1. Introduction

Generalized linear mixed models (GLMMs) are a powerful class of statistical models
that combine the characteristics of generalized linear models (Chapter xxx) and
mixed models (models that include both fixed and random predictor variables: see
below). They handle a wide range of response distributions, and a wide range of
scenarios where observations have been sampled in some kind of groups rather
than completely independently. While they can’t do everything - there are still
situations where an expert might choose custom-built models for greater flexibility
- GLMMs are fast, powerful, can be extended to handle additional complexities such
as zero-inflated responses, and can often be fitted with off-the-shelf software. The
only real downsides of GLMMs are due to their generality: (1) some of the standard
recipes for model testing and inference that you have learned previously may not
apply, and (2) it’s easy to build plausible models that are too complex for your data
to support. GLMMs are still part of the statistical frontier, and not all of the answers
about how to use them are known (even by experts), but this chapter will try to
provide practical solutions to allow you to use GLMMs with your data.

Generalized linear models, as discussed in Chapter xxx, allow modeling of many
kinds of response variables, particularly those with binomial and Poisson
distributions; you should definitely be comfortable with the material in Chapter xxx
before attempting the methods described in this chapter. In contrast, the idea of
mixed models, and the distinction between fixed effects (the typical way that you
compare differences between treatments or the effects of continuous predictor
variables) and random effects (roughly speaking, experimental or observational
blocks within which you have several observations) may be new to you. Models with
Normally distributed responses that incorporate some kind of random effects or
blocking are called linear mixed models (LMMs); they are a special, slightly easier
case of GLMMs. Hopefully you have a passing acquaintance with the idea of
experimental blocks from a previous statistics course, or from a basic textbook such
as Gotelli and Ellison (2004) or Quinn and Keough (2002), but this chapter will
review the basic idea. If you are already well-versed in ANOVA approaches to
blocked experimental designs, you may actually have to unlearn some things, as
modern approaches to random effects are quite different from the classical
approaches taught in most statistics courses.

As well as using a different conceptual definition of random effects, modern mixed
models are more flexible than classical ANOVA approaches, allowing (e.g.) non-
Normal responses, unbalanced experimental designs, and more complex grouping
structures (crossed random effects: see below). Equally important is a new
philosophy: modern approaches use a model-building approach rather than a
hypothesis-testing approach, as discussed in Chapter XXX. You can (and should)
still test hypotheses, but instead of a list of F statistics and p values the primary
outputs of the analysis are quantitative parameter estimates describing (1) how the
response variable changes as a function of the fixed predictor variables and (2) the
variability among the levels of the random effects.



While many ecologists have embraced the idea of model-based approaches, random
effects such as variation among experimental blocks are often neglected in model-
based analyses because they are relatively difficult to incorporate in custom-built
statistical models. While one can use tools such as WinBUGS, AD Model Builder, or
SAS PROC NLMIXED to incorporate such components in a general model,
generalized linear mixed models are general enough to encompass many of the
problems that ecologists will encounter, yet can be fitted with off-the-shelf software,
without building your own model completely from scratch.

2. Running examples

Before jumping into the technical and philosophical details of random and fixed
effects, I will introduce several real case studies from the literature or from my own
work which will serve as running examples.

* (Coral symbiont defense: McKeon et al. (2012) ran a field experiment with
coral (XXX spp.) inhabited by invertebrate symbionts (crabs and shrimp) and
exposed to predation by sea stars (Culcita spp.) to understand the
complementary or synergistic effects of symbionts: were symbionts from
different species more, less, or as effective in defending corals from attack as
one would expect based on their independent effects? The design is a
randomized complete block design with a small amount of replication (2
replications per treatment per block; 4 treatments (no symbionts, crabs
alone, shrimp alone, both crabs and shrimp), with each of these units of 8
repeated in 10 blocks). The response is binomial with a single trial per unit
(also called Bernoulli or binary); treatment, a categorical variable, is the only
fixed effect input variable; block is the only grouping variable, with
intercepts (i.e. baseline predation probability) varying among blocks.

* Gopher tortoise shells: Ozgul et al. (2009) analyzed the numbers of fresh
gopher tortoise shells in different areas to estimate whether shells were
more common (implying a higher mortality rate) in areas with higher disease
prevalence. The response is the count of fresh shells, for which we will
consider Poisson and negative binomial distributions; seroprevalence of
mycoplasma (i.e. the fraction of tortoises carrying antibodies against the
disease) is the single, continuous, fixed predictor variable. We would like to
consider both year and site as crossed grouping variables (see below) with
variation in baseline numbers among them, but as discussed below we treat
year as fixed because there are only 3 levels (2003-2005).

* Red grouse ticks: Elston et al. (2001) used data on numbers of ticks sampled
from the heads of red grouse chicks in Scotland to explore patterns of
aggregation. Ticks have potentially large fitness and demographic
consequences on red grouse individuals and populations, but the goal in this
particular paper was just to decompose patterns of variation into different



scales (within-brood, within-site, by altitude and year). The response is the
tick count (again Poisson or negative binomial); altitude (treated as
continuous) and year (treated as categorical and fixed because there are only
3 years; it could be treated as continuous, but it costs only one additional
parameter to relax the assumption of linearity in this case) are fixed input
variables. Individual within brood and brood within location are nested
random-effect grouping variables, with the baseline expected number of ticks
(intercept) varying among groups. (See overdispersion for an explanation of
treating individual as a random effect.)

In each of these case studies, the data are non-Normal (counts in the tick and
gopher tortoise examples and binary (attacked/not attacked) in coral symbiont
example), and the structure of the data includes some kind of grouping
(experimental blocks for the sea star example; areas and years for the gopher
tortoise example; and individuals within broods within sites, for the tick
example). These are the basic characteristics that require the use of GLMMs.

3. Concepts
3.1 Model definition
3.1.1 Random effects

The traditional way to look at random effects is as a way to do the correct
statistical tests when some observations are correlated. When samples are
collected in groups (within species in the example above, or within experimental
blocks of any kind), there will be some variation within groups (02within) and
some among groups (0%among); the total variance is 02iotai=0%within+OZ%among; and the

correlation between any two observations in the same group is p =

within total

(observations that come from different groups are uncorrelated). Such grouping
which violates the assumption of independent observations that is part of most
statistical models. Sometimes one can solve this problem by analyzing the data
at the level of independent groups, rather than at the level of partially correlated
individual observations. For example, in a balanced, nested design where fixed
effects are constant within groups - for example, if were testing for the
differences between deciduous and evergreen plants, where every member of a
species has the same leaf habit - we could simply calculate species averages,
throwing away the variation within species, and do a t-test between the
deciduous and evergreen species means. This procedure is exactly equivalent to
testing the fixed effect in a classical mixed model ANOVA with a fixed effect of
leaf habit and a random effect of species. This classical approach correctly
incorporates the facts that (1) repeated sampling within species reduces the
uncertainty associated with within-group variance, but (2) we have fewer
independent data points than observations - in this case, as many as we have
groups (species) in our study.



