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Abstract. We introduce the Macaulay 2 package EdgeIdeals as a tool to study edge
and cover ideals. These tutorials complement the lectures given at MONICA: MONo-
mial Ideals, Computations and Applications, at the CIEM, Castro Urdiales (Cantabria,
Spain).

Introduction

Computer algebra systems, like Macaulay 2 [7], Singular [3], and CoCoA [1], have become
essential tools for many mathematicians in commutative algebra and algebraic geometry.
These systems provide a “laboratory” in which we can experiment and play with new
ideas. From these experiments, a researcher can formulate new conjectures, and hopefully,
new theorems. Computer algebra systems are especially good at dealing with monomial
ideals. As a consequence, the study of edge and cover ideals is well suited to experiments
using computer algebra systems.

The purpose of this tutorial is to familiarize the user with the package EdgeIdeals that
was written by C. Francisco, A. Hoefel, and myself [6]. This package, written for Macaulay
2, provides a suite of functions to experiment with edge and cover ideals. Many of the
results discussed in the lectures have been implemented into this package. Hopefully, the
tools introduced in this tutorial will be the basis of your own research results!

As a final note, although I primarily discuss the EdgeIdeal package, I would recommend
that your also become familiar with the packages SimplicialComplexes, written by S.
Popescu, G.G. Smith, and M. Stillman (see [9]), and SimplicialDecomposability by
D.W. Cook II (see [2]). The first package contains a number of useful functions related
to simplicial complexes. In fact, the EdgeIdeals package requires a number of functions
from this package. The SimplicialDecomposability package of D.W. Cook II is useful
if you wish to study the properties of the simplicial complex associated to the edge or
cover ideal of a graph.

1. Getting Started

Obviously, the first thing you need to do is install the latest version1 of Macaulay 2 on
your computer. The download page is here:

http : //www.math.uiuc.edu/Macaulay2/Downloads/

Pick the appropriate operating system, and then follow the instructions. This may take
some time and patience.

1At the time of writing this tutorial, the current version was 1.4
1
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I am going to assume that you have installed Macaulay 2 and now have it working.
To familiarize yourself with the basic syntax and some simple examples, a good place to
start is this web page:

http : //www.math.uiuc.edu/Macaulay2/GettingStarted/

If you have never used Macaulay 2, take a couple of minutes to try a couple of the sample
sessions.

2. The EdgeIdeals Package

Now that you have Macaulay 2 installed, we want to load the EdgeIdeals package. If
you are using a current version of Macaulay 2 (i.e., a version ≥ 1.4), then this package
should already be included with your installation of Macaulay 2, and it simply has to be
installed.

Remark 2.1. If you have an older version, or if your version does not include this package,
you should first download the source code from this link:

http : //j− sag.org/Volume1/EdgeIdeals.m2

Save the code in a file named EdgeIdeals.m2, and save the file into your working direc-
tory. You can now return the directions below. Note that when you run the command
installPackage ‘‘EdgeIdeals’’, Macaulay 2 will install the package where it can al-
ways find it in the future.

Open Macaulay 2 and input the following command

Macaulay2, version 1.4

with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : installPackage "EdgeIdeals"

You will only need to enter this command the first time you use the package. In the
background, this command is making all the help pages. Once you have installed the
package, you do not need to use the command again, but instead, use the instructions
below. If you wish, you can start a new session by typing restart.

When we first start Macaulay 2, we start with following screen:

Macaulay2, version 1.4

with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 :

At the prompt, type the following command to load the package EdgeIdeals:

i1 : loadPackage "EdgeIdeals"

o1 = EdgeIdeals

o1 : Package
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i2 : loadedPackages

o2 = {EdgeIdeals, SimplicialComplexes, SimpleDoc, Elimination, LLLBases,

--------------------------------------------------------------------------

IntegralClosure, PrimaryDecomposition, Classic, TangentCone, ReesAlgebra,

--------------------------------------------------------------------------

ConwayPolynomials, Core}

o2 : List

The second command returns all the packages currently loaded in Macaulay 2. Note that
not only is the EdgeIdeals package loaded, but so is the SimplicialComplexes package.
Many of the functions in EdgeIdeals run “on top” of SimplicialComplexes.

