,0,---,Tko) = J and z19,...,2k0 give rise to a regular sequence in
R/I. Because degz;o = e;, where e; is the it" standard basis vector of N¥ we have the

following k short exact sequences with degree (0, ...,0) maps:
—
k

XT1,0

0 — (R/I)(-1,0,...,0) =¥ R/I — R/J, — 0

0 — (R/J)(0,-1,0,...,0) =¥ R/J, — R/ — 0

XZTk.0

0 — (R/Jk_l)(O,...,O,—l) — R/Jk_l — R/Jk — 0

where J; := (I,z1,...,2,p) for i = 1,..., k. Furthermore,
R/(z1,0,---,Tk,0)
S/J = : : =2R/(I,z10,---,Tk0) = R/Jg.
/ (I, T1,09--- ,:I?k,())/(.’L'l’o, - ,.’L‘k,o) /( 1,0 Ic,O) / k

We then use the k short exact sequences to compute the Hilbert function of R/I. This
calculation will show that H (i1, ...,ix) = Hgyr(i1,...,4) for all (ir,... i) € NE.

To complete the proof, we only need to show that I is the reduced ideal of a finite set of
points in P™ x - .. x P™_ It will then follow from Proposition 4.3.10 that this set of points
will also be an ACM set of points because S/J is artinian, and hence, CM. If N is the set
of monomials in J, then M = P\N is a finite set of monomials because the ring S/J is

artinian. Hence
M= {(gl,...,gk) EPM X oo x P | X2 XS ¢ M}

is a finite collection of points in P"! x --- x P" . By Lemma 4.3.12, the ideal I is the reduced

ideal of the set of points M C P™ x --- x P"%, O

Remark 4.3.15. From Theorem 4.3.14, we see that characterizing the Hilbert functions of
ACM sets of points in P™! x - - - X P ig equivalent to characterizing the Hilbert functions of
multi-graded artinian quotients of K[z1,1,...,Z1n;y. -, Tk 1;5-- - Tk, Since we do not have
a theorem like Macaulay’s Theorem (Theorem 2.1.2) for N¥-graded rings, the above theorem
translates one open problem into another open problem. However, we will show in the next
section that there is a Macaulay-type theorem for bigraded quotients of k[z1,y1,. .., ym] and

NF-graded quotients of k[z11,%21,...,7k1]. As a consequence, we can explicitly describe
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all the Hilbert functions of ACM sets of points in P! x P (cf. Corollary 4.4.15) and

P! x ... x P! (cf. Corollary 4.4.18) for any positive integer k.
—_———
k

In Proposition 4.2.7 we showed that if X is a set of points in generic position in P™! x
- x P then depth R/Ix = 1. Since K-dim R/Ix = k, if k¥ > 1, then X cannot be an

ACM set of points. We show that this result is also a corollary of the above theorem.

Corollary 4.3.16. Let s,k € N be such that s,k > 1. If X is a set of s distinct points in
P™ x --. x P™ that is in generic position, then X is not an ACM set of points.

ProOOF. Without loss of generality, we assume that n; < mo. Let [ be the minimal
integer such that ("11“) < s but (’“HH) > s. Since no > n1, from Lemma 4.2.6 it follows

I+1
that

ni+1+1 ny + 1 ny +1
< < < .
< (M) = (o< (Mo

Because X is in generic position, the above inequalities imply:

()= ()

8,

|
g

R e G [ G | =
(D)) -

If X is an ACM set of points, then AHx(iy,...,i) > 0 for all (iy,...,i;) € N*. But from

Hx(l,0,...,0) = min

Hx(l+1,0,...,0) = min

Hx(1,0,. ..

e
I
8

in{ s,

the above values for Hx, one finds that

AHx(l+1,1,0,...,0) = > (DU Hx(+1-1,1 = 15,0 —1I5,...,0 — i)
L:(lla--ulk)s(l:---al)
= Hx(1+1,1,0,...,0) — Hx(1+1,0,...,0)

—Hx(l,l,o,...,())+Hx(l,0,...,0)

l l
= s—s—5+(nll+>:—5+(nll+ ) <0.

Therefore X cannot be an ACM set of points. O
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Remark 4.3.17. We need to omit the case that s = 1 in the above corollary because a

single point is a complete intersection, and hence, ACM.

4. The Hilbert Functions of Some Nf-graded Artinian Quotients

The goal of this section is to characterize the Hilbert functions of N*-graded artinian
quotients in two special cases. The first case is the case that S = k[z1,y1,.-.,Ym] where
degzi = (1,0) and degy; = (0,1). The second case is the case that S = k[z1,zo,...,zk]
with deg z; = e;, where e; is the i"® standard basis vector of N¥, for any k. As a consequence,
we can completely characterize the Hilbert functions of ACM sets of points in either P! x P™

for any positive integer m or in P! x --- x P! for any positive integer k.
—_———
k

4.1. Artinian Quotients of k[z1,y1,...,¥,] and their Hilbert Functions. If § =
k[z1,y1,---,ym] with degz; = (1,0) and degy; = (0, 1), then in this section we characterize
not only the Hilbert functions of the bigraded artinian quotients of S, but the Hilbert
functions of all bigraded quotients of S. As a consequence, we can determine if a numerical

function H : N> — N is the Hilbert function of an ACM set of points in P! x P™.

Remark 4.4.1. Suppose that T' = k[z1,y1,...,ym] with degy; = (1,0) and degz; = (0,1),
that is, T is the coordinate ring associated to P™ x P1. The ring S and T are identical except
that we have swapped the degrees of indeterminates. Hence, if I is any N?-homogeneous
ideal of S, then I can also be considered as an N?-homogeneous ideal of 7. Because we

have switched the degrees of the indeterminates, it follows that
Hg;1(i,§) = Hyyr(j,4)  for all (i,7) € N2

Hence, to classify the Hilbert functions of quotients of 7', it is enough to classify the Hilbert
functions of quotients of S. Furthermore, any result that we give about the Hilbert functions
of sets of points in P! x P™ is also a result about the Hilbert functions of sets of points in

P x P! by using the above identification.

To characterize the Hilbert functions of quotients of S, we need to recall some more
general results about the Hilbert function of a bigraded ring. These results are due primarily

to Aramova, Crona, and De Negri [2].
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Suppose that S = k[z1,...,Zn,Y1,.-.,Ym] with degz; = (1,0) and degy; = (0,1).

bm
m

a:= (ai,...,a,) € N and b := (by,...,b,) € N™. Note that deg X2Y? = (|al, |b]). We

let >, denote the degree-lexicographical monomial ordering on S induced by z; >, z2 >,

If 2! ---x%zmyll’l .-.ybm is a monomial of S, then we write this monomial as X2Y?® where

“>¢ Ty >z Y1 >z o0 >p Yme Similarly, we let >, denote the degree-lexicographical
monomial ordering on S induced by y1 >y Y2 >y 1+ Sy Ym Sy T1 Sy 0 >y Tp. We let
M, ; be the set of all monomials of S of degree (3, j).

Definition 4.4.2. A subset of monomials L C M;; is called bilex if for every monomial

X2Y? ¢ L, the following conditions are satisfied:

(i) if X¢ € M;p and X€ >, X% then X¢Y? € L.
ii) if Y& € My ; and Y2 >, Y2 then X2Y¥ ¢ L.
sJ

Definition 4.4.3. A monomial ideal J C R is called a bilez ideal if J; ; is generated, as a

k-vector space, by a bilex set of monomials for every (4,5) € N.

For every integer 1 < [ < |M; |, there exists a bilex subset L C M;; with |L| = L.
Indeed, order the elements of M; ; with respect to the monomial ordering >, and let L be
the [ largest elements of M; ;. Suppose that XYt ¢ [, and suppose that X€¢ >, X2. Then,
because >, is a monomial ordering, X¢Y?® >, XY Since L consists of the |L| largest
elements of M; ; with respect to >;, X¢Y? € L. A similar argument will verify the other
condition of Definition 4.4.2 is satisfied, and thus, L is a bilex subset of size [. We give this

special set a name.

Definition 4.4.4. If L is any bilex subset consisting of the |L| largest monomials of M; ;
with respect to the ordering >, then we call the bilex subset L the lexsegment with respect

to >4.

Remark 4.4.5. Suppose that the elements of M; ; are instead ordered with respect to >,.
For each integer 1 <[ < |Mi,j|, the subset L' of M; ; consisting of the [ largest elements is
a bilex subset with respect to the ordering >,, that is, if X ayb ¢ [/, then

1) if X€ € M; and X¢ >, X2, then Xeybe L.
s Yy

1) if Y¢ € My, and Y2 >, Yt then X2V4 ¢ L.
sJ Yy )
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But note that if X%, X¢ € M;o, then X¢ >, X2 if and only if X¢ >, X2 Similarly, if
Yt yd ¢ My ;, then yd >y Y if and only if Y¢ >, Y®. So L' is also a bilex subset of M; ;
with respect to the monomial ordering >, or simply, L’ is a bilex set. For this reason, if L
is a bilex subset of M; ; that consists of the |L| largest elements of M; ; with respect to >,,

then L is a bilex set, and we say L is the lezsegment with respect to >,.

Example 4.4.6. If [ is an integer such that 1 <[ < |M; ;|, then there may be more than one
bilex subset of M; ; with cardinality equal to [. For example, suppose S = k[z1,Z2,y1, y2]-
Then M, ;1 = {z1y1, Z1y2, Z2y1, 2y2}. The subsets Ly = {z1y1,z1y2} and Ly = {z1y1, z2y1 }
are two different bilex subsets of M;; that contain two elements. Note that L; is the

lexsegment with respect to >, and Lo is the lexsegment with respect to >,.

Definition 4.4.7. If L is a bilex subset of M;;, then we denote by (L) the k-vector
subspace of S; ; spanned by the elements of L. We denote by Sy 1(L) the k-vector subspace
of S; j+1 spanned by the elements of the set {FFG | F € Sp; and G € (L)}. We define
S1,0(L) similarly.

Lemma 4.4.8.

(a) Let L be a lexsegment with respect to >, in M, ;. Define YL = {y1,...,ym}L :=
{y; X2Y? | 1 <i <m, XYt € L}. Then
(¢) YL is a lexsegment with respect to >4 in M; j11.
(¢1) YL is a monomial basis for So,1(L) as a k-vector subspace of S; ji1.
(b) Let L be a lexzsegment with respect to >, in M; ;. Define XL = {z1,...,zn}L :=
{r; X2Y? | 1 <i<n, X%t e L}. Then
(i) XL is a lexsegment with respect to >y in M; 1 ;.

(it) XL is a monomial basis for S1o(L) as a k-vector subspace of Sit1 ;.

PROOF. For (i) of (a), this is Lemma 4.6 of [2]. The second conclusion of (a) is imme-
diate. The proof of (b) is the same. O

If 7 and a are two positive integers, then we recall that the i-binomial expansion of a is

= (1) () e (9)

the unique expression
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where a; > a;—1 > --- > a; > j > 1. The function <i>:N = N is defined by
0 g<P> — a; +1 " ai—1+1 ot aj +1
1+1 ) j+1
where a;,a; 1,...,a; are as in the i-binomial expansion of a. With this notation we have:
Proposition 4.4.9. Let S =k[z1,...,Zn,Y1,---,Ym]-

(a) Let L be a lexsegment with respect to > in M; ;. Let

dimy S; j/(L) = (m ; +J)q+7‘

be the Euclidean division of dimy S; j/(L) by (m_jl"'j). Then

Jj+1
(b) Let L be a lexsegment with respect to >, in M; ;. Let

) n—141
dimy, S@j/(L) = ( i )QI +7r

be the Euclidean division of dimy S; /(L) by ("_zH'z) Then

dimk Si,j+1/Soyl<L> = (m + ]) q + ’f‘<j>.

. n 41 ;
dimy S; j11/51,0(L) = (Z N 1)Q1 + .

PROOF. This is Proposition 4.16 of [2]. O

With these definitions and results, among others, Aramova, et al. were able to place
bounds on the values of the Hilbert function of a bigraded ring S/I. This result is given

below.

Theorem 4.4.10. ([2] Theorem 4.18) Let I be a bihomogeneous ideal of the bigraded ring

S =k[z1,---,Tn, Y1, -+ s Ym]. Also, let Hg/1(i,5) = dimy(S/1);; be the Hilbert function of

S/I. Moreover, let

m-—1+7
J

be the Euclidean division of Hg,1(i,j) by (mfjlﬂ') and ("71.1“), respectively. Then

o . n—1+1
HS/I(%J):< )Q+T and HS/I(Za]):< ; )Q1+T1

. .. m—+ 7 :
H 1) < <J>,
(1) Hgr(i,j +1) < <j+1)q+r

n 41 ;
.o . . < <Z>.
(i) Hgr(i+1,5) < (Z.+1>Q1+7‘1
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We our now in position to prove the first major result of this section.

Theorem 4.4.11. Let H : N> 5 N be a numerical function. Then there ezxists a
bihomogeneous ideal I C S = k[z1,y1,...,Ym] such that the Hilbert function Hg/;r = H if

and only if
(i1) H(0,1) <m,
(iii) H(Gi+1,5) < H(i,j) for all (i,5) € N?, and
(iv) H(i,5+1) < H(i,§)<9> for all (i,5) € N> with j > 1.

PROOF. Let I be the bihomogeneous ideal of S with Hilbert function Hg/; = H. Then

assertions (i) and (4i) are immediate. For (i4i), we observe that (nfl.l“') = (1_;”) =1 for

1-14)

each positive integer i. Hence, the Euclidean division of Hg, 1(i,7) by ( ;

.. 1—1+43 ..
Hg(i,7) = ( ; )HS/I(ZJ) + 0.

From Theorem 4.4.10, it follows that

) . 1414 . ; .
Hgr(i+1,5) < (z n 1>HS/I(Z,J) + 0> = Hg/1(4, ).

To prove that (iv) holds, we need to first recall that

m-—1+7

Hg/1(i,5) = dimy S;,; — dimy I; j = ( j

) — dimy T; ;.
If dimy I;; = 0, then the Euclidean division of Hg;r(i, ) by ("7 *7) is

o m—147
HS/I(ZJ):( . ]>1+0-

Using Theorem 4.4.10 to calculate an upper bound for Hg/;(i,j + 1), we get

. 7”/+j <7> (”L_]-+j><‘]> LN <I>
Hg/p(i,7+1) < | . 14+0%7 = , =Hg/(i,5)~7.
5/1( J ) < <j+1> j S/I( 7)
On the other hand, if dimy J; ; > 0, then the Euclidean division of Hg/(4,5) by (m_jH'j)

-1 ] -1 ]
Hs)1(i, j) = (m j+]>0+ [(m j“> —dimin,j]-

yields
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By applying Theorem 4.4.10 we therefore have
. m+j m—1+j _ <i> .
HS/I(Z’]+1) S ( . J)D‘i‘ [( . ]> —dlmin,j:| :Hs/I(Z,])<‘7>.
j+1 J
This completes the proof that conditions (%)-(iv) are necessary.