These basic ideas underlie all classical mixed model ANOVA analyses, although
the formulas get more complex when treatments vary within grouping variables,
when different fixed effects can vary at the levels of different grouping variables
(e.g., randomized block and split-plot designs). Murtaugh (2007) points out that
mixed model ANOVA is unnecessarily complicated for simple nested designs,
recommending simpler approaches like the averaging procedure described
above. However, mixed model ANOVA is still extremely useful for a wide range
of more complicated designs, and as discussed below, traditional mixed model
ANOVA itself falls short for cases such as unbalanced designs or non-Normal
data.

We can also think of random effects as a way to combine information from
different levels within a grouping variable. Suppose that you had estimated
photosynthetic rate from multiple individuals from each of many species. If you
had only a few samples from a few species, you might be forced to pool the data,
ignoring the differences among species. Pooling assumes that 62among is
effectively zero, so that the individual observations are uncorrelated (p=0). On
the other hand, if you had many individuals from each species, and especially if
you had a small number of species, you might choose to estimate the
photosynthetic rate for each species individually, or in other words to estimate a
fixed effect parameter for each species. Treating the grouping factor as a fixed
effect assumes that information about one species gives us no information about
any other species; this is equivalent, for the purposes of parameter estimation, to
treating 02among as infinite. Treating species as a random effect compromises
between the extremes of pooling and estimating separate (fixed) estimates; we
acknowledge, and try to quantify, the variability among species. Because the
species are assumed to come from a population with a well-defined mean, the
predicted photosynthetic rates for each species are a weighted average between
the mean for that species and the overall mean of the population; the smaller
and noisier the sample for a particular species, the more its prediction is
“shrunk” toward the population mean - the random effects predictions are
sometimes called shrinkage estimates (Figure 1). (For technical reasons, the
value we retrieve from the model for each species is called a “prediction” or
more generally a conditional mode, rather than an “estimate”; they are often
loosely called “random effects”, but this can get confusing ...) For example, if we
had estimated the maximum photosynthetic rate for species 1 as 5 (in some
sensible units), with a variance of 1 (in the same units), while the mean rate of
all the species in the group was 8 with a variance of 3, then our predicted value

WOU]d be (Au.vpecim /O‘szpeciex + Augmup /Ojinong ) /(1 /Gszpeciex + 1/Otfmong) =
(5/1+8/3)/(1/1+1/3)=5.75. Because 0, <O, » the prediction is closer to

the species-specific value than to the group mean. (Stop and convince yourself
that this formula agrees with verbal description above of how variance-weighted
averaging works when 0Z%among is either very small or very large.)
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Figure 1: Estimated block effects from the Culcita analysis (deviations from population mean).
The mixed estimates are (mostly) intermediate between the fixed estimates and the pooled
estimate of zero. (In this case there is actually a problem with the fixed effects, which can’t be
estimated properly for blocks 7-9 because all corals in those blocks were attacked, which makes
the estimate of the attack probability infinite on the logit scale, and messes up the estimates of
the other block deviations as well, so that the estimated random and fixed effects in blocks 6 and
8 have different signs ... this is another reason to prefer the shrinkage estimator, which handles
this case just fine!) Notice also that the confidence intervals on the estimates are much smaller
for the mixed-effect than the fixed-effect estimates; this doesn’t matter very much in this
example because we're not particularly interested in the block effects, but could be very
important if the random effects were (e.g.) conservation areas that we wanted to prioritize.

Random effects are especially useful when we have (1) lots of levels (i.e. many
species), (2) relatively little data on each species (although we need multiple
samples from at least some of the species), and (3) uneven sampling across
species.

This idea of a random effect as an effect where we combine information from
different levels differs from the standard frequentist definition, which is a
categorical variable whose levels were chosen at random from a larger
population, e.g. species chosen at random from a list of endemic species. This
definition is philosophically coherent, and you will encounter researchers
(including reviewers and supervisors) who insist on it, but it is practically
problematic. At first glance it rules out using species as random effect when you
have observed all of the endemic species at your field site (since your sample is
no longer a sample from a larger population), or using year as a random effect
(since researchers very rarely choose the years in which to run an experiment



randomly - usually they either use a series of consecutive years, or the
haphazard set of years when they were able to run replicates of the experiment).
This problem applies to both the gopher tortoise and tick examples, each of
which (coincidentally) have samples collected in three successive years. It would
be nice to be able to formally generalize across years (i.e., calculate the among-
year variance, rather than the usual procedure of just hoping that the sample is
reasonably representative of other, unsampled years), but it simply isn’t
practical with such a short sample.

e TABLE 1.

You may want to treat an effect as random if:

* you have sampled at least 5 levels of the grouping factor;

* youdon’t want to test hypotheses about differences between responses at
specific levels of the grouping factor;

* you do want to quantify the variability among levels of the grouping factor;

* you want to making predictions about unobserved levels of the grouping
factor;

* you want to use shrinkage estimates to combine information across levels;

* there is variation in information per level (samples or noisiness);

* your levels are(randomly?) chosen from a larger population.

* the effect is a nuisance variable (i.e. it is not of direct interest, but should be
controlled for)

cf. Crawley (2002), Gelman (2005)

A more useful definition of a random effect is a predictor variable where you are
interested in making inferences about the distribution of values (i.e., the
variance among the values of the response at different levels) rather than in
testing the differences of values between particular levels. Choosing a random
effect is essentially trading the ability to test hypotheses about particular levels
(low vs. high nitrogen, 2001 vs. 2002 vs. 2003) for the ability to (1) quantify the
variance among levels (variability among sites, among species, etc.) and (2) to
generalize to levels that were not measured in your experiment. (If you treat
“species” as a fixed effect, you can’t say anything about an unmeasured species; if
you use it as a random effect, then you can make a guess that an unmeasured
species will have a value equal to the population mean estimated from the
species you did measure.) Of course, as with all statistical generalization, your
levels (e.g. years) must be chosen in some way that, if not random, is at least
representative of the population you want to generalize to.

You will also hear people say that “random effects are used to represent factors
that you aren’t interested in”. This is not always true. While it is often the case in
ecological experiments (ecologists usually don’t care much about the variance
among sites in experiments - it is just a nuisance), it is sometimes of great
interest, for example in evolutionary studies where the variation among
genotypes is the raw material for natural selection, or in demographic studies




where among-year variation can have significant impacts on long-term growth
rates.

You will also hear that “you can’t say anything about the value of a level of a
random effect”. This is not true either - it may be impossible to formally test the
null hypothesis that the value is equal to zero, or that the values of two different
levels are equal, but it is still perfectly sensible to look at the predicted value, and
even to compute a confidence interval around the predicted value. Particularly in
management contexts, researchers may care very much about which sites are
particularly good or bad relative to the population average, and how good or bad
they are.

Bayesians are much more relaxed about these philosophical and inferential
issues, because the Bayesian framework makes these particular problems much
easier. To a Bayesian, a fixed effect is one where we estimate each parameter
(e.g. the mean for each species within a genus) independently (with
independently specified priors, while for a random effect the individual
parameters are modeled as being drawn from a distribution (usually Normal); in
standard statistical notation, species_mean ~ Normal(genus_mean, o

genus/species ) -

I said above that random effects are most useful when the grouping variable has
many measured levels. Conversely, random effects are generally ineffective
when the grouping variable has too few levels. Random effects will be usually be
infeasible when the grouping variable has fewer than 5 levels and unstable with
fewer than 8; you are essentially trying to estimate a variance from a very small
sample. In the classic ANOVA approach, where all of the variance estimates are
derived from simple sums-of-squares calculations, random effects calculations
can work as long as you have at least two samples (although their power will be
very low, and in some circumstances the variance estimates are negative); in the
modern mixed modeling approach, you tend to get warnings and errors from the
software instead, or estimates of zero variance, but in any case the results will be
unreliable (see SECTION for more details, and solutions to this problem).