We are now ready to try out EdgeIdeals. To get going, we spend a little time discussing
how to input a finite simple graph. As a concrete example, suppose that we want to study
the graph

x3

x2

x1

x5

x4

x6

We enter this information in such a way that Macaulay 2 recognizes it as a graph. There
are a couple of ways to do this. The first way is to input a polynomial ring to denote the
vertices, and then represent the edges as a list. For example

i3 : R = QQ[x_1..x_6]

o3 = R

o3 : PolynomialRing

i4 : E = {{x_1,x_2},{x_2,x_3},{x_3,x_4},{x_4,x_5},{x_5,x_1},{x_1,x_6},{x_2,x_6},{x_3,x_6}}

o4 = {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x },

1 2 2 3 3 4 4 5 5 1 1 6 2 6

--------------------------------------------------------------------------

{x , x }}

3 6

o4 : List

i5 : H = graph(R,E)

o5 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 2 3 3 4 4 5 5 1 1 6 2 6 3 6

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6

o5 : Graph
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Alternatively, the edges can be represented as the generators of a square-free quadratic
monomial ideal. If no ring is passed to the command graph, it takes the variables of the
current ring as the vertices of the graph. As an example, here is an alternative way to
input the above graph into Macaulay 2:

i6 : e = monomialIdeal(x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_5,x_5*x_1,x_1*x_6,x_2*x_6,x_3*x_6)

o6 = monomialIdeal (x x , x x , x x , x x , x x , x x , x x , x x )

1 2 2 3 3 4 1 5 4 5 1 6 2 6 3 6

o6 : MonomialIdeal of R

i7 : G = graph e

o7 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 2 3 3 4 1 5 4 5 1 6 2 6 3 6

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6

o7 : Graph

i8 : G==H

o8 = true

Now that we have an object called a Graph, we can ask about its edge and cover ideals.
Both of these ideals can be easily obtained using the following commands:

i9 : i = edgeIdeal G

o9 = monomialIdeal (x x , x x , x x , x x , x x , x x , x x , x x )

1 2 2 3 3 4 1 5 4 5 1 6 2 6 3 6

o9 : MonomialIdeal of R

i10 : j = coverIdeal G

o10 = monomialIdeal (x x x x , x x x x , x x x x , x x x x , x x x x ,

1 2 3 4 1 2 3 5 1 2 4 6 1 3 4 6 1 3 5 6

-------------------------------------------------------------------------

x x x x , x x x x )

2 3 5 6 2 4 5 6

o10 : MonomialIdeal of R

The generators of J(G) are the minimal vertex covers of G; convince yourself that the
generators given in the above example are indeed the minimal vertex covers of the graph.

Recall that we showed that the Alexander dual of edge ideal I(G) equals the cover ideal
of J(G). We can verify this for this ideal using a command from the SimplicialComplexes
package (which is also loaded):
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i11 : dual i == j

o11 = true

Once you have inputted your graph, you can now compute some of its graph theoretic
invariants. For example, the chromatic number of the graph is computed as

i12 : chromaticNumber G

o12 = 3

To compute this number, we use of the fact that

χ(G) = min{d | (x1 · · ·xn)d−1 ∈ J(G)d}
as proved in the first lecture. Similarly, Fröberg’s Theorem gives us an algebraic charac-
terization of chordal graphs. We can therefore check if G is chordal:

i13 : isChordal G

o13 = false

To facilitate experimentation, we have built a number of functions to create commonly
occurring graphs, like cycles and cliques. Here are some examples:

i14 : C6 = cycle R

o14 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 2 3 3 4 4 5 5 6 1 6

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6

o14 : Graph

i15 : C5 = cycle(R,5)

o15 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 2 3 3 4 4 5 1 5

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6

o15 : Graph

The command cycle will return a cycle of length equal to the number of variables in the
ring R as a default. If a number n is given, it will make a cycle of that length using the
first n variables. Cliques of size n are defined similarly:

i16 : K4 = completeGraph(R,4)

o16 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 1 3 1 4 2 3 2 4 3 4

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6
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o16 : Graph

The command antiCycle is similar in that it returns the graph of the complement of a
cycle.