To prove the converse, we require some lemmas that describe some of the properties of

bilex subsets in S = k[z1,y1,-..,Ym]-

Lemma 4.4.12. Let M; ; be the set of monomials of degree (i,j) in S = k[z1,y1,.--,Ym)
Then, for each integer 1 <1 < |M; ;|, there is ezactly one bilex subset L C M; ; with |L| = 1.

PrOOF. Let L be the [ largest elements of M;; with respect to >;. Then, as noted
earlier, L is a bilex set with [ elements. Now suppose that there exists a bilex set L' C M; ;
with L' # L, but |L'| = |L| = I. Because L' # L, there exists a monomial m € L' such that
m ¢ L. Let m be any element of L. Then m >, m. Because m,m € M, ;, we therefore

have
~ i b bm i, C1 Cm __ b1 bm c1 Cm
M =T1Y] Yy ZxT1Y1 Yy =M < Y1 Yy >z Y1 "YU -

Since L’ is bilex, it follows that m € L'. Hence, L C L'. But then ! = |L| < |[L'| = L. O

Lemma 4.4.13.  Let Li,Ly be two bilex subsets of M;; in S = K[x1,y1,---,ym]|. If
|L1‘ S |L2|, then L1 g L2.

PROOF. The only bilex subset consisting of |L;| (respectively, | L2|) elements is the bilex
subset consisting of the |L;| (respectively, |Lo|) largest elements of M; ; with respect to >.

The conclusion follows from this observation. O

We now return to the proof of the theorem. Assertions (i) and (iv) imply that H (0, j) <
(717 for all j. Tt follows from (ii) that H(i,j) < H(0,5) < (™;*) for all (i, 5) € N2,
Let S = k[z1,y1,...,Ym] and let M, ; be the (m_jH'j) monomials of degree (7,7) in S.
For each (i,j) € N?, let L; ; be a bilex subset of M; ; consisting of [(m_jH'j) - H(z',j)] >0

elements. Because of Lemma 4.4.12, there is only choice for L; ;.

Claim. For all (4,5), So1(Lij) C (Lij+1) and S10(Lij) C (Lit1,)-



4. THE HILBERT FUNCTIONS OF SOME Nf-GRADED ARTINIAN QUOTIENTS 92

Proof of the Claim. A basis for So1(L; ;) is the set of monomials Y'L; ;. If we can show
that |YL; ;| < |L; 41|, it would then follow from Lemma 4.4.13 that YL;; C L; 1, or

equivalently, So.1(Ls ;) C (Li j+1)-

Let dimy S; ;/(L;;) = (m_jH'j)q + r be the Euclidean division of dimy S; /(L ;) by
(m—'l-l-j
J
sition 4.4.9 that

). Because L; ; is also the lexsegment with respect to >, we calculate from Propo-

. m—1+4+7 . Y
dimy S; j1+1/80,1(Lij) = ( ' j)q+r<]> = H(i,j)<7”.
Hence
. m+ j N
|Y L; ;| = dimy So,1(Lij) = ( : J) — H(i,j)<”
j+1
m+j .
< ) —H(G,j+1
< (]H) (4,5 +1)

= dimy(Lijy1) = [Lijal-
Thus |Y'L; j| <|L; 1] as desired.

Similarly, a basis for S1,0(L; ;) is the set of monomials X L; ;. The set XL;; is a bilex
set because of Lemma 4.4.8. Moreover, since there is only one bilex set of size | X L; j|, the
set X L; ; must also be the lexsegment with respect to >,. By using Proposition 4.4.9, we

calculate that

| X Lij| = dimy S1,0(Lij) = dimg Siy15— H( )
-1+ : .
(")) - mtr1

= dimk<Li+1,j) = |Li+17j|'
Because |XL; ;| < |L;y1,4|, we conclude from Lemma 4.4.13 that Sy o(L; ;) C (Lit15). O

Let I be the ideal generated by all the monomials in all the bilex sets L;; where
(4,5) € N2. Since I is generated by monomials, it is bihomogeneous. We claim that for every
(i,j) € N2, I, ; = (L; ), that is, I is a bilex ideal. Indeed, let F € I be bihomogeneous
of degree (i,7). Then, either ' € (L;;) and then clearly F' € I;;, or F = HG where
G € (Ly ) with (7', 5") < (i,5) and H € S;_y j_j. But from the above claim, it follows
that

Sivit,j—j(Lir 1) € (Lij)-
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Thus, F' € I; ;. This then completes the proof because the Hilbert function of S/I is

. ) ) m-—1+7 .
Hg/1(i,j) = dimg R;; —dimy I; j = ( j J) — dimy (L; ;)

() [ ) ]

for all (i,5) € N2. O

Corollary 4.4.14. Let H : N> — N be a numerical function. Then H is the Hilbert

function of a bigraded artinian quotient of K[z1,y1,---,Ym| if and only if

(¢) H(0,0) =
(i) H(0,1) <
(297) H(1+ 1, ]) < H(z §) for all (i,j) € N2,
(iv) H(i,5+1) < H(i,§)<9> for all (i,5) € N* with j > 1,
(v) there exists a positive integer t such that H(t,0) =0, and
(vi) there ezists a positive integer r such that H(0,r) = 0.

PROOF. Suppose that I C S = k[z1,¥1,...,Ym] is a bihomogeneous artinian ideal such
that Hg/; = H. Then conditions (i)-(iv) are a consequence of Theorem 4.4.11. Assertions

(v) and (vi) follow from the definition of an artinian quotient.

Conversely, conditions (i)-(iv) imply the existence of a bihomogeneous ideal I in the
ring S = k[z1,y1,.-.,Ym] such that the Hilbert function of S/I is equal to H. The final

two conditions would then imply that I is an artinian ideal. O

By coupling the above corollary with Proposition 4.3.14, we get a complete description
of the Hilbert functions of ACM sets of points in P! x P™. We express this formally as a

corollary.

Corollary 4.4.15. Let H : N — N be a numerical function. Then H is the Hilbert
function of an ACM set of points in P x P™ if and only if the numerical function AH
satisfies conditions (i)-(vi) of Corollary 4.4.14.

4.2. Artinian Quotients of k[zi,...,z;] and their Hilbert Functions. Suppose

that S = k[zy,...,z;] and degz; = e;, where e; is the i standard basis vector of N¥.
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Just as in the previous section, we will show a stronger result by characterizing the Hilbert

functions of all quotients of S, not only the artinian quotients.

Theorem 4.4.16. Let S = k[z1,...,z;] be an NF-graded ring with degz; = e;, the it
standard basis vector of N¥, and let H : N* — N be a numerical function. Then there exists

a proper ideal I C S such that the Hilbert function Hg;; = H if and only if

(i) H(0,...,0)=1,
() H(Z) =1 or 0 ifi > 0, and
(éi1) if H(i) = 0, then H(j) = 0 for all j > i.

PROOF. Suppose that I C S and that Hg/; = H. Then condition (i) is a consequence
of the fact that I C S. For (i), we recall the definition of Hg/(i):

0 < Hg/r(6) = dimy(S/I); = dimy S; — dimg [; = 1 — dimy [; < 1.

Hence, Hg/(i) = 1 or 0. Finally, if Hg/(i) = 0, this implies that 2% ---2}* € I, or
equivalently, S; C I because :lci1 x;ck is a monomial basis for S;. But then, if j > 4, then
Sl C I, that is, HS/I(.Z) =0.

Conversely, suppose that H is a numerical function that satisfies conditions (i) — (#14).
If H(i) = 1 for all i € N*, then the ideal I = (0) C S = k[z1,...,z}] has the property that
HS/I - H

So, suppose H (i) # 1 for all . Set T := {(i1,...,4) | H(i) = 0} . Note that T # N
because 0 ¢ Z. In the ring S = k[z1,..., 3], let I be the ideal I := ({z"! mzk | i € 1}).
We claim that Hg/;(i) = H(i) for all i € N*. It is immediate that Hg/;(0) = H(0) = 1.
Moreover, if H(i) = 0, then Hg/;(i) = 0 because ' :L‘Zk €l; C1I e, S; CI.

So, we only need to check: if H(i) = 1, then Hg/;(i) = 1. Suppose Hg/r(i) = 0. This
implies that :II? ac?ck € I. But because i ¢ Z, there is a monomial w{l wfc’“ € I with

J € Z, such that x{l :vi’“ divides :L‘zfl e x;c’“ But this is equivalent to the statement that

Jj < i. But this contradicts hypothesis (ii1). So Hg/r(i) = 1. O

Corollary 4.4.17. Let S = k[z1,...,z] be an NF-graded ring where degz; = e;, and
let H: N - N be a numerical function. Then H is the Hilbert function of an N -graded

artinian quotient of S if and only if
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(z) H(0,...,0) =1,

(i%) ()—1orOzfz>( .., 0),

(éi1) if H(i) = 0, then H(j )—Ofor all (§) > (i), and

(1v) for each integer 1 < i < k, there exists an integer t; such that H(t1,0,...,0) =
H(0,9,0,...,0) = --- = H(0,...,0,t) = 0.

PROOF. This result follows from Theorem 4.4.16 and the definition of an Nf-graded

artinian quotient of S. [l

Corollary 4.4.18. Let H : N* — N be a numerical function. Then H is the Hilbert
function of an ACM set of distinct points in P* x - -+ x P! if and only AH satisfies conditions
(S ——

(7) — (i) of Corollary 4.4.17.

Remark 4.4.19. It follows from the previous corollaries that H is the Hilbert function of
an ACM set of points in P! x P! if and only if

(1) AH(i,j) =1 or 0,
(i5) if AH(4,7) = 0, then AH(i', ') = 0 for all (i, j') € N2 with (i',4') > (i, ), and
(i34) there exists integers t and r such that AH(¢,0) = 0 and AH(0,r) = 0.

Giuffrida, Maggioni, and Ragusa proved precisely this result in Theorem 4.1 and Theorem
4.2 of [26].

5. The Proof of Lemma 4.3.12

For this section we will use the standard notation (i1,. .. iy - - - ,ix) to denote the tuple
(415-+-3%1,%+1,---,%%). In this section we prove Lemma 4.3.12. The proof of this lemma

relies on the following lemma.

Lemma 4.5.1. Suppose that R = K[T1,0,..., %1015+ Tk,0,--->Thyn,) ond that R is
Nt -graded. Let f € R be a form of degree (di,...,dy). If f((aq,---,a;)) = 0 for all
(a1,...,04) EP™ x ... x P of degree < (dy,...,dg), then f =0.
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PROOF. If kK = 1 and n; is any positive integer, then this lemma is Lemma 2.3 of

Geramita, Gregory, and Roberts [16]. We will generalize this result to all positive k € N.

Set

?dla---ydk = {(gl,. .. ,gk) € P ox ... x Pk

deg(ar, ) < (di,- . de) ) -

The set ?dl,...,d d1+m) (dk;nk

ni k

consists of ( ) points.

k
If k is any positive integer, nq,...,ny arbitrary positive integers, and (d1,...,dy) =
(0,...,0), then P4, 4 consists of exactly 1 point. The only forms of degree (0,...,0) in R

are the constants; hence, if f vanishes at the single point of Fdl,---,dk’ we must have f = 0.

Let £ > 1 be a positive integer, and suppose that n; = ... = n; = 1, and that d; > 0
butdi =...= a?i =...=dj = 0. Then the set ﬁo,...,di,...,o consists of exactly d; + 1 points.
If f € Ry,...4;,..0, then f is a form of degree (0, ...,d;,...,0) in the indeterminates x; 0, z; 1.

So, if f vanishes at the d; + 1 distinct points of ﬁo,...,di,...,Oa then f = 0.

We now want to show that for any k € N, if ny = ... =nj =1 and (dy,...,d;) € N is
arbitrary, then the lemma holds true. We proceed by induction on k and (dy,...,dg), that

is, we assume that the lemma holds for all sets ?cl,___,cl - P! x ... x P! if either 1 <I<Ek,
S

l
or if | = k and (dy,...,dg) >iex (C1,--.5Ck) >iex 0, where >, denotes the lexicographical

ordering. We will then show that the lemma is also true for Fdl,...,dk CPl x..- xPL.

So, suppose that f € Ry, . 4, and that f vanishes on ﬁdl,---,dk' Since (dy, . ..,dg) >z 0,
there is at least one coordinate of (di,...,d), say d;, such that d; > 0. If d; = 0 for all j
in 1 < j <k with j # 4, then, as already noted, f must be zero if f vanishes on Py, 4, .
So, we can assume that at least two coordinates of (di,...,dy), say d; and d; with 7 # j

are such that d;,d; > 0.

Now consider the subset of Fdl,---,dk that vanishes on z; 1 — d;z; 0. We are assuming that

d; > 0. The elements of this subset are precisely the points:

—

@)y @ ag)) €N x - XN
Pr=<[liay] x---x[1:dj] x---x[1:ay] k—1

(a‘la"'aa‘ia"'aa’k) < (dla"'adia"'adk)
We write f as f = (2,1 —dijz;0)g +7 where degg = (di,...,d; —1,...,d;) and 7 is a degree

(di,...,dg) polynomial such that no term of r is divisible by ;1. Since ny = -+ =ny =1,
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the term r = roacgfo where r( is a polynomial in R’ = k[z1,0,Z1,1,---,%i,0,&i1,- - Tk,0, Th,1)-
But because r must vanish at the points in Pj, this implies that 7y vanishes at the (d; +
1)---(d; +1)---(dg + 1) points in the set

—

_ ((a1),---,(as),..-,(ar)) ENx--- xN
[LT:ai] x---x[1:ag] x---x[1:ag] T

(ala--'a&ia"'aa’k) S(dla-"adAia"'adk)

The above set is the set of points P i

i 4 CP'x--xP' and thus, by the induction
1yeee3Qgyeenylp N—— ——

k-1
hypothesis, rg = 0, and hence, r = 0.
Because of our assumption on (di,...,dy), degg = (d1,...,di—1,...,dg) >z 0. More-
over, g must vanish at the points of ﬁdl,---,dk that do not vanish on (z;1 — d;z;0). These

points are

?dl,...,dk\Pl = {[1 : al] X X [1 : ai] X+ X [1 : ak] € ﬁdl,---,dk | a; # di}

if a := (ai,...,a) then }

_ {[1;a1]x---x[l:ai]x---x[liak] < d—1 dy)
a 1yeres@q— 1y, 0

= Py, di—1,..d-

Thus, g is a form in Ry, . 4,—1,..4, that vanishes at all the points of ?dl,---,di—l,---,dk‘ Since
(diy---,dg) >iex (d1,...,di —1,...,dg), we have g = 0 by the induction hypothesis. So
f = 0, and thus the lemma holds for all positive integers k& and all (dy,...,d;) € N¥ in
P! x ... xPL

—_———
k

We will now show that for any k& > 1, if nq,...,ny are arbitrary positive integers, and

(di,...,dy) € N¥ is arbitrary, then the lemma holds for ﬁdl,___,d CPu x... xP*. We

k
proceed by induction on the tuples (n1,...,nx) and (di,...,d;) and on k, that is, we assume
that P, . . CP™ x ... x P™ satisfies the lemma if either (i) 1 <! < k, (i) if k = [ and
(n1y. .y mE) >iex (M1, .o mp) >ep 1, or (444) if K =1 and (nq,...,n5) = (M, ..., myg), and

(di,...,dE) >iex (c1y. -5 Ck) Ziex 0.