3.1.2 Scalar vs. non-scalar and intercept vs. non-intercept random effects

Up to now I have described random effects in terms of the differences in the
baseline values of the response variable among levels of a categorical grouping
variable (e.g. baseline numbers of ticks in different sites). Although technically
sites is the grouping variable in this case, and the thing that varies among levels
is the intercept term of a statistical model, we often call this simply a “random
effect of site”. This is a random intercept model, which is also a scalar effect
(there is only one value per level of the grouping variable). In R it would
typically be specified within a modeling formula as ~group or ~(1) :group
(MCMCglmm package), ~1 | group (nlme or glmmADMB packages), or
(1|group) (lme4 or glmmADMB packages) depending on the modeling



function (the 1 specifies an intercept effect; it is implicit in the first example).
More generally, we might have observed the effects of a treatment within each
level, and want to know how the effect of the treatment (described by either a
categorical or a continuous predictor) varies across levels. Since both the
intercept and all of the parameters describing the treatment would vary across
levels, this would be a non-scalar or vector random effect. This could be specified
in R as ~1+x| group (nlme/glmmADMB), (1+x |group) (lme4/glmmADMB),
or ~us (1+x) :group (MCMCglmm). (In many cases the 1 is optional -

(x| group) would also work - but I include it here for concreteness. The us in
the third specification refers to an “unstructured” variance-covariance matrix,
i.e. allowing the different effects to be correlated with each other.) For example,
the coral symbiont data follow a randomized block design, with replicates of all
treatments within each block, so we could in principle use (1+ttt |block) to
ask how the effects of symbionts varied among different blocks, with four
random parameters (intercept and three treatment parameters) per block
describing the difference between the effects of symbionts in that block and the
overall population average effects. (Although such a model is theoretically OK
because all treatments are performed in each block, in practice it’s not feasible
because we have too little information - only two binary samples per treatment
per block.)

Such effects can be classified as interactions between the random effect of block
and the fixed effect (symbionts), and are themselves random - we assume, for
example, that the difference in predation rate between corals with and without
symbionts is drawn from a distribution of predation rates. The interaction
between a random effect and a continuous predictor would also be random, and
describes the variation in slopes among levels; this type of interaction is the only
case in which it makes sense to consider a random effect of a continuous
variable. One should in general consider the random x fixed effect interactions
whenever it is feasible, i.e. for all treatments that are applied within levels of a
random effect; doing otherwise assumes a priori that there is no variation among
groups in the treatment effect, which is rarely warranted biologically (Schielzeth
and Forstmeier 2009, Barr et al. 2013). It is often impossible or logistically
infeasible to apply treatments within groups: in the gopher tortoise example the
prevalence of disease is fundamentally a site-level variable, and can’t vary within
sites. Or, as in the coral symbiont example, we may have so little statistical
power to quantify the among-group variation that our models don’t work, or
that we estimate the variation as exactly zero. In these cases we have to accept
that there probably is a real interaction that we are ignoring, and temper our
conclusions accordingly.

3.1.3 Nesting and crossing

What about the interaction between two random effects? Here we have to
specify whether the two effects are nested or crossed. If at least one of the levels



of each effect is represented in multiple levels of the other effect, then the
random effects are crossed; otherwise, one is nested in the other. For example, in
the gopher tortoise example, each site is measured in multiple years, and
multiple sites are measured in each year, so site and year are crossed (although
as pointed out above we don’t actually have data for enough years to treat them
as random): this would be specified for example as (1 | site)+ (1 |year) .On
the other hand, in the tick example each chick occurs in exactly one brood, and
each brood occurs in exactly one site ((1|site/brood/chick), read as “chick
nested within brood nested within site”, or equivalently (1 |site) +
(1|site:brood)+(1l|site:brood:chick);if the broods and chicks are
uniquely labeled, so that the nesting can be detected (1 |site) +
(1|brood)+(1|chick) will also work). Another way of thinking about the
problem is that, in the gopher tortoise example, there is variation among sites
that is similar across years, variation among years that applies across all sites,
and variation among site-by-year combinations. In the tick example, there is
variation among broods and variation among chicks within broods, but there is
no sensible way to define variation among chicks across broods. In this sense a
nested model is a special case of crossed random effects that sets one of the
variance terms to zero.

Crossed random effects are more challenging computationally than nested
effects (they are largely outside the scope of classical ANOVAs), and so this
distinction is often ignored in older textbooks. Most of the software that can
handle both crossed and nested random effects can automatically detect when a
nested model is appropriate, provided that the levels of the nested factor are
uniquely labeled. That is, if you have individuals numbered 1, 2, ... 10 in species
A, B, and C, the software can’t tell that individual #1 of species A is not in some
way similar to individual #1 of species B. Although you can specify nesting
explicitly, it is safer to label the nested individuals uniquely as A1, A2, ..., A10, B1,
B2, ... B10, ... etc..

Interactions between two or more fixed effects are usually best treated as
crossed, because in general the levels of fixed effects are generalizable across
levels of other fixed effects (“high nitrogen” means the same thing whether we
are in a low- or high-phosphorus treatment). Random effects can be nested in
fixed effects, but fixed effects would only be nested in random effects if we really
wanted (e.g.) to estimate different effects of nitrogen in each plot.

3.1.4 Overdispersion and observation-level random effects

Linear mixed models assume the observations to be Normally distributed
conditional on the fixed-effect parameters and the conditional modes and thus
need to estimate the residual variance at the level of observations. Most GLMMs,
in contrast, assume binomial or Poisson distributions where the variance
(“dispersion”) parameter is fixed to 1 - that is, if we know the mean then we



assume we know the variance (equal to the mean for Poisson distributions, or to
Np(1-p) for binomial distributions). However, as discussed in the GLM chapter,
we frequently observe overdispersion - variances higher than would be
predicted from the model, due to missing covariates, or among-individual
heterogeneity. (However, note that overdispersion is not identifiable with binary
responses, as long as each observation has a unique set of predictor values.) You
can allow for overdispersion in GLMMs in some of the same ways as in regular
GLMs - use quasi-likelihood estimation to inflate the size of the confidence
intervals appropriately, or use an overdispersed distribution such as a negative
binomial - but these options are not always available in pre-packaged GLMM
software.

A GLMM-specific solution to overdispersion is to add observation-level random
effects, i.e. to add a new grouping variable with a separate level for every
observation in the data set. While this may seem like magic - how can we
estimate a separate parameter for every observation in the data set? - it is
essentially just a way to add more variance to the data distribution. For Poisson
distributions, the resulting lognormal-Poisson distribution is quite similar to a
negative binomial distribution (also called a Gamma-Poisson distribution
because it represents a Poisson-distributed variable with underlying Gamma-
distributed heterogeneity). Most GLMM packages allow observation-level
random effects (for technical reasons, MCMCglmm always adds an observation-
level random effect to the model). Another advantage of using observation-level
random effects is that this variability is directly comparable to the among-group
variation in the model; Elston et al. (2001), the source of the tick data example,
exploit this principle (see also Agresti 2002, section 13.5).