Also built into the EdgeIdeals package is a number of commands to construct sub-
graphs. For example, suppose that we wish to look at the induced subgraph of G on the
vertices P = {x1, x2, x6, x5}. This can be done as follows:

i17 : P = {x_1,x_2,x_6,x_5}

o17 = {x , x , x , x }

1 2 6 5

o17 : List

i18 : GP = inducedGraph(G,P)

o18 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }}}

1 2 1 5 1 6 2 6

ring => QQ[x , x , x , x ]

1 2 6 5

vertices => {x , x , x , x }

1 2 6 5

o18 : Graph

Another similar command that may prove helpful is deleteEdges which removes a col-
lection of edges from a graph.

To facilitate research, the EdgeIdeals package includes a function called randomGraph.
This function allows you to generate a random graph on defined number of vertices and
edges, and is useful when creating conjectures. Here is an example of the this function in
action:

i19 : randomGraph(R,8)

o19 = Graph{edges => {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }}}

1 2 2 3 2 4 5 6 4 6 3 6 2 5 2 6

ring => R

vertices => {x , x , x , x , x , x }

1 2 3 4 5 6

o19 : Graph

In this case, we are asking for a random graph on 6 vertices (the number of variables in
the polynomial ring R) with 8 edges. This function can be used to test a large number of
examples quickly.

As a final note, the documentation of the EdgeIdeals package can be found here:

http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.4/share/doc/Macaulay2/EdgeIdeals/html/index.html

All the commands given in the package are listed on this page. Detailed documentation
and example can be found by clicking on the approriate linkgs.
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3. Tutorials

The afternoon tutorials give you a chance to play around and experiment with Macaulay 2.
When required, the tutorials provides need definitions, results, and references. Some of
the initial problems ask you to prove some simple results in order to give you a feeling
for the material, while other problems ask you to program some simple procedures using
Macaulay 2 in order to help you develop your Macaulay 2 skills. The last batch of ques-
tions for each tutorial is a series of open questions. These questions are denoted by an
asterisk. (If you come up with any ideas, I would love to hear them!)

3.1. Tutorial 1: Splitting Monomial Ideals. In this tutorial, we explore some of the
properties of splitting monomial ideals.

Exercise 3.1.1. Suppose I = J +K is a Betti splitting. Prove that

reg(I) = max{reg(J), reg(K), reg(J ∩K)− 1}.

Here, reg(−) denotes the regularity of the given ideal.

Remark. This result can be quite useful when doing induction. For example, this fact
was used to give a new proof for the regularity of the edge ideal of a tree [8].

Exercise 3.1.2. Write a Macaulay 2 program that takes as input two monomial ideals J
and K, and will return true or false depending upon whether J +K is a Betti splitting.

Hint. The command betti res I will return the Betti diagram of the ideal I. Read
through the betti documentation in order to extract out the information you are looking
for. If you are interested in a particular graded Betti number, you may wish to first define
the function:

beta = (i,j,I) -> (betti res I)#(i,{j},j)

Exercise 3.1.3. (Importance of char(k)) Consider the following ideal inR = k[x1, . . . , x6]:

I = (x1x2x4, x1x2x6, x1x3x5, x1x3x4, x1x5x6, x2x4x5, x2x3x6, x2x3x5, x3x4x6, x4x5x6).

Fix a variable xi, and form an xi-partition of I, i.e., let J be the ideal generated by all
the generators of I divisible by xi, and let K be the ideal generated by the remaining
generators. Use Macaulay 2 to show I = J + K is a Betti splitting in char(k) = 2, but
not a Betti splitting if char(k) 6= 2.

Hint. One way to input a ring a characteristic two is

i1 : S = ZZ/(2)[a,b,c]

Definition 3.1. Let I(G) be the edge ideal of a graph. For any edge e = {xi, xj}, we
have the partition

I(G) = 〈xixj〉+ I(G \ e)

where G \ e is the graph G with the edge e removed. We call e a splitting edge if this
partition is a Betti splitting.
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Exercise 3.1.4. Consider the graph

x3

x2

x1

x5

x4

x6

Determine which edges of this graph are splitting edges.