So, suppose ?dl,---;dk CP" x---xP%, f € Ry, q and f vanishes at all the points
of Py, . 4, If there is a d; in (dy,...,dx) such that d; = 0, then we can consider f

P

as an N*~l-homogeneous element in the ring R’ = k[z10,...,%i0,--- Zimny--- Thng)y 1-€
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fe R:h R But then f vanishes at all the points of
seenyliyeeny Qg

P . 71 T n
Py dirondy, SP™M X oo X PR P

and hence, by the induction hypothesis, f = 0. Thus, we can assume that (d1,...,dg) >es 1

By assumption, the tuple (ni,...,nk) >z (1,...,1), so there is an n; in (n1,...,ng)
such that n; > 1. Since f vanishes on the points of Fdl,...,dka the form f must also vanish
at the (dlil"l) (dlrzrffl) e (d’“;'k"’“) points of Py, 4 that vanish on the degree e; =
,...,1,...,0) form z;; =0. We write f = z; 19+ where degg = (di,...,d; —1,...,dg)
and 7 is a form of degree (di,...,dy) in the indeterminates z19,...,%;1,...,%kn,. Note
that from our assumption about (di,...,dg), degg >z 0

Now the form r must vanish at the (d174l—1n1) (dljfi"fl) e (dk;:nk

) points of ﬁdl,...,dk
that vanish at z;; = 0. But we can consider this subset of points as the set of points

?dla---,dk CP" x-.. x P%~ 1 x ... x P%. Thus, by the induction hypothesis, r = 0.

It then follows that the form g must vanish on the points of Py, 4, not on the form
z;1 = 0, that is, if (a,...,a;) € Pa,,..a
g((es,-- -, 05)) = 0. We set

. and if the coordinate a;1 € «; is nonzero, then

P? = {(Qla' .- 7Qk;) € ﬁdl,...,dk g((gla ,Qk)) = 0} -

We define G' to be the form of Ry, .. 4,—1,..4, such that

k

G(%1,05-- - Thyny,) = (21,05 - -+, T30, Ti0 + Ti1, T3 2, - - -, Thymy )-

Claim. The form G vanishes at all the points of Fdl,...,di—l,...,dk CPM x--- x P,

Proof of the Claim. If (ay,...,q) € ?dl,---,drl,---,dka then

G((gla s 1gk)) = g(laa’l,l, sy Alpgy ey laa'i,l + 1aai,2, cee aak,nk)'
The point [1: @11 : -t @ip] X - X[1:aji+1:ai2:-:aip] X x[1:ragy:-:
apn,| € Po because a;1 + 1 # 0 and the degree of this point < (di,...,d; —1+1,...,dy).
Hence, G((a1,---,a4)) =0. O

By the induction hypothesis, G = 0 and thus, g = 0 because G is constructed from g

by making a linear change of variables. Thus the form f = 0, as desired. O
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PROOF. (of Lemma 4.3.12) Recall that M := P\N where P is the set of all monomials,
including 1, in the polynomial ring S, and N is the set of all monomials contained in the

monomial ideal J. We also define

M:={(ay,...,q) €EP" x--- xP"™ | X;"... X;* € M} .

Suppose that X%l X,%’“ € M and that m; := Xlﬁi’1 Xf”“ is one of the minimal
generators of J := (mgy,...,m;). Then, because Xlgl---X,%’c € P\N, it follows that
m; { Xlgl---X,%’“, and hence (ﬁi,l""’gi,k) £ (a,...,a;). Thus, by Lemma 4.3.11,
mi((ay,...,a;)) = 0. This is true for all m; € {7y,...,7,}. Because this set of Nt-

homogeneous elements is the set of generators for the ideal I, we have

1c{fer | f(@, o) =0a, o) € M}.

Conversely, suppose that f € R is an Nf-homogeneous element of degree (dy,...,d})

and that f vanishes at all the points of M. Let

{(Ql,la te ’Ql,k)a (22,1’ te ’QZ,k)a (23,1’ te ’Q3,k)’ .- }

be the points of Fdl,---,dk\Ma where ?dl,...,d is defined as in Lemma 4.5.1. Furthermore,

k

order the elements of ?dla---,dk \M so that for each positive i € N,

deg (gi,la s ’gi,k) <iex deg (gi+1,11 s ’Qi+1,k)’

that is, (|a; 1[5 - -« [ kl) <tex (|it1,1]5- -+ [2it1k])- Those points that have the same degree
may be put in any order.

Since (aq1,---,Q1 ) € Py,....a, \M, it follows that h = Xlgl’1 ---X,%l’k € J, and hence

B B .. - B B .
h =X ---X,;l’kmi for some minimal generator m; € J. So h = X! ---X,;l’kmi is a

multiple of 7;, and therefore k € I and h vanishes at all the points of M.

On the other hand, by Lemma 4.3.11, E((gl,l, .ooy01 1)) # Obecause h = Xlgl’1 ---X,%l’k.
Thus Ay == f((ay1,---,a14))/h((@14,---,21%)) € k. Now consider the form f; :=

f- Alﬁw?,o . --:L‘Zk,o where (t1,...,t;) = degf — degh. By construction, f; vanishes at
all the points of M and at the point (@ 1500001 )

We now repeat this process by replacing f with f1 and using the element (ay 1,..., ) €

Fdl,...,dk\ﬁ to construct a form f5, and so on, until we have used all the elements of
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?dla---,dk \M. Our ordering of the elements ensures that when we change f;_1 to vanish at

the new point (gj,l, ... ,gj,,c), the form f; vanishes at all the previous points and on M.

Indeed, suppose that f; 1 vanishes at M and at the points in the set

{(Ql,b---a%,k)a---a(ﬂj—ma---an—l,k)}-
Since (;1,---,%) € Pay,.a,\M, hj = X9 .. X, 7" € J. Thus h; € I. But since

Ej((gj,:[’""gj,k)) # 0, the numbel‘ )\j - f((gjyl"Q],k))/ﬁj((g‘]J""7g],k)) E k- Set
fi = fj—1— Ajﬁjwtﬁo---wfgjo where (t1,...,t;) = deg fj_1 — degh;. Because h; € I, f;

vanishes at all the points of M. Because of the ordering of the elements in ﬁdl,...,dk \M, if

(Qi,lv Tt 7Qi,k) € {(Ql,la Tt agl,k)v T (ijl,la Tt ’ijl,k)} ’

then (|a; 1];-- -1 kl) <tew (l2j1l,-- 5|2 kl); i-e., there is an integer I € {1,..., k} such that
the tuple o, ; has the property that |a; ;| < || and ;; # a;;. But then by Lemma 4.3.11
(73), we have Ej((gijl, ) =0if 1< <j -1

When we have completed the above process, we end up with a form f — G € I such
that f — G vanishes at all the points of ﬁdl,_“,dk. By Lemma 4.5.1 we must therefore have
f—G=0,and so f =G € 1, as desired. O



CHAPTER 5

The Hilbert Function of Sets of Points in P! x P!

The Hilbert function of a set of points on the quadric surface @ C P? was first studied
by Giuffrida, Maggioni, and Ragusa (see [26] but also [24], [25]). Because Q = P! x P!,
Giuffrida, et al. pioneered the study of Hilbert functions of sets of points in multi-projective
space. Giuffrida, et al. [26] demonstrated a number of necessary conditions for the Hilbert
function of a set of points in P! xP!. However, a complete characterization of these functions

continues to be elusive.

The aim of this chapter is to extend the work of Giuffrida, et al. by using the results of
the earlier chapters to study the Hilbert functions of sets of points in P! x P!. This chapter
is structured as follows. We begin this chapter by specializing some of our previous results
to points in P! x P! and by recalling some of the results of Giuffrida, et al. found in [26].

We also describe how one can “visualize” sets of points in P! x P!

In the second section we give a characterization of the tuples that can be the border of a
Hilbert function of a set of points in P! x P! (cf. Theorem 5.2.8 and Corollary 5.2.11). The
proof of this result relies on a connection between points in P! x P! and (0, 1)-matrices. This
result answers Question 3.1.10 for points in P! x P!. By answering this question, we have

introduced a new necessary condition on the Hilbert function of a set of points in P! x P!

In the third section we demonstrate some applications of the border. Specifically, we
can: (1) compute a lower bound for the number of distinct Hilbert functions for s points
in P! x PL; (2) characterize the Hilbert functions of those sets of points X in P! x P! with
either |7 (X)| = 2 or |m2(X)| = 2; and (3) compute the Hilbert function of certain subsets
Y C X from knowledge about Hx.

In the last section we characterize the arithmetically Cohen-Macaulay sets of points in
P! x P! (cf. Theorem 5.4.4). Arithmetically Cohen-Macaulay sets of points in P! x P! were
first classified via their Hilbert function by Giuffrida, et al. [26]. We provide a new proof of

101
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this result. We also give a new characterization of ACM sets of points in P! x P! that only
relies upon combinatoric information about X. As a consequence, both the Hilbert function
and the Betti numbers of the resolution of an ACM set of points in P! x P! depend only
upon the configuration of the points of X, that is, how the points are arranged in P! x P!,

and not upon the coordinates of the points (cf. Theorem 5.4.9 and Theorem 5.4.11).

1. General Remarks on Points in P! x P!

Let X be a finite set of s distinct points in P! x P!, and let Hx be the Hilbert function
of X. In this section we study of the Hilbert function of X by applying some of the earlier
results of this thesis, and by describing the results of Giuffrida, et al. [26].

Let m : P! x P! — P! be the projection morphism defined by P, x P, — P;. It
follows that 71(X) is a finite set of points in P!. If we suppose that |7 (X)| =t < s, then

Proposition 2.2.10 and Proposition 2.3.8 can be combined to show

1+1 0<i<t—-1
t 12>

Hx(i,0) = {

Similarly, if o : P! x P! — P! is the other projection morphism, and if |7o(X)| = r, then

o [i+1 0<i<r—1
HX(Oaj):{

T j>r

For this chapter we shall write Hx as an infinite matrix (m; ;) where m;; = Hx(3, j)
and (i,j) € N2. By the above observations, and the fact that every Hilbert function of

points has a border (see Corollary 3.1.7), we therefore have

[ 1 2 r—1 r r ]
2 mir—1 mMir—1
*
(5.1.1) Hx = |t—1 mzry 1 M2r-1 “*°|>
t mg 11 - Mpg1,-2 s 8
t me—1,1 - 0 Mi—1,7-2 s 8
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where the bold numbers are the border and the entries denoted by * need to be calculated.

If AHx is the first difference function of Hx, i.e.,
AHX = HX(ILa]) - HX(IL - ]-a.]) - HX(L] - 1) + HX(Z - 17.7 - 1)7

where Hx(7,7) = 01if (4,7) 2 (0,0), then we also write AHx as an infinite matrix. Moreover,
by (5.1.1), we have

0 r—1
0 11 1 10
1 0
*
(5.1.2) AHx =
1 0
t—1 1
0 0 0 0O

The properties of the matrix Mx = (m; ) with m; ; = Hx(t, j) were studied in [26]. In
that paper the matrix Mx was called the Hilbert matriz; however, we will refrain from using
this name to prevent any confusion with the Hilbert-Burch matriz. We recall the definition
of an admissible matrix, as defined in [26], in order to state a necessary condition on the

Hilbert function of a set of points in P! x P!,

Definition 5.1.1. Let M = (m; ;) be a matrix with (i,5) € N? and m;; € N. For every
(4,7) € N, let ¢; j = m;j — mj_1; — mij—1+ mi_1,—1 where m; j = 0 if (4,7) # (0,0). Set
AM = (c;j). The matrix M is an admissible matriz if AM = (c; ;) satisfies the following

conditions:

() ¢ij <land ¢ ; =0fori>0and j >0,
(1) if ¢; 5 <0, then ¢, s <0 for all (r,s) > (¢,7), and
(ii1) for every (i,j) € N2,

J J
o ifi>1,then 0< Y ¢y <> cio1y,and
t=0 t=0

7 7
oifj>1,then0< > ey <> ey
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Theorem 5.1.2. ([26] Theorem 2.11) Let X be a set of points in P! x P! with Hilbert

function Hx. Then Hx, written as a matriz, is an admissible matriz.

Remark 5.1.3. The conclusion of the previous theorem is only a necessary condition.
Example 2.14 of [26] is an example of an admissible matrix that is not the Hilbert function
of any set of points in P! x P!. Example 5.3.7 below shows that there exists an infinite

family of such examples.

In this chapter we “draw” examples of sets of points in P! x P!. We end this section
by providing a justification for such “pictures”. Because P! x P! = Q, where Q is the
quadric surface of P3, from Exercise 1.2.15 of Hartshorne [31] it follows that there exist two
families of lines {Lp} and {L’}, each parameterized by P € P!, with the property that if
P#ReP! then LpNLg=0and LN LYy =0, and forall LR € P!, LpNLy, =P X R,

a point on Q. In other words, @ is a ruled surface.

Hence, we can visualize a collection of points X in P! x P! as points on Q. By first
drawing |71 (X)| = ¢ lines in one ruling and indexing the lines by the elements of 7 (X), and
then by drawing the |m2(X)| = r lines in the second ruling and indexing these line by 7 (X),

the set X is contained in the complete intersection (Definition 4.1.20) defined by these lines.
For example, if X = {P; x Q1, P1 X Q2, Py X Q3, P3 X Q2, Py x @1} C P! x P!, then there
are |7 (X)| = 4 lines from one ruling which are indexed by {Pi, P2, P3, P4}, and there are

|m2(X)| = 3 lines from the other ruling indexed by {Q1,Q2,Q3}. We visualize this set as

¢ Qs
X —
* Q-
*
P, P, P; P,

where the dots represent the points in X.