3.1.5 Correlation within groups (R-side effects)

As described above, grouping structure induces a correlation p =+/0.,,. /0.

within total

between every pair of observations within a group. Observations can also be
differentially correlated within groups; that is, an observation can be strongly
correlated with some of the observations in its group, but more weakly
correlated with other observations in its group. These effects are sometimes
called R-side effects because they enter the model in terms of correlations of
residuals (in contrast to correlations that occur because of group membership,
which are called G-side effects). The key feature of R-side effects is that the
correlation between pairs of observations within a group typically decreases
with increasing distance between observations. As well as physical distance in
space or time, one can also consider genetic relatedness (distance along the
branches of a pedigree or phylogeny) as a distance. To include R-side effects in a
model, one typically needs to specify both the distance between any two
observations (or some sort of coordinates - observation time, spatial location, or
position on a phylogeny - from which distance can be computed), as well as a



model for the rate at which correlation decreases with distance. While
incorporating R-side effects in linear mixed models is relatively straightforward,
putting them into GLMMs is, alas, rather challenging at present (see the
“Challenges” section at the end of the chapter).

3.1.5 Fixed effects and families
Of course, for a complete model you need to specify the fixed effects part of your
model, and the family (distribution and link function) as well as the random

effects. These are both specified in the usual way as for standard (non-mixed,

fixed-effect-only) GLMs.

Depending on the package you are using, the fixed effects may be specified
separately or in the same formula as the random effects; typically the fixed-effect
formula is also where you specify the response variable as well (the model has
only one response variable, which is predicted by both the fixed and the random
effects. In the coral symbiont example, the fixed effect is the categorical
treatment variable (control/shrimp/crabs/both). In the gopher tortoise example
we have the effects of both disease prevalence and, because we didn’t have
enough parameters to treat it as random, of year (treated as a categorical
variable); we also have an offset term that specifies that the number of shells is
proportional to the site area (i.e., we add alog(area) term to the predicted

number). Finally, in the grouse tick example we have fixed effects of year and

height.

TABLE 2. model specifications for the examples.

nlme/glmmADMB 1lme4/glmmADMB MCMCglmm
coral fixed=pred~ttt, formula=pred~ttt+(1l|block), fixed=pred~ttt,

. random=~1 | block, family="binomial” random=~block,
symblont family="binomial” family="categorici
gopher fixed=shells~factor(year) formula=shells~factor(year)+ | fixed=shells~fact«

. prevt+offset(log(area)), prev+toffset(log(Area))+ prev+offset(log(A:
tortoise random=~1|Site, (1]|site), random=~Site,

family="poisson” family="poisson” family="poisson”
grouse fixed= formula= fixed=
g ticks~1l+factor(year)+height, ticks~1l+factor(year)+height+ | ticks~1+factor(yei
tick random=~(1|location/brood/index), | (1|location/brood/index), random=~location+]
family="poisson” family="poisson” family="poisson”

3.2 Conditional, marginal, and restricted likelihood

Once you have defined your GLMM, specifying (1) the conditional distribution of
the data (family) and link function (see Chapter GLM); (2) the categorical and
continuous predictors and their interactions (see Chapter GLM); and (3) the
random effects and their pattern of crossing and nesting, you are ready to try to
fit the model. Chapter XXX describes the process of maximum likelihood
estimation, which we need to extend here to allow for random effects.



3.2.1 Conditional likelihood

If we (magically) knew the values of the conditional modes of the random effects
for each level (e.g. the baseline predation rates for each block), we could use
standard numerical procedures to find the maximum likelihood estimates for the
fixed effect parameters, and all of the associated things we’d like to know
(confidence intervals, AIC values, p-values for hypothesis tests against null
hypotheses that parameters or combinations of parameters were equal to zero
...). The likelihood we obtain this way is called a conditional likelihood, because it
depends (is conditioned on) a particular set of values of the conditional modes. If
x is an observation, S is a vector of one or more fixed effects, and u is a
conditional mode of a random effect, then the conditional likelihood for x would
be expressed as L(x/f,u). If u were a regular fixed effect parameter, then we
could go ahead and find the values of f and u that jointly gave the maximum
likelihood, but that would ignore the fact that the conditional modes are random
variables that are drawn from a distribution.

3.2.2 Marginal likelihood

The marginal likelihood is the modified form of the likelihood that allows for the
randomness of the conditional modes. It essentially compromises between the
goodness of fit of the conditional modes to their overall distribution and the
goodness of fit of the data within grouping variable levels. For example, an
observation of attack on a coral which was well-defended and would be typically
expected to have a low attack probability could be explained either by saying
that the coral was an unlucky individual within its (perfectly typical) block or
that the coral was no unluckier than average but the block was unusual, i.e.
subject to higher-than-average attack rates. Because the block effect is treated as
arandom variable, in order to get the likelihood we have to average the
likelihood over all possible values of the block effect, weighted by their
probabilities of being drawn from the Normal distribution of blocks. The result is
called the marginal likelihood, and we can treat it in most respects the same way
we would handle an ordinary likelihood. In mathematical terms, this average is
expressed as an integral. If we take the definitions of x (observation), u
(conditional mode), and g (fixed effect parameter) given above and additionally
define 02 as the among-group variance (i.e. the variance of the distribution of the
u values, which are defined to have zero mean), then the likelihood of a given
value of u is L(u|o?) and the marginal likelihood of x is the integral of the
conditional likelihood weighted by the likelihood of u:

L(x|p,0%) = fL(x lu,$)- L(u10%)du. The marginal likelihood is a function of
and o?, which are the parameters we want to estimate. (In a more complex
model, 02 would be replaced by a vector of parameters, representing the
variances of all of the random effects and the covariances among them.)
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Figure 2. Conditional and marginal likelihoods. For block 5, “shrimp” treatment,
replicate 2. The Normal curve (dotted line) shows the likelihood of the conditional mode u; the
logistic curve (dashed line) shows the conditional likelihood of the observation x given u; the
solid line shows their product, and the gray area under the curve represents the marginal
likelihood. (All likelihoods scaled to a maximum of 1.0 for ease of presentation.) If the focal
observation were the only one in the block, the conditional mode would be estimated at the peak
of Lyrod, s=1.4. However, the contribution of the other 7 observations in the block makes the

overall estimate of the conditional mode ﬁ5=-0.43.

3.3.3 Restricted likelihood

One of the often-ignored properties of maximum likelihood estimates is that
many of their useful properties like lack of bias, maximal power, and so forth,
only hold asymptotically - that is, when the data set is large. Maximum
likelihood estimates of variances are biased downward: you may remember that

the formula for estimating sample variance is E(x -X)° / (n -1), rather than

E(x -x)° In (which is the maximum likelihood estimate), for exactly this

reason. Restricted maximum likelihood (REML) is a generalization of this rule
that generally gives better (less biased) estimates of the variances in mixed
models. Technically, it is based on finding some way to combine the observations
so as to factor out the fixed effects. For example, in a pairwise t test the
difference between the two observations in a pair is equal to the difference
between treatments, which is the fixed effect. We are usually interested in the
difference between the treatments, so we compute the difference between
treatments in each pair. If we instead took the mean of each pair, we would



cancel out the fixed effect - we could then compute an unbiased estimate of the
variance among the pairs. A broader way of thinking about REML is that it
describes any statistical method where we integrate over the fixed effects when
estimating the variances. One issue with using REML is that you cannot sensibly
compare the restricted likelihoods of two models with different sets of fixed
effects, because they are likelihoods of completely different models for the
variance. Another is that while REML in principle applies to GLMMs as well as
LMMs, they are more easily defined and more accessible in software for LMMs
than for GLMMs (Bellio and Brazzale 2011).