Exercise 3.1.5. Write a program in Macaulay 2 that inputs a graph, and returns all the
edges in the graph that are splitting edges.

Exercise 3.1.6. Let G = Cn be a cycle of length n ≥ 4. Prove that G has no splitting
edge.

Exercise 3.1.7. Let G = Kn be the clique of size n ≥ 3. Prove that every edge of G is
a splitting edge.

Exercise 3.1.8. Find a graph G that is not a cycle, but no edge is a splitting edge. Then,
find a graph G that is not a clique, but every edge is a splitting edge.

Exercise 3.1.9. A vertex v is called a leaf if deg v = 1. Suppose that v is a leaf, and
e = {v, u} is the only edge that contains v. Prove that e is a splitting edge.

Exercise 3.1.10. Let N(x) = {y | {x, y} ∈ E(G)} be the neighbours of x. Make a
conjecture about {x, y} being a splitting edge in terms of N(x) ∪ N(y). Compare your
answer to [8].

?Exercise 3.1.11. Is the number of splitting edges related to any invariants of G or I(G)?

?Exercise 3.1.12. Find other ways to split I(G).

?Exercise 3.1.13. Are they any nice ways to construct Betti splittings of the cover ideal
J(G)? (I am only aware of how to split J(G) in the case that R/J(G) is Cohen-Macaulay
and G is bipartite [5].)

?Exercise 3.1.14. Are there Betti splittings of the ideals I(G)s and J(G)s , for some
integer s?

3.2. Tutorial 2: Regularity. In this tutorial, we look at the regularity of an edge and
cover ideals.

Exercise 3.2.1. A tree is graph without any induced cycles. If T is tree, what is the
regularity of I(T c), where T c is the complement of T?

Exercise 3.2.2. Describe all trees T with the property that reg(I(T )) = 2.

Exercise 3.2.3. Create any graph G where the smallest induced cycle of Gc has length
4. Use Macaulay 2 to compute the resolution. Now repeat for a graph G whose smallest
induced cycle in Gc has length 5, 6, 7, . . . until you observe your pattern. Compare your
answer to Eisenbud, et al. [4].
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Exercise 3.2.4. If you would like to see the code of a Macaulay 2 function, you can use

code methods use 〈 function name 〉
Look at the code for smallestCycleSize. Try to figure out how Macaulay 2 finds the
smallest induced cycle in a graph.

Exercise 3.2.5. Write a Macaulay 2 function that checks if graph has an induced 4 cycle.

Hint. Use the fact that
β1,4(I(G)) = c4(G

c)

where c4(H) denotes the number of induced four cycles in the graph H. (see [13]).

Exercise 3.2.6. Write a Macaulay 2 function that tests whether an ideal has linear
resolution.

Exercise 3.2.7. Nevo and Peeva [11] have made the following conjecture:

Conjecture 3.2. For all graphs G, if Gc has no induced four cycles, then there exists a
integer s such that I(G)s has a linear resolution.

Using the command randomGraph, find 10 graphs where the conjecture is true, and for
each graph, find the smallest integer s where I(G)s has a linear resolution.

Exercise 3.2.8. The path of length n, denoted Pn is the graph with vertex set {x1, x2, . . . , xn}
and edge set

{{x1, x2}, {x2, x3}, . . . , {xn−1, xn}}.
Compute the regularity of I(Pn) for some n until you find a pattern. Compare your result
to Jacques [10].

?Exercise 3.2.9. Let T be a tree. Find a formula for reg(I(T )s) as s varies.

Hint. You may wish to start with the case that T = Pn first.

?Exercise 3.2.10. Find a formula for reg(J(G)) and reg(I(G)) for any graph.

Hint. This problem is probably too open ended. I am not aware of many results on the
regularity of J(G). For edge ideals, more is known (do a Google search on “regularity
edge ideals”). For bipartite graphs, we almost have a complete story. See [12] for more.
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