2. Classifying the Borders of Hilbert Functions of Points in P! x P!

In Chapter 3 we defined the border of a Hilbert function for points X C P™ x ... x Pk,
Question 3.1.10 asks what tuples can be the border of a Hilbert function of a set of points.

For points X C P™ x P™ this question reduces to describing all possible eventual column
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vectors B¢ and eventual row vectors Br. We wish to answer this question for points in
P! x P

So, suppose that X C P! x P! is a collection of s distinct points. We associate to X two
tuples, ax and Bx, as follows. For each P; € m(X) = {Py,..., P} we set a; := |ﬂf1(]3i)|.
After relabelling the «;’s so that a; > ;1 for i = 1,...,t — 1, we set ax = (a1,...,0q).
Analogously, for every Q; € m2(X) = {Q1,...,Qr} we set §; := |75 1(Q;)|. After relabelling
the B;’s so that 8; > Bj4q for i =1,...,7 — 1, we let Sx be the r-tuple fx := (51,---,06r)-
We note that ax and Sx are both partitions (see Definition 2.5.1) of the integer s = |X].
Thus, we can write ax - s and Sx F s. If we denote the length of ax (resp. fx) by |ax|
(resp. |Bx|), then we also observe that |7 (X)| = |ax| and |me(X)| = |Bx].

As an application of Propositions 3.1.1 and 3.1.4, we demonstrate that for points X C
P! x P! the eventual column vector B¢ and the eventual row vector By can be computed

directly from the tuples ax and Sx.

Proposition 5.2.1. Let X C P! x P! be a set of s distinct points and suppose that
ax = (011, ceey at) and ,BX = (,81, ‘e ,,BT). Let BC = (bo,bl, e ,br—l) where bj = Hx(t—l,j),

be the eventual column vector of the Hilbert function Hx. Then
bj=#{aicax | > 1} +#{oi€ax | ;> 2} + -+ #{os € ax | a; > 5+ 1}

Analogously, if Br = (by, b, ... ,b,_1), with b, = Hx(j,r — 1), is the eventual row vector of
Hx, then

V= #{6i € x | B > 1} +#{Bi € B | B 22+ +#{B: € Bx | fi > j+1).

PROOF. After relabelling the elements of 7 (X), we can assume that |7 YP)| = o

By Proposition 3.1.1 and Remark 3.1.2 we have
bi=He(t—1,j) = #{PemX) [Hon() 21} +#{Pem® |Ho, () >2} +-
+#{P em(®) |[Hop(i) 2 j+1} .

Now Qp, = mo(m; 1 (P;)) is a subset of o; points in P'. Tf 1 < k < j + 1, then Hqp (j) > kif
and only if |7, (P;)| > k. This is a consequence of Proposition 2.3.8. This in turn implies
that the sets {H € m(X) ‘ Hgp (4) > k} and {P; € m(X) | |=7'(P)| > k} are the same,
and thus, the numbers #{P; € m(X) | Hg,, (j) > k} and #{e € ax | o; > k} are equal.
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The desired identity now follows from this result. The statement about the eventual row

vector Bp is proved similarly. O

We can rewrite the above result more succinctly by invoking the language of com-
binatorics. Recall that the conjugate of a partition A = (A1,..., ) is the tuple \* =
(Al,---,A%,) where Aj = #{eX| X\ > g}

Definition 5.2.2. If p = (p1,po,--.,pk), then Ap := (p1,p2 —p1,.-., Pk — Pk—1)-

Corollary 5.2.3. Let X C P! x P! be s distinct points with ax and fx. Then

ProOOF. Using Proposition 5.2.1 to calculate AB¢c we get
ABe=(#{ai €ax | a; > 1}, #{as € ax | a; > 2},...,#{o; €ax | a; > 1}).

The conclusion follows by noting that #{c; € ax | a; > j} is by definition the j%* coordinate

of af. The proof of (ii) is the same as (7). O

Remark 5.2.4. For each positive integer j we have the following identity:
#laicax | o >2j} —#a€ax | o > j+ 1} =#{ € ax | a; = j}.
Since Corollary 5.2.3 shows that
#a; €ax | oy > 5} =Hx(t—1,7—1)— Hx(t— 1,7 — 2)
it follows from the above identity that
#Hoi€ax | =4} = [Hx(t—-1,j-1)—-Hx(t-1,j-2)] -
[Hx(t —1,5) — Hx(t — 1,5 — 1)].

Thus, for each integer 1 < j < r there is precisely [Hx(t — 1,7 — 1) — Hx(t — 1,7 — 2)] —
[Hx(t—1,5) — Hx(t—1,7—1)] lines of degree (1,0) that pass through X that contain exactly
j points of X. This is the statement of Theorem 2.12 of Giuffrida, et al. [26]. Of course, a
similar result holds for the lines of degree (0,1) that pass through X.
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Corollary 5.2.5. Let X C P! x P! be any collection of s distinct points with ax and Bx,
and suppose that of = (of, ...,y ) and Bg = (B7,...,B5,). Let AHx be the first difference
function of Hx, and set ¢; j := AHx(i,5). Then

(¢) for every 0 <j<r—1=|m(X)| -1
Oé;_H = Z Ch,j-
h<m (X)| -1
(i) for every 0 <i<t—1=|m(X)| -1

5;-1-1 = Z Ci,h-

h<|ma(X)|-1

PROOF. We begin by noting that we have the following identity:

Hx(i,j) = Y Chp
(h,k)<(i:5)
Fix an integer j such that 0 < j < |m(X)| — 1 and set ¢t = |m1(X)|. Using Proposition 5.2.1

and the above identity to compute a;f 41 we have

Ol;_,_]_ = HX(t_]-aj)_HX(t_]-aj_l)

= Z Chk — Z Chk = Z Ch,j-

(h.k)<(t-1,7) (h.k)<(t-1,j-1) h<t—1=|m1(X)[-1

The proof for the second statement is the same. O

Remark 5.2.6. Let X C P! x P! be a set of distinct points, and suppose that ax =
(a1,...,¢) and Bx = (B1,.-.,06r). Suppose that j is an integer such that oy < j <r. (We
will see below that a; < r = |Bx| always holds.) Then, by the definition of o, o}, = 0.
Hence, by the above corollary, the entries in the j*» row of AHx, considered as a matrix

where the top row is the 0" row, must sum to zero.

Example 5.2.7. We illustrate how to use Corollary 5.2.3 to compute the Hilbert function
for a set of points X C P! x P! for all but a finite number (4, j) € N2. Suppose that
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Q4
Qs
Q2

L 4 I Q1
P P P; P, P35 Fs

For this example ax = (4,3,2,2,1,1) because |77 (P)| = 1, |77 (P2)| = 4, |77 ' (P3)] = 1,
77N (Py)| = 2, |77 (P5)| = 2, and |77 (Ps)| = 3. The conjugate of ax is o = (6,4,2,1),
and hence, by Corollary 5.2.3 we know that B¢ = (6,10, 12, 13). Similarly, 8x = (4,3, 3,3),
and thus 8% = (4,4,4,1). Using Corollary 5.2.3 we have B = (4,8,12,13,13,13). (Note
that we need to add some 13’s to the end of By to ensure that Br has the correct length of
|Br| = |71 (X)| = 6.) Visualizing the Hilbert function Hx as a matrix and using the tuples
Bpr and B¢, we have

4
* 8
12 12
13 13
Hx = 13 13

6 10 12 13 13
10 12 13 13

All that remains to be calculated are the entries in the upper left-hand corner of Hx denoted

by *.

As is evident from Corollary 5.2.3 and Remark 5.2.4, the border of the Hilbert function
for points X C P! xP! is linked to combinatorial information describing some of the geometry
of X, e.g., the number of points whose first coordinate is P;, the number of points whose
first coordinate is P, etc. By utilizing the Gale-Ryser Theorem (Proposition 2.5.6) we show
that the geometry of X forces a condition on ax and Bx. As a corollary, we can answer

Question 3.1.10 for points in P* x P*.

Theorem 5.2.8. Let a,B & s. Then there exists a set of points X C P! x P! such that
ax = a and Bx = B if and only if o > .
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PROOF. Suppose that there exists a set of points X such that ax = o and Bx = S.
Suppose that m (X) = {Py,..., P} with ¢t = |a|. For i = 1,...,¢, let Lp, be the line in
P! x P! defined by a (1, 0)-form such that 77 (P;) C Lp,. Similarly, if m(X) = {Q1,-..,Qr},
where r = |f], let L, be the line defined by (0, 1)-form such that 75 '(Q;) C Lg,. For each
pair (i,7) where 1 <4 <tand 1< j <r, the lines Lp, and Lg,; intersect at a unique point
P;x Q. We note that X C {P; xQ; |1 <1i<t,1<j<r}. Wedefinean r xt (0,1)-matrix

A = (a;j) where

1 ifLPiﬂLQj:PiXQjEX
a; ;i = .
Yo ifIpnLg =PixQ¢X

By construction this (0,1)-matrix has column sum vector @4 = ax and row sum vector
B4 = Px. Hence, M(a,8) # 0 because A € M(a,3). The conclusion o* I> 3 follows from
the Gale-Ryser Theorem (Proposition 2.5.6).

To prove the converse, it is sufficient to construct a set X C P! x P! with ax = o and
Bx = B. Since a* > 8 there exists a (0,1)-matrix A € M(a, ). Fix such a matrix A. Let
Lp,,...,Lp, be t = |a| distinct lines in P! x P! defined by forms of degree (1,0), and let
Lg,,---,Lg, ber =|p| distinct lines in P! x P! defined by forms of degree (0,1). For every
pair (i,7), with 1 <4 <tand 1 < j <r, the lines Lp, and Lq, intersect at the distinct point
P; x Qj = Lp, N Lg,. We define a set of points X C P! x P! using the matrix A = (a;;) as

follows:
Xi={PxQjla;=1}

From our construction of X we have ax = a and fBx = . O

Remark 5.2.9. Suppose that «,8 F s and o > 8. Then by adopting the procedure
described in Example 2.5.7, we can construct a set of points X in P! x P! with ax = « and
Bx = B. For example, if a = (3,3,2,1) and 8 = (3,3,1,1,1) are as in Example 2.5.7, then

we saw how to construct a (1,0)-matrix from o and . We then identify this matrix with
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a set of points as in the proof of Theorem 5.2.8. For that example

_— = O = O
SO O = =

S O O = =
o o o O =

Remark 5.2.10. We will show that if oz = Bx, then the set X is also arithmetically
Cohen-Macaulay (cf. Theorem 5.4.4).

Corollary 5.2.11. Suppose B¢ = (by,...,b,—1) and Bg = (b,...,b,_,) are two tuples
such that by = t, by = r, and ABc,ABgr - s. Then B¢ is the eventual column vector and
By, is the eventual row vector of a Hilbert function of a set of s points in P! x P! if and

only if ABc > (ABR)*.

PROOF. For any partition A, we have the identity (A\*)* = A. If Bx = (B¢, Bg) is the
border of a set of points, then AB¢ = ak > fx = (8%)* = (ABg)*.

Conversely, suppose that ABc > (ABR)*. Let @« = (AB¢)* and 8 = (ABg)*. Since
a* > f3, there exist a set of points X C P! x P! with ax = « and Bx = 8. But then
AB¢ = ABy,, where B, is the eventual column vector of the Hilbert function of X. Since
|Bi:| = || = r, and because first element of the tuple By, is t, we have Bc = Bj,. We show
that the eventual row border B}, of the Hilbert function of X is equal to By via the same

argument. O

Remark 5.2.12. Tt is possible for two sets of points to have the same border, but not the
same Hilbert function. For example, let P;, Py, P; be three distinct points of P!, and let
Q1,Q2, and Q3 be another collection of three distinct points in P!, Let X; = {P; X Q1, P, X
Q2, P> X Q3,P3 x Q1}, and let Xo = {P; X Q3, P2 X Q1, P, X Q2, P3 x Q1}. We can visualize

these sets as
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Q3 - Q3
Q1 . Q1
Pl P2 P3 Pl P2 P3

For this example, ax, = ax, = (2,1,1) and fx, = Bx, = (2,1,1), and hence, both sets of
points have the same border. However, using CoCoA to compute the Hilbert function of X;

and Xy, we find that that the Hilbert functions are not equal. Specifically,

Hx, =

12 3
2 3 4 .
3 4 4 *2

3. Applications of the Border

Corollary 5.2.11 characterizes the borders of the Hilbert functions of sets of points in
P! x P!, and thus, provides us with a new necessary condition on the Hilbert function
of a set of points in P! x P!. In this section we examine some further consequences of
Corollary 5.2.11. Specifically, we will show the following: (1) we give a lower bound on
the number of distinct Hilbert functions for s points in P! x P!; (2) we characterize the
Hilbert functions of points X C P! x P! with either |71(X)| = 2 or |mo(X)| = 2; and (3) if
Y is a subset of X, we show that under some conditions the Hilbert function of Hy can be

determined from Hx.
3.1. Counting Hilbert Functions. Let X be a set of points in P x --- x P"* and
Hy its Hilbert function. Recall that for each s € N, we define
H(s) :={Hx | XCP" x--- xP" and |X]| = s} .

From Remark 3.3.5 we know that H(s) is a finite set, but we do not know how many

elements are in the set.

By applying Corollary 5.2.11 we can calculate a lower bound for #H(s) if H(s) =
{Hx | X C P! x P! and |[X| = s}. We first set some notation. For every positive integer



3. APPLICATIONS OF THE BORDER 112

s € N we let P, denote the set of all partitions of s. For each A = (A1,...,\;) € Ps, we
define

Ty:={5=(01,...,6,) €Ps | \* >} .

Proposition 5.3.1. Fiz a positive integer s. Then

#M(s) = #{Hx | XCP' xP' and [X| =s} > Y #T.
AEPs

Moreowver, Z #T is equal to the number of distinct borders.
AEPs

PROOF. Fix a partition A € Ps. For each ¢ € T), it follows from Theorem 5.2.8 that
there exists a set of points X C P! x P! with ax = A, Bx = §, and |X| = s. Suppose that X, 5
is such a set. By Corollary 5.2.11, it follows that Hx, , # Hx, ,, for any 4, 0" € Ty with § # ¢
because they cannot have the same borders. We can thus define a map ¢ : T\ — H(s) by
6 — Hx, ;- It follows that ) (0) = ¢x(¢') if and only if § = ¢’, and thus, ¢, is an injective
map.

If A # X € Ps, then we claim that ¢, (T\) Ny (Tx) = 0. Indeed, if Hx is in the

intersection, then this would mean that X has axx = A and ). So, we have the following

disjoint union U ox(Ty) C H(s). Since #px(T\) = #T», we get
AEPs

D #Th < #H(s).