4. Setting up a GLMM

Now that most of the concepts and terminology we’ll need are defined, we can
consider the basic components of a GLMM. This section discusses more of the
practical considerations you need to think about when deciding on the structure of a
GLMM.

4.1 Response distribution

The conditional distribution of the response variable, which we often abbreviate to
“the response distribution” or “the distribution of the data”, is the expected
distribution of each observed response around its predicted mean, given the values
of all of the fixed and random effects for that observation. That is, when we collect a
data set of (e.g.) counts, we don’t expect the overall (marginal) shape of the data to
be Poisson distributed; we expect each point to be drawn from a Poisson
distribution with its own mean that depends on the predictors for that point. In the
gopher tortoise example, the distribution of number of shells in a given site s (with
prevalence P(s)) and year y is x5y ~ Poisson(fo+f,+BpP(s)+Us).

If the conditional distribution is Gaussian, or can sensibly be transformed to be
Gaussian (e.g. by log transformation) then we have a linear mixed model, and
several aspects of the modeling process are simpler (we can more easily define R-
side effects and restricted maximum likelihood; statistical tests are easier, as
discussed below). As with generalized linear models (chapter XXX), binomial
(including binary or Bernoulli, i.e. 0/1 responses) and Poisson responses comprise
the vast majority of GLMMs. The Gamma distribution is the other common
distribution handled by GL(M)Ms; it is useful for continuous, skewed distributions,
but treating such data as log-normal (i.e. log-transforming and then using a linear
mixed model) usually gives very similar results and is often simpler.

In addition to these standard distributions, there are other useful distributions that
do not technically fall within the scope of GLMMs, but can sometimes be handled
using simple extensions. These include the negative binomial distribution for
overdispersed count data; zero-inflated distributions for count data with excess



zeros; the Beta distribution for proportional data where the denominator is
unknown; and the Tweedie distribution for continuous data with a spike at zero.
Ordinal responses (i.e. categorical responses that have more than two ordered
categories) and multinomial responses (categorical responses with more than two
categories, but without ordering) can be handled by extensions of binomial GLMMs.
These extensions are often useful, but using them will generally make it harder to
analyze your model (i.e. you are more likely to run into computational difficulties,
which will manifest themselves as warnings and errors from software), and restrict
your choice of software more than if you stick to the simpler (Normal, binomial,
Poisson) choices of distributions.

As is typical in ecological applications, the examples for this chapter all use either
binary (coral symbiont) or Poisson (gopher tortoise, grouse tick) conditional
distributions (Table 2). The family is specified almost exactly as in standard GLMs,
with a few quirks. g1mmADMB requires the family argument and link functions to be
given as a quoted strings (e.g. family=“binomial), in contrast to base R, nlme,
and Ime4, which allow more flexibility (e.g. family=“binomial” for the default
link, or binomial () ). MCMCglmm has its own names for binary/logit
(family=“categorical”) and binomial (family="multinomial2”) models.

4.2 Link function

As with GLMs, we also have to choose a link function to describe the shape of the
response curve as a function of continuous predictor variables. The rules for picking
a link function are the same as for GLMs: when in doubt, use the default link for the
response distribution you have chosen. We will follow this rule in the examples,
using the default logit link for the coral symbiont (binary) example and a log link for
the gopher tortoise and grouse tick (Poisson) examples (Table 2), although we did
also consider a log link for the coral symbiont example (see below). In nlme and
Ime4 links are specified along with the family as for standard GLMs in R, e.g.
family=binomial (link="logit”) orbinomial(link="10g"”);in
glmmADMB they are specified as a separate string (1ink="1ogit"”); and
MCMCglmm offers uses alternative family names where alternate links are available
(e.g. family="ordinal” for a binary/probit link model).

4.3 Number and type of random effects

As discussed above, it is not always easy to decide which variables to treat as
random effects, and to figure out their structure (nested vs crossed). Section 3.1.4
already discussed the issues of random vs. fixed and nested vs. crossed for the
examples. More generally, the more random effects you include in the model, and
the more they are crossed rather than nested, the harder it will be to fit the model -
as with unusual response distributions (Section 4.1), the model is more likely to
have computational problems, or run very slowly, or you may have trouble finding



software to fit the model. Beyond computational difficulties, the model may be
statistically poorly posed - when you include several random effects, it is likely that
some of their variances will be estimated as exactly zero, or that pairs of random
effects will be estimated as perfectly correlated. While this does not necessarily
invalidate a particular model, it may break model-fitting software in either an
obvious way (errors) or a non-obvious way (the model is more likely to get stuck
and give an incorrect result, without warning you). Model complexities also interact:
for example, some of the software available to fit models with non-standard
distributions can only handle models with a single random effect. In general you
should avoid: (1) fitting random effects to categorical variables with fewer than 5
levels; (2) fitting more than two or three random effects in a single model, unless
you have huge amounts of data and a very fast computer.

5. Estimation

Once the model is set up, you need to estimate the parameters - the fixed effect
parameters that describe overall changes in the response, the conditional modes of
the random effects that describe the predicted differences of each level of the
grouping factor from the population average, and the variances of, and covariances
among, the random effects. In a perfect world this would be easy, but it isn’t always;
there are a variety of possible methods, with tradeoffs in speed and availability.

5.1 Method of moments

The traditional way to fit a mixed ANOVA model is to compute appropriate sums of
squares (e.g. the sum of squares of the deviations of the group means from the grand
mean, or the deviations of observations from their individual group means) and
dividing them by the appropriate degrees of freedom to obtain mean squares, which
are estimates of the variances. This approach is called the “method of moments”
because it relies on the correspondence between the sample moments (mean
squares) and the theoretical parameters of the model (random effects variances).
This approach is simple, fast, always gives an answer - and is extremely limited,
applying only to Normal responses (i.e., linear mixed models), in balanced or nearly
balanced designs, with nested random effects only. [ mention it here for two
reasons: (1) you may want to use it for simple problems that fall within its scope;
(2) it is the traditional method, and it may be useful to know what more classically
trained ecologists (e.g., supervisors or manuscript reviewers) have in mind if you
have to discuss methodology with them.

5.2 Deterministic/frequentist algorithms

Instead of computing sums of squares, modern estimation approaches try to find
efficient and accurate ways to compute the marginal likelihood (section 3.2.2).
Because the marginal likelihood involves an integral that is typically at least as high-
dimensional as the number of random effects in the model, computing it can be
challenging. The first class of approaches for estimating mixed models involve



numerically tractable approximations of the integral. Because they try to find the
exact value of the integral, I call them deterministic approaches; they are typically
used in a frequentist statistical framework to find the maximum likelihood
estimates and confidence intervals.

Penalized quasi-likelihood (PQL, Breslow 2004) is the fastest, most flexible,
and least accurate technique for approximating the marginal likelihood. It
can handle any number of random effects quickly, and can fairly easily be
extended to handle R-side effects, but it has two important limitations. (1) It
is the least accurate approximation technique; in particular, it generally gives
biased estimates of variance parameters, especially when the amount of
information per sample is small, as with binary or low-count data. More
accurate variants of PQL exist, but are not widely implemented in open
source software. There is still considerable debate about the importance of
these biases; for some applications, especially those focusing on the fixed
effect parameters, the biases may be unimportant - but it’s hard to know for
sure. (2) Because of the way that PQL is derived, it computes a quantity
called the “quasi-likelihood” rather than the likelihood, which may not be
appropriate for model comparison by the likelihood ratio test. Depending on
the software you are using, therefore, you may be limited to inference based
on Wald tests (see XXX below). In a similar vein, it is not always clear what
statistical model is being estimated. PQL is closely related to generalized
estimating equations (GEE), another general statistical approach that is even
more flexible but shares at least disadvantage #2 and possibly disadvantage
#1.

Laplace approximation is a somewhat slower and less flexible, but still very
general, procedure for approximating the marginal likelihood. It
approximates the integral based on the curvature of the likelihood around
the conditional mode (i.e., using the Taylor expansion of Lyroq around u=0).
Gauss-Hermite quadrature (GHQ) is an extension of Laplace approximation
that uses multiple points to integrate the marginal likelihood. One generally
has to specify how many quadrature points to use - that is, how much
computation you're willing to do for a more accurate answer. The default is
usually around 8-12 quadrature points (1 quadrature point corresponds to
Laplace approximation). GHQ is feasible for models with 2-3 random effects
(e.g. 2-3 grouping factors with scalar random effects or a single grouping
factor with 2-3 effects), but most software restricts GHQ to models with a
single random effect.

5.3 Stochastic/Bayesian algorithms

Another approach to GLMM parameter estimation uses the Markov chain Monte
Carlo algorithm, typically embedded in a Bayesian statistical framework that
attempts to estimate the posterior distributions of the parameters rather than the
maximum likelihood estimates and likelihood profiles. These algorithms are
typically much slower than deterministic algorithms, and may require more tuning



of optimization parameters, although a single run of the algorithm generally gives
enough information to obtain both point estimates (posterior means or medians)
and confidence intervals, in contrast to deterministic algorithms where computing
reliable confidence intervals may take several times longer than just finding the
point (maximum likelihood) estimates.

Although there is at least one “black box” R package (MCMCglmm) that allows the
user to define the fixed and random effects symbolically (i.e., as usual for software
packages), many researchers who opt for stochastic GLMM parameter estimation
instead choose to use the BUGS language (i.e. the WinBUGS package or one of its
variants such as OpenBUGS or JAGS) to fit their models. BUGS is a very flexible,
powerful framework for fitting ecological models to data in a Bayesian context
(McCarthy 2007, Kéry 2010), not just GLMMs, but it comes with its own steep
learning curve.

The Bayesian model-fitting framework also has some big advantages when it comes
to computing confidence intervals that incorporate all the relevant sources of
uncertainty and account properly for the size of the data set (see 6.2.5 below).

For researchers who are interested in stochastic parameter estimation but are still
reluctant to use Bayesian methods, there are several stochastic parameter
estimation methods that work within a frequentist framework. The older method,
Monte Carlo expectation-maximization, is potentially very powerful but has not
been widely implemented in general-purpose software (Booth and Hobert 1999,
Sung and Geyer 2007). The newer method, data cloning, adapts the framework of
MCMC, and particularly the BUGS package, to compute parameter estimates in a way
that is consistent with frequentist theory (Ponciano et al 2009, Sélymos 2010).

5.4 Model diagnostics and troubleshooting

Much of the process of model checking for GLMMs falls back to the same procedures
as for GLMs. You should plot appropriately scaled residuals (i.e., deviance or
Pearson residuals) as a function of the fitted values and as a function of the input
variables, looking for unexplained patterns in the mean and variance; look for
outliers and/or points with large influence (leverage); and check that the
distribution of the residuals is reasonably close to what was assumed. For Poisson
or binomial GLMMs with N>1, you should compare the sum of the squared Pearson
residuals to the residual degrees of freedom (number of observations minus
number of fitted parameters) to check for overdispersion (unless your data are
binary, or the model already contains an observation-level random effect).

The first GLMM-specific check is to see whether non-zero variances (and non-
perfect correlations among random effects, i.e. |p|<1) could be estimated for all the
random effects in the model. If some of the variances are zero or some correlations



are =1, that indicates that the model is probably overfitted - not only was the
among-group variation not significantly different from zero, the best estimate was
zero. Although in principle the model coefficients estimated in this case will be
identical to those that would have been estimated if you had just left the zero-
estimate terms out of the model in the first place, it would probably be worth
refitting the model without them to make sure that you haven'’t hit any numerical
glitches. Although the most principled approach to model selection for hypothesis-
testing purposes is to simply pick the largest reasonable model and stick with it, you
can also to use information-theoretic approaches (AIC or BIC) to choose among
possible candidate random-effects models (see section 6.2.4 below), especially if
you are interested in prediction rather than hypothesis testing.

Also specific to GLMMs is examining the estimates of the conditional modes. In
theory these should be Normally distributed, but you should only worry about fairly
extreme deviations from Normality: it's unknown how badly a non-Normal
distribution of conditional modes will bias the results of a mixed model analysis, and
furthermore relaxing the assumption of Normality is difficult. You should look
particularly for extreme conditional modes, and treat these as you would typically
handle outliers, e.g. figure out whether there is something wrong with the data for
those groups, or try fitting the model with these groups excluded and see whether
the results change significantly.

For Bayesian MCMC analyses (e.g. via MCMCglmm), you should perform the usual
diagnostics to ensure convergence and mixing - check quantitative convergence

statistics such as the Gelman-Rubin R (if available) and effective sample size, and
examine graphical diagnostics (trace and density plots) for both the fixed and
random effects parameters. For analyses of small data sets, it is quite common for
the variance-covariance parameters to mix badly, sticking close to zero much of the
time and occasionally spiking near zero; the corresponding density plots typically
show a spike at zero with a long tail of larger values. There are no really simple fixes
for this problem, but some reasonable strategies include (1) running much longer
chains; (2) adding a weakly informative prior to push the variance away from zero;
(3) taking the results with a grain of salt.

As you try to troubleshoot the random effects component of your analysis, you
should keep an eye on the fixed-effect estimates and confidence intervals associated
with models with different random effects structures; you will often find that the
fixed-effect estimates don’t vary greatly among models with different random
effects. This can be comforting if your main interest is in the fixed effects, although
you should be careful since fitting multiple models also allows some scope for
cherry-picking the results you like ...