AEPs

The last statement is immediate. O

Remark 5.3.2. Because A = (1,...,1) € Py, we have T(; 1) = {6 € Ps | (s) > 0} = Ps.
——

S
Thus, #H(s) > #Ps where #P; is the number of partitions of s. The number #P; grows
rapidly, so #H(s) also grows rapidly.

3.2. Sets of Points with |m;(X)| = 2. We consider all sets X of s points in P! x P! with
|m1(X)| = 2, although everything we say will also hold if |m2(X)| = 2. Hence, we consider

sets of points which contain only two distinct first coordinates. Suppose that |7 (X)| = 7.
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If follows from (5.1.1) that

1 2 3 -« r—1 r r

2 mj; mps -+ My, 2 S S
Hx =

2 mi1 My ccr Mip2 S S

where m; ; = Hx(i,j). Hence, if we know ax and fBx, we can compute the border of Hy,

and thus, completely determine Hx. In fact, we have even a stronger result:

Theorem 5.3.3. Let H : N> — N be a numerical function. Then H is the Hilbert function
of a set of points X C P! x P! with |m (X)| = 2 if and only if the following conditions hold:

(2)

1 2 3 - r—-1 17
2 my; mya -+ Myp_2 S S
H- _ b} b b
- b
2 my1 mi2 cr Mig_2 S S

(7) r <s,

(@i1) 2<mi; <+ <miy_9 <sandmi; <2(j+1), and

(iv) if B1 = (2,m1,1,...,m1,—2,5) and By = (r,s), then AB1, ABy are partitions of s,
and AB; > (ABsg)*.

Proor. If H is the Hilbert function of a set of s points with |71 (X)| = 2, then (4)
follows from (5.1.1). Furthermore, |mo(X)| = 7 < s. The first part of (i77) is a consequence

of Lemma 2.2.13. The second part of (4i7) holds because
my; = Hx(1,7) = dimy Ry j — dimy (fx)1,; < dimg Ry j = 2(j + 1)

for 1 < j < r —2. Finally, (iv) is simply Corollary 5.2.11.

Conversely, suppose H is a numerical function that satisfies (7)-(iv). Because (iv) holds,
by Corollary 5.2.11 there exists a set of points X C P! x P! with border equal to B; and
Bs. But since the first coordinate of By is 2 and the first coordinate of By is r, we have

|m1(X)| = 2 and |mo(X)| = 7. It then follows from our construction of X that H = Hx. O
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3.3. Subsets of X and their Hilbert Function. Let X be a set of s points in P! x P!
and let Hx denote its Hilbert function. Suppose that Y is a subset of X. We can then ask
if the Hilbert function of Y, that is Hy, is related to Hx. We will consider the case that
Y is a subset of X that lies on either on a (1,0)-line or on a (0, 1)-line of P! x P!. We will

investigate this problem using the results of the previous section.

So, suppose that X C P! x P! is a set of s distinct points with ax = (a1,..., ;) and
Bx = (B1,---,0Br). Suppose that 7 (X) = {Py,..., P} and m(X) = {Q1,...,Qr}. After a

possible relabelling, we can assume that |77 (P;)| = o; and |75 '(Q;)| = B;-

If P, = [a;1 : a;2] € m(X), then let Lp, be the (1,0)-line that contains the points of
77 (P;). We sometimes abuse notation by letting Lp, also denote the form of degree (1,0)
Lp,
let Lg,; denote both the (0, 1)-line that contains 75 1(Q;) and the degree (0,1) form that
defines the line. It follows that if P; x @; € X, then Ip,xq; = (Lp;, Lq;)-

= ajro — a;nz1 € K[zo, 1,0, y1] that defines Lp,. Similarly, if Q; € mp(X), then we

For each P; € m1(X), we define
Xp, := XN Lp, =7 (B) = {P; X Qiy»---, Pi x Qi }-

The ideal associated to Xp, is therefore

Q;

P m (LPiaLQij) - (LP“LQiI LQi2 “.LQiai) )
Jj=1

Ix

Analogously, we define Xg, := XN Lg, for each Q; € my(X). If Xg, :={F;; X Q... , Pig, X
Q;}, then it follows that IXQi = (Lpi1 "'Lpiﬁ' ,Lg;).

Because ax ,, = (o) and Bx B = (1,...,1), the Hilbert function of Xp, can be computed

;
directly from Proposition 5.2.1. The same holds true for Hy,, . Indeed,

Qi1 Q; QO

_ =
N N
w W

Hx, =

P, Q-1 Qf Qf --cf,
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and

Hxq, = [Bi-1 Bia
Bi B
Bi B

If we remove the points of Xp, (respectively, Xg,) from X, then the next proposition shows
that we can compute the Hilbert function of X\Xp, (respectively, X\Xg, ) for some (i, j) € N?
from Hx and Hx, (respectively, HXQ,). This proposition is also the basis for some of our

subsequent results.

Proposition 5.3.4. Using the notation above, fix a P € 7 (X) and let Xp := XN Lp.
Then for all (i,j) € N? with j < |Xp| = a,

HX\Xp(iaj) = HX(Z + ]-7.7) - HXP(IL. + 1a])
Similarly, fiz a Q € m2(X) and set Xg = XNLg. Then, for all (i,j) € N? withi < |Xg| = 8,

HX\XQ(iaj) = HX(Za] + 1) - HXQ(iaj + 1)

PROOF. Because the second statement is similar to the first, we show only the first
conclusion. As we observed above, the defining ideal of Xp is Ix, = (Lp, Lg, --- Lg,). We
have a short exact sequence with degree (0,0) maps:

(R/Ix)
(Ixp/Ix)

because Ix C Ix,. This sequence induces a short exact sequence of vector spaces

0—)IXP/Ix—)R/Ix—) gR/IXP—)O

0 — (Ixp/Ix)ij — (R/Ix)ij — (R/Ixp)i; — 0
for all (i,5) € N2,

Claim 1. For all (i,j) € N* with j < @, (Ix,)i; = Ri—1,;-

Proof of the Claim. Since j < o, (Ixp)ij = (Lp,Lg, -+ Lq,)ij = (Lp)i,;j- The claim now
follows because the vector space morphism R;_1; — (Lp);; given by F + F - Lp is an

isomorphism. O
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Claim 2. For all (i,j) € N* with j < o, (Ix)i; = (Ix : Ixp)i-1,5-

Proof of the Claim. We define a map of vector spaces via multiplication by Lp, i.e.,
L
¢ (Fx : Txp)im1,j — (Ix)iyg-

This map is defined since H € (Ix : Ix,)i—1,; implies HIx, C Ix, and in particular,
H . Lp € (Ix);,j. The morphism ¢ is also injective because multiplication is defined in R.
To show ¢ is onto, let H € (Ix); ;. But then H € (Ix,);; because Ix C Ix,. Moreover,
from the proof of Claim 1, H € (Ix,)i; = (Lp)i, , and thus, H = Lp - H' where deg H' =
(1 —1,7). Since Lp - H' € Ix and because Lp vanishes only at those points of X in Xp,

we have H' must vanish on X\Xp. Hence, H' € Ix\x,. The claim now follows because
IX\XP = (IX : IXP). O

In light of Claim 1 and Claim 2, the exact sequence of vector spaces can be rewritten as
0 — (R/(Ix : Ixp))i1,; — (R/Ix)ij — (R/Ixp)ij — 0

for all (4,5) € N? with j < a. If we now consider the dimension of each vector space, then

the conclusion follows. O

Example 5.3.5. Set P, :=[1:4] € P! and Q; := [1 :i] € P. Let X be the following set of

points:

Q4
Qs
Q2

| Q1

) P P P P
Using CoCoA to compute the Hilbert function of 35 we find:

Hx =

=R W N
S O Ot N
o o0 N O W
@ © 00 =~
© © o0 J




3. APPLICATIONS OF THE BORDER 117

Suppose that we remove Xp, from X. Since |Xp,| = 3, for all (i,j) € N? with j < 3, we

have

2 46 77 1233 3
Hyx, = |3 57 8 8 ---|—[1 2 3 3 3
46 899 -] [12333
(1 2 3 4 4 ...]
= |2 3 4
3456 6 -]

We focus on the case that we remove the (1,0)-line (respectively, the (0, 1)-line) with the

largest number of points. That is, we remove the a; (respectively, 81) points of X that lie
on Lp, (respectively, Lg,). By Proposition 5.2.1, we can compute the Hilbert function of
X\Xp, (respectively, X\Xg,) for all but a finite number of (i,j) € N? if we know X\ X p,
and 5X\Xp1 (respectively, ax\Xq, and 5X\XQ1)- Therefore, a natural starting point is to ask
if these two tuples can be computed from ax and Bx. We consider only X\Xp,, although

analogous results hold for X\Xg, .

So, let Y = X\Xp,, where |Xp, | = a;1. It follows immediately that ay = (a,...,q,).
What cannot be easily determined is fy. When we remove the «; points of Xp,, we are
removing «; points from X with «; distinct second coordinates. Thus, By is constructed
from Bx by subtracting one from a; coordinates of Bx. This is always possible, because
(Bx)* > ax, and hence (8x); = |Bx| = r > a1, However, if r > «j, then it is not always
evident from which entries of Sx we can subtract one. We therefore would like to know

what By’s are possible.

Determining the possible By’s can be translated into a combinatorial question about
(0,1)-matrices. Indeed, let A be an r x ¢ (0,1)-matrix with column sum vector ay =
(a1,...,a) and row sum vector 84 = (B1,...,0:). We construct a new (0, 1)-matrix, say
A', by removing the column with «; ones. Then aas = (ag,...,a;). The question of
describing all the By’s is equivalent to giving a complete list of possible row sum vectors for

A’. This problem appears to be unexplored.
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If we consider the extremal case that a; = r = |f51], it follows from the above discussion
that there is only one possibility for Sy, namely, By = (61 — 1,062 — 1,...,53, — 1). In this

case, we have

Proposition 5.3.6. Let X C P! x P! with ax = (a1,...,0;) and Bx = (B1,...,8:). Let
Xp, = XN Lp, where |t *(P1)| = a1. Suppose that a; =r = |Bx|. Then

HX\Xp(iaj) = HX(Z + 15.7) - HXP(i + 15])

for all (i,7) € N2,

ProOOF. Let Y = X\Xp,. By Proposition 5.3.4 we have Hy(i,7) = Hx(: + 1,j) —
Hx,, (i +1,7) for all j < a1. So, suppose (i,7) € N? with j > «;. Now, because oy = r,
we have By = (f1 — 1,...,5, — 1). Hence, |m2(Y)| = |By| < r. By Corollary 3.1.7, because
j=>r>m(Y)| -1,

Hy(i,j) = Hy(i,7r — 1) = Hx(i+ 1,r — 1) — Hx (i + 1,7 — 1).

But because |m2(X)| = |m2(Xp, )| = r, then Corollary 3.1.7 also implies that the right hand
side of the above equation is equal to Hx(i + 1,5) — Hx (i + 1,7) for any j > r — 1. The

conclusion now follows. O

Example 5.3.7. We will use Propositions 5.3.3 and 5.3.4 to show that there exists an
infinite family of admissible matrices (see Definition 5.1.1) such that no matrix in the

family is equal to the Hilbert function of a set of points in P! x PL.

Fix an integer s > 4 and let My = (m;;) with (i,j) € N? be the following infinite

matrix:
1 2 3 5—3 5-2 s—1 s § -]
2 3 4 s—2 s—1 S s S
My;=13 4 5 s—1 S S s s
3 4 5 s—1 S s s s
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We set AMS == (Cz',j) where Cij = Myj — Mi—1,5 — My 451 + mi—1,5—1 where ms; = 0 if

(2,7) Z2 (0,0). Hence

0 s—1
11 1 1 1 0 -]
AMs:lo 0 0 -1 0
10 0 -1 0 0
0 0 0 0 0

The reader can verify that M is an admissible matrix.
Claim. There is no set of points X C P! x P! with Hx = M,.

Suppose, for a contradiction, that X is a set of points such that Hx = M. Then from

M, we calculate that oy = (3,1,...,1) and % = (s), and hence, ax = (s — 2,1,1) and
3
Px=(L-.-,1).
N— —

S

From ax, we deduce that there is (1,0)-line, say L, such that L contains the s —2 points
of X that have the same first coordinate. Set Y = X\L. It then follows from ax and fSx
that ay = (1,1) and By = (1,1). From Theorem 5.3.3, the Hilbert function of Y is

1 2 2
2 2 2
2 2 2

On the other hand, when we use Proposition 5.3.4 to calculate Hy(i,j) for all (i,5) € N?
with 7 < 2 < s— 2, we find

B 2 3 4 --- 5—2 s—1 s s --- 1 2 --- s—3 s—2 s—2
3 45 --- s-—1 S s s 1 2 -+« s—3 s5—2 s—2
s—2
———
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Since s —2 > 2 we have Hy # Hy. Thus, M, is not the Hilbert function of any set of points

in P! x P!,

4. Characterizing ACM Sets of Points in P! x P!

Arithmetically Cohen-Macaulay sets of points in P! x P! were first characterized via
their Hilbert function by Giuffrida, Maggioni, and Ragusa [26]. In this section, we will give
a new proof of this characterization. We will also demonstrate a new characterization for
ACM sets of points in P! x P! via the tuples ax and Bx as defined in Section 2 of this
chapter. As a consequence, the Hilbert function and the Betti numbers in the resolution
of an ACM collection of points in P! x P! is completely determined by the combinatorial

information about X contained within ax and Sx.

Before proceeding, we will require the following lemmas.

Lemma 5.4.1. Let a = (0q,...,ap), B = (B1,.-.,0m), and suppose that o, + s. If
o = 3, then

(i) if o/ = (q2,...,an) and ' = (B1 —1,...,Bay, — 1), then (/)" = f'.

PROOF. The proof of (i) and (ii) are the same. We do (i7). By definition, of = #{a; €
a | a; > 1}. Because at s, aj > 1 for every i, and so af = n = |a|. But o = § implies

o} = (1, thus completing the proof.

For (i4i), because of = f3, for every 1 < j < o we have #{a; €a|a; > j} =p;. Now

ay > «; for every coordinate o; of @ = (@, ..., ay). Thus, we can rewrite oz;f as

*_{ #Haed |ai2jl+1=(d);+1 f1<j<am

1 ifap <j<a
Hence
V)40 ifl1<j<a
0 ifay<j<ao

The conclusion now follows. O
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Lemma 5.4.2. Let X C P! x P! and suppose that o = Bx. Let P be a point of m (X)
such that |7 1(P)| = a;. Set Xp := 7, '(P). Then m(Xp) = m2(X).