5.5 Examples



[ tried fitting all three examples with Ime4, glmmADMB, and MCMCglmm (using
Laplace approximations for the first two). I discussed above some of the issues that
arise, such as the impracticality of fitting a treatment x block interaction in the coral
symbiont example, or the need to fit year as a fixed rather than a random effect in
the gopher tortoise example. Other points that arose as a result of fitting and
diagnosing the models:

Coral symbionts: the main issue with this fit, as discussed above, is that
because of the small number of points and binary data, some of the estimates
can be extreme. Random-effects fitting of the blocks takes care of the
extremes we saw when we tried to fit block as a fixed effect, but when we
look at the Pearson residuals we see one very extreme value, an observation
that we would expect to have a very high probability of predation (it's in the
no-symbiont treatment in an otherwise frequently attacked block) that
nevertheless escaped predation. Re-fitting the model without this
observation makes all of the treatment effects much more extreme,
essentially suggesting near-complete separation of the control and treatment
groups once block effects are accounted for.

This near-complete separation also leads to some issues with the
MCMCglmm fit; it also estimates complete separation between the control
and non-control treatments, resulting in extremely large positive estimates
of predation probability for the control treatment and extremely large
negative estimates for the non-control treatments. The qualitative
conclusions are similar.

Other aspects of the model look OK - for example, (1) the distribution of
conditional modes is sensible, and (2) refitting with Gauss-Hermite
quadrature makes very little difference to any of the estimates.

Gopher tortoise shells: even after we reluctantly switched year to a fixed
effect, we still find that Poisson sampling variation can account for nearly all
the variation in the data - the maximum likelihood estimates of both the
variance of an observation-level random effect (if included) and the among-
site variance are very near zero. Thus, the conditional modes (which are
scaled by the among-site standard deviation) are also all near zero. The
Pearson residuals look reasonable, and are approximately equivalently
distributed across sites.

The MCMCglmm fit (which includes both among-site and among-observation
variation) shows the pathology described above in section 5.5. We can’t
really simplify the model, because MCMCglmm requires at least one explicit
random effect (so we can’t remove the site effect), and always includes an
observation-level random effect. Adding a weakly informative prior on the
variances, on the other hand, cleans up the model nicely. It doesn’t change



the point estimate of the prevalence effect much, but it does increase its
uncertainty slightly.

* Grouse ticks:
The Pearson residuals and estimated conditional modes all look reasonable.
We don’t bother to test for overdispersion since we already have
observation-level random effects in the model. The deterministic/frequentist
approaches (Ime4 and glmmADMB) give positive estimates for all of the
variance components, suggesting that the model is not overfitted, but
MCMCglmm disagrees; unless we add a prior, it estimates the location
variance as being near zero, suggesting that the brood vs. location variance
decomposition is unstable.

6. Inference
6.1 Approximations for confidence intervals

Point estimates of parameters are useless without confidence intervals, or
hypothesis tests, that inform us how much we really know about the system.
Confidence intervals and hypothesis tests for GLMMs require a series of
assumptions which are inherited from either GLMs or linear mixed models, and
which (as with the estimation methods described above) require a series of
tradeoffs between accuracy, computation time, and convenience or availability in
software.

Quadratic approximations: the easiest and least accurate versions of confidence
intervals and hypothesis tests assume that the log-likelihood surface has a quadratic
shape, i.e. that the goodness of fit of the model as measured by the log-likelihood
decreases as the square of the distance in parameter space from the best fit model.
This is exactly true for linear models, but only approximately true for GLMs and
GLMMs, and the approximation gets worse the smaller the effective size of the data
set.

Finite-size corrections: Even when using a procedure such as likelihood profiling
(see below) that doesn’t make assumptions about the shape of the likelihood
surface, we still need to some assumptions about the distribution of the maximum
log-likelihood under the null hypothesis in order to determine appropriate p-values
or critical values for the confidence intervals.

* Forresponse distributions such as the Normal or Gamma with a freely
varying scale parameter (in contrast to the Poisson and binomial, which
assume the variance is a fixed, known function of the mean), there is
uncertainty in the estimate of the scale parameter. In the case of a Normal
response (i.e. LMMs) this uncertainty causes the sampling distribution of
individual parameters to be t rather than Normal, and the sampling
difference in log-likelihood between nested models when the simpler one is



correct to be proportional to an F rather than to a %2 distribution; these are
the standard distributions used to construct confidence intervals and test
hypotheses in standard linear models as well. The degrees of freedom
parameter for the ¢, or the denominator degrees of freedom for the F, is a
measure of the effective size of the data set: the number of observations,
counted at an appropriate level of replication, minus the number of
parameters estimated. The additional complexity that comes with LMMs is
that these distributions are only approximate as soon as we depart from
simple classical (balanced, nested, no R-side effects) experimental designs,
and that the approximate degrees of freedom for the ¢ distribution, or the
denominator degrees of freedom for the F, can be difficult to compute. If your
experimental/observational design is nested and balanced, you can either
use a software package that computes the denominator degrees of freedom
for you or look the experimental design up in a standard textbook (e.g. Gotelli
and Ellison 2004 or Quinn and Keough 2002). If it is not, then you will need
to rely on a computational approximation such as the Kenward-Roger
correction (Kenward and Roger 1997, Hgjsgaard 2013), or use a resampling-
based approach (see below).

* For GLMMs (i.e. non-Normal response distributions), whether or not the
scale parameter is fixed (e.g. for binomial or Poisson distributions as well as
for the Gamma discussed in the previous point), there is an additional
component of approximation and uncertainty that arises because the null
sampling distribution of parameter estimates or log-likelihood differences is
only approximately Z- or x2-distributed. This component of uncertainty can
usually be neglected if the effective sample size is greater than 40-50, and is
almost always neglected in standard GLM analyses. In GLMMs, however, it is
(1) more likely that the effective sample size (e.g. the number of blocks in a
nested design), will be small and (2) likely that a reader will be coming from
the world of LMMs, where researchers spend a lot of time worrying about
effective sample size, rather than from the world of GLMs, where they
routinely ignore them. Bartlett corrections (McCullagh and Nelder 1989) are
one approach to finding adjustments to the null statistics that account for
finite size, but they are not widely implemented; for reliable finite-size
corrections you may need to rely on resampling (see below).

Boundary effects: another problematic feature of (G)LMM models is that the null-
hypothesis values of variance parameters lie on the boundary of their allowable
space, which causes technical difficulties with the statistical theory used to derive
null distributions (Pinheiro and Bates 2000). That is, the null hypothesis in tests of
random effects is that the variances are zero, but if they’re not zero they must be
positive rather than negative. In the simplest case of testing whether a single
random-effect variance is zero, the p-value derived from standard theory is twice as
large as it should be, leading to a conservative test (you're more likely to conclude
that you can’t reject the null hypothesis). In the simplest cases you can fix the
problem by simply dividing the p-value by 2, but for more complex cases the



simplest approaches (other than ignoring the problems) involve simulating the null
hypothesis.

6.2 Solutions
6.2.1 Wald tests

As discussed in chapter XXX, Wald tests, and the corresponding Wald confidence
intervals, assume that the log-likelihood surface is quadratic, and so are subject to
artifacts when assessing GLM parameters - for example when a binomial model has
extreme parameter estimates (|[3|>10) because some combination of treatments in
the data gives rise to observations that are all zeros or all ones (complete
separation). However, they are quick to compute and can be useful for a rapid
assessment of parameter uncertainty. If you can guess the appropriate residual
degrees of freedom, then you may try to use appropriate t statistics rather than Z
statistics for the p-values and confidence interval widths in order to account for
finite sample sizes, but be aware that this is a very crude approximation in the case
of GLMMs.