PROOF. Since Xp C X, it is clear that mo(Xp) C mo(X). Now, by our choice of P,
|72(Xp)| = ai. But since |m2(X)| = |fx| and of = B, it follows from Lemma 5.4.1 that
|2 (X)| = |Bx| = a1 = |m2(Xp)|, and hence 73(Xp) = mo(X). O

Lemma 5.4.3. Let X C P! x P! be a set of s distinct points. If ax = (s) and Bx =
(1,1,...,1), then X is ACM.
—_————

S

PROOF. Because |ax| = 1, there is only one distinct first coordinate, say P. We deduce
from ax and Bx that X = {P x Q1,...,P x Qs} C P! x P! where the @; are distinct points
in P'. The ideal corresponding to the point P x @Q; € X is the bihomogeneous prime ideal
Ipyq; = (Lp, Lg,), where Lp is the form of degree (1,0) that vanishes at P and the Lg, is
the form of degree (0, 1) that vanishes at @;. But then

S

S
IX = ﬂ IPXQi - m(LP,LQl) = (LP’LQILQQ .. LQs)
i=1 i=1

We observe the generators of Ix give rise to a regular sequence in R. Therefore, X is a

complete intersection (see Definition 4.1.20), and thus, X is ACM. O

Theorem 5.4.4. Let X C P! xP! be a set of s distinct points, let ax and Px be constructed
from X as above, and let Hx be the Hilbert function of X. Then the following are equivalent:

(6) X is ACM.
(1) AHx is the Hilbert function of a bigraded artinian quotient of k[z1,y1].

(i#1) o = P

PRrOOF. The implication (i) = (4¢) is Corollary 4.3.6. So, let us now suppose that (i7)
holds. Because AHx is the Hilbert function of a bigraded artinian quotient of k[z1,y1],
Corollary 4.4.14, Remark 4.4.19, and (5.1.2) give
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0 r—1

AHx =

where ¢t = |m(X)| and r = |m2(X)|. We have written AHx as an infinite matrix whose

indexing starts from zero rather than one.

From Corollary 5.2.5, the number of 1’s in the (i — 1)** row of AHx for each integer
1 < <t is simply the i*" coordinate of 8%. Similarly, the number of ones in the (j — 1)*
column of AHx for each integer 1 < j < r is the j** coordinate of a%. Now AHx can be
identified with the Ferrers diagram (cf. Definition 2.5.2) of g% by associating to each 1 in

AHx a dot in the Ferrers diagram in the natural way, that is,

0 r—1

By using the Ferrers diagram and Corollary 5.2.5, it is now straightforward to calculate

that the conjugate of 3% is (8%)* = Bx = ak, and so (44i) holds.

To demonstrate that (ii7) implies (i), we will do a proof by induction on the tuple
(|1 (X)|, [X]). For any positive integer s, if (|m1(X)|,|X]) = (1,s), then ax = (s) and
fx = (1,...,1). But then o = fBx, and by Lemma 5.4.3, X is also ACM.

——

S
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So, suppose that (|7(X)), |X|) = (¢,s) and that result holds true for all Y C P! x P! with
o = By and (¢,8) >z (|71(Y)|,|Y]) where >, is the lexicographical ordering on N?, i.e.,
(@,b) >z (¢,d) if a > ¢, or if a = ¢, then b > d.

Suppose that Py (after a possible relabelling) is the element of 7 (X) such that |7, *(P;)| =
a1. Let Lp, be the form of degree (1,0) that vanishes at P;. By abusing notation, we also
let Lp, denote the (1,0)-line in P! x P! defined by Lp,.

Set Xp, :== XN Lp, = 77 '(P1) and Z := X\Xp,. It follows that az = (ay,...,q;)
and Bz = (b1 — 1,...,Ba, — 1). Now (t,8) >iep (|m1(Z)|,|Z]). Moreover, of, = Pz by
Lemma 5.4.1. Thus, by the induction hypothesis, Z is ACM.

Suppose that m(X) = {Q1,...,Q,}. Let Lg, be the degree (0,1) form that vanishes at
Qi € m(X) and set F := Lo, Lg, -+ Lg,. Because o = fx, from Lemma 5.4.2 we have
mo(Xp,) = m2(X). So, Xp, = {PL x Q1,...,P1 x Q,}, and hence

S

IXP1 = ﬂ(LP17LQi) = (Lp, F).

i=1
Furthermore, if P x Q € Z, then Q € m2(Z) C m(X), and thus F(P x Q) = 0. Therefore
F € Iy. Because F' is in Iz and is also a generator of Ix pyo WE will be able to show that the

following claim holds.
Claim. Let I = Lp1 -1z + (F) Then I = Ix.

Proof of the Claim. Since Ix = IZUXPI =1IzN IXPN we will demonstrate that Iz N IXPI =
Lp, - Iz + (F).

So, suppose that G = Lp, Hy + HoF € Lp, - I+ (F) with H; € Iz and H, € R. Because
Lp, and F are in IXPI, we have G € IXPI' On the other hand, because Hy,F € Iz, G is
also in Iz. Hence Lp, - Iz + (F) C Ix.

Conversely, let G € Iz N IXPl' Since G € IXPI, G = Lp H, + FHy. If we can show
that Hi € Iz, then we will have completed the proof. Now because G, F € Iz, we also
have Lp Hy, € Iz. But for every P X Q € Z, P # Py, and thus Lp, (P x Q) # 0. Hence
Lp Hy € Iz if and only if H1(P x Q) =0 for every P x Q € Z. O

By Remark 4.1.17, X C P! x P! is ACM if and only if the variety X C P3 defined by
Ix, considered as a homogeneous ideal of k[zg,z1,v0,¥1], is ACM, So, X is ACM if and
only if the N!-graded ring R/Ix is Cohen-Macaulay. Because we wish to show that R/Ix is
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Cohen-Macaulay, by Theorem 4.1.22 this is equivalent to showing that proj.dimp R/Ix =

4 — K-dim R/Ix = 2. On the other hand, since proj.dimg Ix = proj.dimyp R/Ix — 1 (see
Theorem 2.4.6 (7)), it is enough to show that proj.dimg Ix = 1.

Now because Ixp, = (Lp,,F) where deg Lp, = (1,0) and degF' = (0,7) (recall r =

|m2(X)|), when we consider Ix, as a homogeneous ideal we have deg Lp, = 1 and deg F' = r.

The graded resolution of Ix,, is therefore

0— R(—(1+7) 2 R(-1) @ R(—r) 2 (Lp,,F) — 0

where ¢1 = [Lp, F] and ¢o = l . We note that for every G € R(—(1 + 1)), we

—Lp,
have ¢2(G) = (FG,—Lp,G). But because F' € Iz, we in fact have im ¢y C I (—1) ® R(—r).

This fact, coupled with the claim, gives us the following short exact sequence of graded

R-modules:
0—R(-(1+7) B (-1 @R(~r) 2 Ix = Lp, - I + (F) — 0

where ¢ and ¢y are the same as the maps above.

The projective dimensions of R(—(1+7)) and R(—r) are zero. By the induction hypothe-
sis, proj. dimp I'z(—1) = 1. We therefore have proj.dimp R(—(1+7)) < proj.dimp(Iz(—1)®
R(—7)). From the above short exact sequence and Theorem 2.4.6 (i), it follows that

proj.dimp Ix = proj.dimg(Iz(—1) ® R(-r))

= max {proj.dimg I(—1), proj. dimp R(—r)} = 1.

Therefore X is ACM, and so (i4i) = (i), as desired. O

Remark 5.4.5. Arithmetically Cohen-Macaulay sets of points in P! x P! were first classified
by Giuffrida, et al. (see Theorem 4.1 of [26]). They showed that X is an ACM set of points
if and only if Hx, considered as an infinite matrix, is an admissible matrix such that the
entries of AHx are either 1 or 0. By Remark 4.4.19, this condition on A Hx is equivalent to
the statement that AHx is the Hilbert function of a bigraded artinian quotient of k[z1, y1]-
Our contribution is to show that the ACM sets of points are also characterized by the tuples

ax and BX .
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Remark 5.4.6. In light of the previous result, it is natural to ask if Theorem 4.3.14
classifies ACM sets of points in P* x ... x P?_ We phrase this more precisely in the

following question:

Question 5.4.7. Suppose that X is set of distinct points in P™ x --. x P with
Hilbert function Hx. If AHx is the Hilbert function of a NF-graded artinian quotient of

K[Z11,. . s Z1nyse s Tkl Thony), then is X an ACM set of points?

As we have just seen, this question has a positive answer if X C P! x P!. Although we
do not have an answer to this question in the general case, we suspect that the answer is

yes.

Corollary 5.4.8. Let X be a set of points in P! x P! with ax = (a1,...,q4), and
m1(X) = {P,..., P,}. Suppose (after a possible relabelling) that |77 (P;)| = a;. For each
integer 0 < ¢ <t —1 define

X; =X\ {m '(P)U---Um '(P)},

where Xo = X. If X is ACM, then X; is ACM for each integer 0 < ¢ < t — 1. Moreover,

ax; = (Qip1, Qiya, -, ).

PROOF. It is sufficient to show that for each integer 0 < i <t — 2, if X; is ACM, then
Xit1 is ACM. So, suppose that X; is ACM. Then, by construction ax, = (®it1,-.-.,0).
Suppose that fx; = (B1,...,6;). Because X; is ACM, o, = Px;-

Since X;11 = Xi\{wfl(PiH)}, X;41 is constructed from X; by removing the ;1 points
of X; which have P as its first coordinate. The tuple fx,,, is constructed from fBx, by
subtracting 1 from ;i1 coordinates in fx;. But because of = fx;, we have r = a1,
and thus Bx,,, = (b1 —1,...,B0, — 1) = (B1 — 1,...,Ba,,» — 1). But by Lemma 5.4.1,

a*X¢+1 = fx;,1, and hence, X;1 is ACM by Theorem 5.4.4. O

It is well known that if X is a set of points of P!, then the Hilbert function and the
graded Betti numbers in the resolution depend only upon the number s = |X| and not upon
the coordinates of the points themselves. As we will show below, the Hilbert function and

the graded Betti numbers in the resolution of an ACM set of points in P! x P! share the
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property that they depend only upon the combinatorics of X and not upon the coordinates

of the points.

Theorem 5.4.9. Let X be an ACM set of points in P! x P' with ax = (a, ... ). Then

- - 00 0 0 0
1 2 .- 051—1 a1 o1
1 2 .- 042—1 a Q9
Hx = 1 2 -+ a1—1 a1 9 ---| + +
. . 1 2 (12—1 Qg 9
- - 00 0 0 O
0 0 - 0 0 0
00 - 0 0 0
00 0 0 0
1 2 . oaz3—1 a3 ag | +---+
1 2 ... Ott—l ar Oy
1 2 - a3—1 a3 a3
1 2 --- Oét—]. (6787

PROOF. Our proof will be by induction on the tuple (|71 (X)|,|X|). For any s € N, if
(|71 (X),|X]) = (1, s), then ax = (s) and Sx = (1,...,1). The Hilbert function of X, which
S
can be computed directly from Proposition 5.2.1, is

123 -+ s—1 s s
Hxy=1(1 2 3 -+ s—-1 s s ---|,

which is the desired outcome.

Now suppose that (|71 (X)|, |X|) = (¢, s) and that the theorem holds for all ACM sets of
points Y C P! x P! with (,8) >e (|71 (Y)],]Y]).

After a possible relabelling, we can assume that Pj is an element of m; (X) with |z, ' (P1)| =
ar. Set Xp, := 77 (P1) and Z := X\Xp,. Because X is ACM, o = fx, and hence,
a1 = |Bx|. Therefore, from Proposition 5.3.6, the Hilbert function of X is

Hy(i, §) = Hx,p, (6,5) + Hz(i — 1,5)  for all (i,j) € N,

where we adopt the convention that Hy(i,7) = 0if i < 0.
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It follows from the construction of Z and Corollary 5.4.8 that Z is ACM. Since (¢, 8) >es
(|m1(Z)|,|Z|) = (t — 1,|Z|), by the induction hypothesis we have

00 --- 0 0 0
00 0 0 0
1 2 a9 — 1 a2 Q92 00 0 0 0
1 2 as—1 ay g 1 2 ap—1 o oy
1 2 Qp — 1 Q¢ Qg
The conclusion now follows because Xp, is an ACM set of points with ax P = (). O

We will require the following result to describe the resolution of an ACM set of points

in P! x P

Proposition 5.4.10. Let X be a set of s = tr points in P! x P! such that ax = (r,...,r

t
and fx = (t,...,t). Then X is ACM. In fact, X is a complete intersection. Furthermore,

the minimal frge resolution of Ix is
0 — R(—t,—r) — R(-t,0)® R(0,—1) — Ix — 0

where the morphisms have degree (0,0).

PrOOF. The set X is ACM because o = (¢,...,t) = fx. Because |ax| =t and |Bx| =,

it follows that m (X) = {P,..., P;} and m(X) z {Q1,...,Q} where P;,Q; € P!. Since
|X| = tr, the set X must be the set of points {P; x Q; |1 <i<t,1<j<r}. Hence, if
Ip,xq; = (Lp,;, Lg;) is the bihomogeneous prime ideal associated to the point P; X @)}, then
the defining ideal of X is

Ix= rw (LRaLQ»:: r] (Lp;, Loy Lg, -+~ Lq,) = (Lp,Lp, -+ - Lp,; Lo, Lo, - - - Lq, ) -

1<i<t 1<i<t
1<j<r

Since deg Lp, Lp, --- Lp, = (t,0) and deg Lg,Lg, - - - Lg, = (0,7), the two generators of Ix

form a regular sequence on R, and hence, X is a complete intersection.

Because Ix is generated by a regular sequence, the minimal free resolution of Ix is given

by a Koszul resolution (see page 35 of Migliore [39] or Corollary 4.5.5 of Weibel [56]).
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Taking into consideration that Ix is bigraded, we get

0 — R(-t,—T) 22, R(-t,0) ® R(0,—) o Ix — 0
Lo Lo, L
where ¢y = [Lp Lp, -+ Lp, L, Lq, -+ Lq,] and ¢3 = [ oo Lo ] 0
_LP1LP2"'LPt

To state our result about the resolution, we require the following notation. Suppose

that X C P! x P! is a set of points with ax = («ay,...,q;). Define
CX = {(t7 0)7 (07 al)} U {(IL - ].,Oli) | o — a1 < 0}7
and
Vx i ={(t, o)} U{(Gi - 1,0-1) | i — j—1 < 0}.

We take a—1 = 0. With this notation, we have

Theorem 5.4.11. Suppose that X is an ACM set of points in P! x P! with ax =
(a1,...,¢). Let Cx and Vx be constructed from ax as above. Then the graded minimal
free resolution of Ix is
0— @ R(—’Ul, —’Ug) — @ R(—Cl, —02) — IX — 0.
(v1,v2)EVx (c1,c2)€Cx

where the morphisms have degree (0,0).

ProOF. We will do a proof by induction on the tuple (|7 (X)|,|X]). If s is any integer,
and (|71 (X),|X]) = (1,s), then ax = (s) and fx = (1,...,1). The conclusion now follows
S
from Theorem 5.4.10 because Cx = {(1,0),(0,s)} and Vx = {(1,s)}-

So, suppose (| (X),|X|) = (t,s) and the theorem holds for all Y C P! x P! with
(t,8) >iex (Jm1(Y)],]Y]). Suppose that ax = (a1,..., 01, Q41,---, ), i.e., a1 < a1, but
N ——’

l
o] = o7.

If [ = ¢, then X is a complete intersection and the resolution is given by Theorem 5.4.10.

The conclusion now follows because Cx = {(1,0), (0, 1)} and Vx = {({,01)}.

So, suppose that [ < t. Let Pp,..., P, be the [ points of 71 (X) that have |7r1_1(PZ~)| = .
Set Y =7, (P1) U---Un;*(P). Because X is ACM, a; = |Bx|. Hence,

Y:={PxQ; |1<i<lI, Qj €mX)}
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So, ay = (a1,...,a1) and By = (I,...,1). Also, Iy = (Lp, --- Lp,, L, --- Lg,) where Lp, is
SN—— S——
l [¢31
the form of degree (1,0) that vanishes at all the points of P! x P! which have P; as their first
coordinate, and Ly, is the form of degree (0,1) that vanishes at all points P x Q € P! x P!

such that @ = @;.

Let F := Lp, ---Lp, and G := Lg, --- Lg,. From the proof of Theorem 5.4.10 we have

0 — R(~1,—1) 2 R(~1,0) ® R(0, —r) 25 Iy — 0

G
where ¢; = [F' G] and ¢9 = [ F] Let Z := X\Y. Since m3(Z) C m(X), it follows that

G =Lg, - Lg, € Iz. Hence, im ¢y C Iz(—1,0) @ R(0, —«) since 7 = ;. We also require

the following claim.
Claim. Ix =F -Iz+ (G)

Proof of the Claim. By construction, X = Z UY, and thus Ix = Iz N Iy. Hence, we want
to show that I, N Iy = F - Iz, + (G).

So, if K € F-Iz+(G), then there exists H; € Iz and He € R such that K = FH;+GHo.
Since F,G € Iy, K € Iy. But Hy,G € Iz, so we have K € Iy N Iy.

To show the reverse inclusion, let K € Iz N Iy. Since K € Iy, there exists Hi,Hs € R
such that K = FHy + GH,. If we can show that H; € Iz, we will be finished. Since
K,G € Iz, we have FH, € Iz. So, FH; must vanish at all P x () € Z. By construction,
no point in Z can have P;, where 1 < % <[, as its first coordinate. So, if P x ) € Z, then
F(PxQ)=(Lp, - Lp)(P x Q) #0. Hence H{(P x Q) =0, and thus H; € Iy. O

From the above resolution for Iy, the claim, and the fact that im¢o C Iz(—1,0) &

R(0, —ay), we have the following short exact sequence of R-modules

0 — R(=1,—1) 2 I(~1,0) ® R(0, —y) 25 Ix = F - I + (G) — 0

where ¢ and ¢o are as above.

By Corollary 5.4.8 the set of points Z is ACM with az = (aj41,...,a;). Therefore,
the induction hypothesis holds for Z. With the above short exact sequence, we can use the

mapping cone construction (see Section 1.5 of Weibel [56], and Section 4 of Chapter 1) to
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construct a resolution for Ix. In particular, we get

0— @ R(—(v1 +1),—v2)| ® R(—I,—a1) —
(v1,v2)EVZ

B R(—(c1+1),—c2)| ® R(0,01) — Ix — 0.
(c1,c2)€Cy

Since the resolution has length 2, and because X is ACM, the resolution of Ix cannot be

made shorter by the Auslander-Buchsbaum formula (cf. Theorem 4.1.22)

To show that this resolution is minimal, it is enough to show that no tuple in the set
{(c1 +1,¢2) | (c1,¢2) € Cz} U{(0,x1)} is in the set {(vy + I, v2) | (v1,v2) € Vz} U{(l,a1)}-
By the induction hypothesis, we can assume that no (c1,ce) € Cyz is in V7, and hence, if (¢c;+
l,e2) € {(c1 +1,¢2) | (c1,¢2) € Cz}, then (¢1 +1,¢2) is not in {(v1 +1,v2) | (vi,v2) € Vz}
If (¢1 +1,¢0) = (I,1) for some (c1,¢2) € Cz, then this implies that (0,1). But this
contradictions the induction hypothesis. Similarly, if (0, 1) € {(v1 +1,v2) | (v1,v2) € V2},
this implies (—I,a1) € Vz, which is again a contradiction of the induction hypothesis. So

the resolution given above is also minimal.

To complete the proof we only need to verify that

(Z) Cx = {(Cl + l,CQ)
(13) Vx = {(v1 +1,v9)

| (c1,¢2) € Cz} U{(0, )}
| (v1,02) € Vz} U{(l, 1)}
Let C" = {(c1 +1,¢2) | (c1,¢2) € Cz} U {(0,a1)}. By definition Cx := {(¢,0),(0,a1)} U
{(i —1,04) | & — i1 <0} and Oz = {(t — 1,0), (0, cu1) }U{(k — 1, ux) | i — -1 < 0}
since = eee, O, yeees and = yeees
nce ax = (a1 l a1, 41 at) and az = (a1 at)
We check that Cx C C'. It is immediate that the elements (0, 1) and (¢,0) are in C".

So, suppose (di1,d2) € {(i —1,0;) | &y — aj—1 < 0}. For i <[, a; = 1. So, if (d1,ds) €
{(t —1,0) | &5 — @j—1 < 0}, then (d1,d2) = (I, 41), or there exists some positive k such
that (dy,ds) = (I+k—1,044%) and oy, — k-1 < 0. But in either case, (d1 —1,ds) € Cyz,
and hence, (dy,ds) € C'".

Conversely, we only need to check that (c; + I,¢c2) € Cx for every (c1,c0) € Cz. It
is straightforward to check that ((¢ —1) +{,0) € Cx. Also, as noted, (I,q;41) € Cx. If
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(61,62) € {(k} — l,aH_k) | Qg — Q-1 < 0}, then (61 + l,CQ) = (k + 1 — l,aH_k) € Cy

because oy — aix_1. Thus Cx = C'.

The proof of (i4) is similar in nature. However, for completeness, we will verify the

details. Let V' denote the set {(v1 + 1, v2) | (vi,v2) € Vz} U{(l,1)}. By definition, Vx =

{(t,a)} U{(t = 1,-1) | &5 — @;—1 < 0} since ax = (a1,...,Q1,0041,...,0¢), and Vz =
N —
!
{t—1La)} U{(i — 1, ;41-1) | @ip1 — @igi—1 < 0} because az = (oqy1,...,04).

We will check that Vx C V'. The element (f,c;) € V' because (t — I,a4) € Vz. So,
suppose (di,ds) € {(i — 1, j—1) | a; — aj—1 < 0}. Because a; = ay for 1 <4 <1, it is either
the case that (di,d2) = (I, ) = (I, 1), or (d1,d2) = (I +4 —1,;4;—1) with 4 > 1. But in
the first case, it is immediate that (di,ds2) € V'. In the second case, because (di,ds) € Vx,
i — -1 < 0. But then (i — 1, ;1) € Vz, and hence, (d1,ds) € V.

Conversely, because (I,a1) € Vx, we only need to check that (vi + [,v9) € Vx for all
(v1,v2) € Vz. It is immediate that (¢t — [ +[,a;) € Vx. So, suppose that (vi,ve) € {(7 —
1,Oti_|_l_1) | QG — i1 < 0} But then (’U1 +l,’l)2) € {(’i+l—1, ai—l—l—l) | Qi — g1 < 0}

Because ax = (a1, ...,a1,0141,...,a¢), we must have {(i +1 — 1, 0544-1) | @i — ipi—1 <
e ——
l
0} = Vx\{(¢, a4)}, which completes the proof. O

Remark 5.4.12. The resolution of an ACM set of points in P! x P! was first computed by
Giuffrida, et al. (Theorem 4.1 [26]). Giuffrida, et al. showed that the graded Betti numbers
for an ACM set of points X C P! x P! could be determined from the first difference function
AHx, i.e.,

0 r—1

0 C

C v
1

AHx = C v
0
t—1

C v
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An element of Cx, which they called a corner of AHx, corresponds to a tuple (¢,7) that is
either (¢,0),(0,a1) = (0,7), or has the property that AHx(4,j) = 0, but AHx(i — 1,5) =
AHx(i,7 —1) = 1. We have labelled the corners of AHx with a ¢ in the above diagram. An
element of Vx is a vertex. A tuple (7,7) is called a vertex if AHx(i,j) = AHx(i —1,7) =
AHx(i,7—1) =0, but AHx(: — 1,5 — 1) = 1. We have labelled the vertices of AHx with a
v in the above diagram. Qur contribution, besides giving a new proof for the resolution of
an ACM set of points in P! x P!, is to show that the graded Betti numbers can be computed

directly from the tuple ax.

Example 5.4.13. The set of points X in Example 5.2.7 is not ACM. Indeed, for that
example, we saw that ax = (4,3,2,2,1,1) and fx = (4,3,3,3). Since of # fx, X cannot
be an ACM set of points.

Example 5.4.14. Let X be the set of points in Example 5.3.5. Then ax = (4,3,1,1) and
Bx = (4,2,2,1). It is an easy exercise to verify that of = (4,2,2,1) = fx. Thus, X is ACM.
Because X is ACM, the Hilbert function of X can be computed using Theorem 5.4.9. We

have
1 2344 -] foooo--] Joo -] Joo -]
12 3 4 4 12 3 3 00 00
12 3 4 4 123 3 11 00
Hx = + + +
12 3 4 4 123 3 11 11
12 3 4 4 123 3 11 11
(1 2 3 4 4 ...
2 4 6 7 7
357 8 8
" 46899
468909

We can also compute the resolution of Ix by using Theorem 5.4.11. We compute the sets

Cx and Vx from ax = (4,3,1,1) to get:
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(Z) Cx = {(450)’(0’4)’(1’3)a(2’ 1)}
(”) Vx = {(45 1)5(154)5(25 3)}
The resolution of Ix is then

0 — R(-1,-4) @ — R(0,-4)®R(-4,00® — Ix— 0.
R(—4,—1) ® R(-2,-3) R(—1,-3) ® R(—2, 1)



APPENDIX A

Using CoCoA to Compute the Hilbert Function of a
Multi-graded Rings

The goal of this appendix is to describe how one can compute the Hilbert function of a
multi-graded ring using CoCoA. Although the procedure that we describe is straightforward,
using CoCoA to implement this method requires some care. We will begin by giving the
mathematics behind the algorithm. We will then provide a step-by-step account of how to
implement this procedure into CoCoA. In the last section of the appendix, we will provide
some output of our algorithm. We will emphasize examples dealing with points in P™ x

oo X P

We have written our code using CoCoA 4.0 for Linux. CoCoA can be obtained for free

via anonymous FTP at cocoa.dima.unige.it or via the CoCoA home page:
http: //cocoa.dima.unige.it

There is also a comprehensive manual and a series of tutorials at this web address.

I want to thank John Abbott, Anna Bigatti, and Massimo Caboara for helping me with
all my CoCoA related questions and problems. I would especially like to thank Anna Bigatti,
who read an earlier version of this appendix, for making some very helpful suggestions to
increase the readability of the appendix, and for bringing to my attention some features of

CoCoA that simplified the following discussion.

1. The Mathematics of the Algorithm

Suppose that k is a field and let R = k[z1,0,--., %105+, %k05-- -1 Tk,n,)- We SUppoOSe
that deg z; ; = e; where e; is the ith standard basis vector of N¥. The ring R is then NF-
graded. Suppose that I C R is an N¥-homogeneous ideal. Then the quotient ring S = R/I

134
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is an Nf-graded ring, ie., S = GB S; where S; = R;/I; for all i := (i1,...,i) € NF.
1ENF
Furthermore, S; is a finite dimensional vector space over k for all 7 € NE.

The numerical function Hg : N — N defined by
Hg(i) = dimy S; = dimy R; — dimy I;

is the Hilbert function of S = R/I. To compute the Hilbert function of a multi-graded ring
using CoCoA, we will use the Hilbert-Poincaré series. Recall that the Hilbert-Poincaré series
of S = R/I is the infinite series
HPs(ty,...,ty) = Y Hs(i)t*  where ' :=t{' ... £},
1ENE

Using the Hilbert-Serre theorem (see [7]) we have

Qt1,---,tk)
(I —tp)mtlo (1 —ty)metl

(A.1.3) HPs(t1, ... t) =

where Q(tl,... ,tk) € Z[tl,... ,tk].

The CoCoA function Poincare is able to compute the Hilbert-Poincaré series of a multi-
graded ring. A description of the algorithm used by CoCoA is found in Bigatti [3]. The
routine Poincare returns the rational function given in equation (A.1.3). We, therefore,

need to extract the Hilbert function of S = R/I from the rational function.

Because

Z Ha(i)ti = Qt1,--- k)

1 _ ni+1. 1— ng+1’
perd b (1= 1)

to compute Hg (i) for any 5 € N¥, we need to compute the coefficient of # in the expression

on the right. From the identity

1 +1-1 2-1 d—1

it follows that

thyee t .
(1 —tl)v?lgrll...(lk_)tk)nml = Qt1,...,1) <1+ <n11+ )t%+...+ (m
_+_
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By expanding out the right hand side, we can compute Hg(i) for all i € N¥. However, this

approach is not feasible because it requires an infinite number of operations.

To get around this difficulty, we decide a priori on a finite number of i € N¥ for which
we wish to compute Hg(i). We shall usually fix a j = (j1,...,Jk) € Nt and compute Hg(4)
for all 4 = (i1,...,4) < j = (j1,...,k). Recall that we say 7 < j if and only if 4 < j
for all I. Thus, we need to compute the coefficients of #* of HPs(t1,...,t;) for only those

1 < j. Hence, for each integer 1 < [ < k, we need to write out only the first j; terms of
1

(I+t)m™ +1
We, therefore, only expand out

1 N\
Qt1, - th) (1+("11+ )t}+---+(”1,ﬂl>tﬂ;> x
1
1 N\
T (M (M) ) ok
1 J2 2
1 N
(1o (5 e (400
1 Ik

to calculate the value of Hg(i) for all i < j. Moreover, there are only a finite number of

because the larger terms do not contribute to any coefficient of #£ with i < J-

calculations required.

The following algorithm is a summary of the above discussion. The algorithm is also

the basis for the actual implementation we give in the next section.

Algorithm A.1.1.

Input:  An Nf-graded ring S = R/I and j = (j1,-..,7k) € NE.
Output: Hg(i), the Hilbert function of S = R/I, for all i < j.
Qt1, ..., 1)

1. Compute HPs(ty,...,t,) = At (I — )i
2. For each integer 1 <1 <k, set

1 i\ s
L;:= (1 + (nlf )tll + o+ (nl;]l>tf’> ]
l

3. K(ti,.--,tk) == Q(t1,...,tg) LiLy - - - Ly.
4. For each i < j, return the coefficient of = til t;ck in K(tr,. .. tx).
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2. The Implementation of the Algorithm

To simplify our notation, we will only describe how to implement Algorithm A.1.1 for
bigraded quotients of the N?-graded ring R = k[z1,...,Zn,y1,...,Ym] With degz; = (1,0)
and degy; = (0,1). Moreover, we will also assume that k = Q. We cannot work in
an algebraically closed field of characteristic zero, for example, C, because all computers
have to store numbers as finite pieces of information. Fortunately, if all the coordinates
of the points that we consider are in Q, then the computations over any extension, and in

particular, over C, are the same and will give the same result.

Before implementing Algorithm A.1.1 into CoCoA, we need to describe how to overcome
the following two problems: (1) CoCoA does not allow one to give an indeterminate a degree

of (0,1); and (2) the output of the Poincare function is not returned as a rational function.

We will start by showing how to give our polynomial ring the appropriate grading.
Suppose that T' = k[z1,...,z,]. It is then possible in CoCoA to assign each indeterminate
z; a non-standard degree, that is, deg z; := (a;,1,a42,...,a;,) where r < n and a;; € Z via
the Weights function. For example, if T' = Q[z1, ..., z3] and deg z1 = (1,2), degz2 = (2, 3),

and degzs = (3,4), then the commands to define this multi-graded ring are:

W:= Mat([[1,293],
[2,3,4]11);
Use T::= Q[x[1..3]],Weights(W);

However, if we were to use this example as a guide to give R = Q[z1, z2,y1,y2] a bigrading

with degz; = (1,0) and degy; = (0, 1), the corresponding commands

W:= Mat([[1,1,0,0],
[0,0,1,111);
Use R::= Q[x[1..2],y[1..2]],Weights(W);

will result in an error. This is because CoCoA requires the first row of the matrix to contain
only positive integers. To circumvent this problem, we give R a tri-grading, that is, an
N3-grading, by defining degz; = (1,1,0) and degy; = (1,0,1). Therefore, the command to

define the ring above would be

W:= Mat([[]-’]-,l’l] >
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[1,1,0,0],
[0,0,1,111);
Use R::= Q[x[1..2],y[1..2]1],Weights(W);

Although we no longer have a standard bigraded ring, we can still use this ring to make
our calculations. Indeed, F' € R is homogeneous with respect to this N*-grading if and only
if F is homogeneous with respect to the N?-grading. Hence, if I is any N° homogeneous

ideal of R, it will also be N®-homogeneous with respect to this grading.

To use Algorithm A.1.1, we need to compute the Hilbert-Poincaré series of the bi-
graded ring S = R/I. Even though CoCoA will not allow us to define such a bigraded
ring, the following proposition enables us to use the above non-standard grading on R =

k[z1,...,Zn,Y1,---,Ym] to compute the desired Hilbert-Poincaré series.

Proposition A.2.1. Let R=Xk[z1,...,Zn,Y1,---,Ym] with degz; = (1,1,0) and degy; =
(1,0,1). Suppose that I is a homogeneous ideal of R with respect to this grading and that

Q(t(); tla t2)

HPs(to, t1,t2) = (1 —tot1)™(1 — totz)™

where Q(to,t1,t2) € Z[to, t1,t2], is the Hilbert-Poincaré series of S = R/I. Then I is also a
homogeneous ideal of R with respect to the grading on R induced by setting degz; = (1,0)
and degy; = (0,1). Furthermore, let Q'(t1,t2) = Q(1,t1,t2). Then the Hilbert-Poincaré
series of S = R/I with respect to this new grading is

Ql(tl, t2)

HPS(tlatQ) = (1 _tl)n(l — t2)m

PROOF. Since F is homogeneous with respect to the non-standard N°-grading if and
only if F is homogeneous with respect to the N? grading, then one needs to only verify that
the coefficient of it ¢tk of HPs(to,t1,ts) is equal to the coefficient of ¢/t if i = j + k and

zero otherwise. g

From the above proposition, we see that we need to manipulate the numerator of the
Hilbert-Poincaré series of the non-standard graded ring S = R/I in order to get the desired
numerator. However, when we wish to implement this step, we encounter our second diffi-
cultly. The CoCoA function Poincare which computes the Hilbert-Poincaré function returns

an object that is not a rational function.
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For example, suppose we use the ring R = Q[z1, z2,y1,y2] where degz; = (1,1,0) and
degy; = (1,0,1) and we wish to compute the Hilbert-Poincaré series of the ring R/I where

I = (21 + x2,y1). Then the needed commands are:

W:= Mat([[1,1,1,1],

[1,1,0,0],

[0,0,1,111);
Use R::=Q[x[1..2],y[1..2]],Weights(W);
I:=Ideal(x[1]1+x[2],y[1]);
P:=Poincare(R/I); P;

The output is:

--— Non-simplified HilbertPoincare’ Series ---
(x[1]1-2x[2]1y[1] - x[11x[2] - x[11y[1] + 1) /
¢ (1-x[1]1x[2]) (1-x[1]x[2]) (1-x[11y[1]) (1-x[1ly[1]) )

Although CoCoA outputs the result as rational function, it is not stored as such. However,
we use the function HP.ToRatFun to turn the output of Poincare into a rational function.

Continuing with our above example, we have:

HP.ToRatFun(P) ;
1/(x[1]1"2x[2]y[1] - x[11x[2] - x[1]y[1] + 1)

Note that the output that is returned is simplified. We can now multiply the above output

by the denominator to isolate the numerator.

Below is our code for the function BiHilbert that is based upon Algorithm A.1.1. We
assume that the appropriate multi-graded ring has been defined. The function BiHilbert
has been written to output the Hilbert function as a matrix (m; ;) where m; ; :== Hp/;(i, j).

Note that we adopt the convention that the indexing of the matrix starts at (0,0).
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-- BiHilbert(I,K1,K2)

-— (Assume that the appropriate ring R has been defined)

-— BiHilbert computes the Hilbert function of the bigraded ring S = R/I
-- for all (I,J) <= (K1,K2)

Define BiHilbert(I,K1,K2)
- N

#indeterminates of degree (1,1,0) in R

- M #indeterminates of degree (1,0,1) in R
N:= Len([X In Indets() | MDeg(X) =[1,1,011);
M:= NumIndets() - N;
—- Compute Hilbert-Poincare Series
P:=Poincare (CurrentRing()/I);
BiHiRing::=Q[t[1..311;
Using BiHiRing Do
—-- Determine the numerator (Num) of the HP-series
RationalP:=$cocoa/hp.ToRatFun(P) ;
Num := RationalP*(1-t[1]t[2]) "N*(1-t[1]1t[3])"M;
—-- Derive the correct numerator by substituting 1 into Num
Num:=Subst (Num,t [1],1);
-- Write out the appropriate number of terms of the denominator
-- and multiply by the numerator. We use the
-- routine Expansion
Expanded:=Num*Expansion(N,M,K1,K2) ;
-- Read off the coefficient of the term t[2] I1%t[3]"I2
-- for all (I1,I2) <= (K1,K2). Store result in a matrix
HilbertMatrix:=NewMat (K1+1,K2+1,0);
Foreach M In Monomials(Expanded) Do
If Deg(M,t[2]) <= K1 And Deg(M,t[3]) <= K2 Then
HilbertMatrix[Deg(M,t[2])+1,Deg(M,t[3])+1] := LC(M);
End;
End;
-- Return desired values as a matrix
Return(HilbertMatrix) ;
End;
End;
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-- Expansion(N,M,K1,K2)
-— Expansion computes the first K1 terms of 1/(1-t[2])°N and
-- the first K2 terms of 1/(1-t[3]"M. It then returns

-- the product of these two polynomials.

Define Expansion(N,M,K1,K2)
L1:=[Bin(D+N-1,N-1)*t[2]°D | D In 0..K1];
L2:=[Bin(D+M-1,M-1)*t[3]1°D | D In 0..K2];
P1:=Sum(L1);

P2:=Sum(L2);
Return(P1%P2) ;

End; -- Expansion

3. Examples of the Algorithm

In this section, we will demonstrate how to use the function BiHilbert to compute the

Hilbert function of a bigraded quotient of the ring R = k[z1,...,Zn, Y1, -, Ym]-

Example A.3.1. Let R = Q[z1, 2, z3,%4,Y1,y2] where degz; = (1,0) and degy; = (0,1).
As observed in Chapter 2,
4—-14+3i\[(2—-14+7
Hp(i,j) = dimg Ri j = ( , “) ( : “) for all (i, §) € N2.
? J
We use BiHilbert to compute the Hilbert function of R for all (7,7) < (10,10) to verify
that our algorithm has been properly coded.

W:=Mat([[1,1,1,1,1,1],
[1,1,1,1,0,0],
[0,0,0,0,1,111);
Use R::=Q[x[1..4],y[1..2]],Weights(W);
I:=Ideal(0);
BiHilbert(I,10,10);
Mat [
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
[4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44],
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[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1101,

[20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220],

[35, 70, 105, 140, 175, 210, 245, 280, 315, 350, 385],

[56, 112, 168, 224, 280, 336, 392, 448, 504, 560, 616],

[84, 168, 252, 336, 420, 504, 588, 672, 756, 840, 924],

[120, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320],
[165, 330, 495, 660, 825, 990, 1155, 1320, 1485, 1650, 1815],
[220, 440, 660, 880, 1100, 1320, 1540, 1760, 1980, 2200, 2420],
[286, 572, 858, 1144, 1430, 1716, 2002, 2288, 2574, 2860, 3146]

Example A.3.2. Let R = Q[z1, 22, y1,y2] with degz; = (1,0) and degy; = (0,1). Then R
is the bigraded coordinate ring of Py, x Pgy. Let P; = [1: 4] € P and @Q; = [1 : i] € Py and
suppose that X is the following set of points:

X={P1 xQ1,P1 x Q2,P1 X Q3,P> x Q1,P3 X Q4}.

It follows that |71 (X)| = 3 and |m2(X)| = 4. From Corollary 3.1.7, we need to compute
those (i,7) < (3—1,4—1) = (2,3) to determine all the values of the Hilbert function. Our
computation of Hx using BiHilbert shows that this is indeed the case.

W:=Mat([[1,1,1,1],

[1,1,0,0],

[0,0,1,111);
Use R::=Q[x[1..2],y[1..2]],Weights(W);
I_P1xQ1:=Ideal (x[1]-x[2],y[1]1-y[2]);
I_P1xQ2:=Ideal(x[1]-x[2],2y[1]-y[2]);
I_P1xQ3:=Ideal(x[1]1-x[2],3y[1]-y[2]);
I_P2xQ1:=Ideal(2x[1]1-x[2],y[1]1-y[2]);
I_P3xQ4:=Ideal (3x[1]1-x[2],4y[1]1-y[2]1);
I:=Intersection(I_P1xQ1,I_P1xQ2,I_P1xQ3,I_P2xQ1,I_P3xQ4);

BiHilbert(I,4,5);
Mat [
[1, 2, 3, 4, 4, 41,
[2, 4, 5, 5, 5, 5],
[3, 4, 5, 5, 5, 5],
[3, 4, 5, 5, 5, 5],
[3, 4, 5, 5, 5, 5]
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We are now able to read off the border (see Definition 3.2.8) of the Hilbert function. For
this example, the border Bx = ((3,4,5,5), (4,5,5)).

Example A.3.3. Let R = Q[z,y] with degz = (1,0) and degy = (0,1), and let I =
(23, 2%y, zy*, y®). We use BiHilbert to compute the Hilbert function of R/I:

W:=Mat([[1,1],

[1,0],

[0,111);
Use R::=Q[x,y],Weights(W);
I:=Ideal(x"3,x"2y,xy"4,y°5);

BiHilbert(I,5,5);

BiHilbert(I,5,5);

Mat[
[t, 1, 1, 1, 1, 01,
[1, 1, 1, 1, 0, 01,
[1, 0, 0, 0, 0, 01,
[o, o, 0, 0, 0, 01,
[o, o, 0, 0, 0, 01,
[0, 0, 0, 0, 0, 01

]

From Corollary 4.4.14, it follows that R/I is a bigraded artinian quotient. Thus, by Corol-
lary 4.4.15 there exists an ACM set of points in Pg, x Pg, with Hilbert function H such that
AH is equal to the above Hilbert function. We claim that the set of points

[1:1]x[1:1),1:1]x[1:2,[1:1]x[1:3],[1:1]x[1:4],[1:1]x[1:5]
X=9q [1:2]x[1:1,[1:2] x[1:2],[1:2] x[1:3],[1:2]x[1:4]
[1:3] x[1:1]
is such a set. From Theorem 5.4.4, the set X is ACM. Using BiHilbert to compute Hx we
find

Use R::=Q[x[1..2],y[1..2]],Weights(Mat[[1,1,1,1],[1,1,0,0],[0,0,1,1]11);
I1:=Ideal(x[1]-x[2],y[11-y[2]);
I2:=Ideal(x[11-x[2],2y[1]1-y[2]);
I3:=Ideal(x[1]-x[2],3y[1]-y[2]);
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I4:=Ideal (x[1]-x[2],4y[11-y[2]);
I5:=Ideal (x[1]-x[2],5y[1]1-y[2]);
I6:=Ideal (2x[1]1-x[2],y[1]1-y[2]1);
I7:=Ideal(2x[1]1-x[2],2y[1]-y[2]);
I8:=Ideal (2x[1]1-x[2],3y[1]-y[2]);
19:=Ideal (2x[1]1-x[2],4y[1]-y[2]);
I110:=Ideal(3x[1]1-x[2],y[1]1-y[2]);
I:=Intersection(I1,I12,13,14,15,16,17,18,19,110);

BiHilbert(I,5,5);

Mat[
[1, 2, 3, 4, 5, 5],
[2, 4, 6, 8, 9, 91,
[3, 5, 7, 9, 10, 101,
[3, 5, 7, 9, 10, 10],
[3, 5, 7, 9, 10, 101,
[3, 5, 7, 9, 10, 10]
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A routine calculation will now verify that the first difference function of this Hilbert function

is equal to Hilbert function of the above bigraded artinian ring.
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