6.2.2 Likelihood ratio tests

Using the actual shape of the log-likelihood surface rather than assuming that it is
quadratic improves the accuracy of confidence intervals and p-values considerably.
When comparing nested models to get p-values, this is fairly straightforward; you
just fit the full model and the reduced model and compare the difference in the
difference in log-likelihood. According to likelihood theory, in order to reject the null
hypothesis that the simpler model is a sufficient description of the system (i.e., that
the parameters you added to the model aren’t making the fit of the data any better
than would be expected by chance even if their true values were zero), you need to
show that the difference in deviance (-2 times the log-likelihood) is larger than a
critical value based on a 2 distribution.

To use the likelihood ratio test to find confidence intervals for parameters, or
regions for combinations of parameters, we have to find the profile likelihood - that
is, the best likelihood that can be achieved for each value of a focal parameter by
optimizing over all of the other (non-focal) parameters, and then finding the values
of the focal parameter for which the profile likelihood is greater than the y2-based
cutoff described above. Computing profile likelihoods is straightforward in
principle, but computationally much more challenging - depending on the number
of parameters in the original model it can take tens or hundreds of times as long to
compute the profile confidence intervals as to find the maximum likelihood
estimates in the first place. Of the off-the-shelf GLMM approaches, only Ime4 has
built-in profiling. Furthermore, because profile likelihood calculations intentionally
try to evaluate the likelihood for extreme parameter values, they are much more
subject to computational warnings and errors than the original model fit.



Finally, although likelihood-based comparisons are more reliable than curvature-
based (Wald) comparisons, they still fail to account for the non-x? sampling
distribution of the likelihood; that is, they assume infinite residual or “denominator”
degrees of freedom. If your effective sample size is large enough (e.g., the number of
levels in the smallest grouping factor is >40), then you don’t need to worry about
this: otherwise, if you want accurate confidence intervals and p-values you may
need to use a stochastic resampling method such as parametric bootstrapping or
Markov chain Monte Carlo.

6.2.3 Bootstrapping

Bootstrapping usually refers to resampling data with replacement to get a new
pseudo-data set. Parametric bootstrapping (PB) refers to simulating from the fitted
model. If you want to test the significance of certain parameters in a model
(equivalent to doing the likelihood ratio test between full and reduced models, but
allowing for finite sample size), you fit the reduced model to the data; simulate
pseudo-data from it many (say 1000) times; fit the both the reduced and full model
to each set of pseudo-data, and calculate the difference in the log-likelihood in each
case. This is the null distribution of the log-likelihood difference between the
reduced and full model. The proportion of time that these null values are greater
than or equal to the observed difference in log-likelihood between the full and
reduced models (i.e., for the real data) is the p-value.

PB can also be used to compute the confidence intervals of the parameters for a
single model, by simulating data from the same (full) model 1000 times and
computing the quantiles of the distributions of each of the parameters.

PB is generally quite slow (it will take almost 1000 times as long as fitting the
original model), and it is not perfect - the second approach in particular makes the
assumption that the estimated parameters are close to the true parameters - but it
is essentially the best way we know to compute p-values and confidence intervals
for GLMMs.

Some specialized methods of parametric bootstrapping exist: for example, the
RLRsim package in R (Scheipl et al. 2008) does a form of null-hypothesis
simulation/parametric bootstrapping to compute p values for random effects terms
in LMMs, in a way that is orders of magnitude faster than standard PB.

You can also try nonparametric bootstrapping, but you must do it in a way that
respects the grouping structure of the data. For example, for a model with a single
grouping variable you might do multi-stage bootstrapping where you first sample
with replacement from the levels of the grouping variable, then sample with
replacement from the observations within each sampled group. For more complex



models (with crossed random effects, or R-side effects), appropriate sampling may
be difficult.

6.2.5 MCMC

There’s not nearly enough room in this chapter to give a proper explanation of
Markov chain Monte Carlo; for now, you can just think of it as a computational
recipe for sampling values from the posterior distribution of a model. MCMC is very
general, and includes GLMMs as one special case. If you use a Bayesian software tool
like WinBUGS or JAGS to set up your GLMM, then you get confidence intervals on the
parameters “for free” by computing quantiles, or other kinds of Bayesian confidence
interval, of the posterior sample. (While there are Bayesian definitions of p-values,
most Bayesians don’t use them to test null hypotheses.) The MCMC approach to
computing confidence intervals on parameters, or on predicted values from the
model, is very powerful - it automatically allows for finite size effects, and
incorporates the uncertainty in all the components of the model, which is otherwise
difficult. It’s so powerful, in fact, that some frequentist/deterministic tools such as
AD Model Builder allow the user to run a post hoc form of MCMC, assuming
completely flat priors, to compute confidence intervals. (This sort of pseudo-
Bayesian approach is often much more convenient than setting up a fully Bayesian
analysis, but setting flat priors in this way is problematic when the information in
the data is weak enough that moderately weak priors would have a strong effect on
the results.) One challenge of MCMC, beyond the technical difficulty of setting up the
model in the first place and the computational burden of the running the model
(generating 1000 useful samples from the posterior distribution can take almost as
long as the same number of parametric bootstrap replicates) is that for small, noisy
data sets the posterior distribution of the variance parameters is often composed of
a spike at zero along with a second component with a mode away from zero. In this
case, most standard MCMC algorithms have a tendency to get stuck sampling either
the spike or the non-zero component, and thus give poor results.

6.2.4 Information-theoretic approaches

In addition to the classical frequentist and Bayesian inferential frameworks, many
ecological researchers use information-theoretic approaches to select models and
generate parameter importance weights or weighted multimodel averages of
parameters and predictions (Burnham and Anderson 2002, chap ?) In principle, AIC
or other information criteria such as BIC should apply just as well to marginal log-
likelihoods as they do to standard log-likelihoods, but several of the theoretical
difficulties discussed above affect information criteria as well as classical frequentist
tests (Greven and Kneib 2010, Miiller et al. 2013).
* Parameters whose maximum likelihood values are on the boundary (e.g.
variances that are estimated as zero) give similar problems to those
encountered in frequentist hypothesis testing.



* Counting the number of parameters that should be associated with a random
effect is tricky. If you are using AIC to compare models that differ only in
their fixed effects, then it doesn’t matter how many parameters you assign to
a random effect, since only the difference in the number of parameters
matters. However, if you are trying to decide whether to incorporate a
random effect in the model, then you do have to address this issue. It turns
out that the answer depends on whether you are trying to make predictions
at the population level (i.e., predicting the average value of a response from
individuals across all random effects levels, or predicting the response from
an individual from a previously unmeasured random effects level) or at the
individual level (i.e., for individuals within a specific level). In the former case
(marginal prediction), you should count one parameter for each random
effects variance-covariance parameter. In the latter case (conditional
prediction), the correct answer is somewhere between 1 and n-1, where n is
the number of random effects levels: there are recipes for computing the
relevant value (Vaida and Blanchard 2005), although they are not as widely
implemented as they might be. In my experience, academic ecologists are
more generally interested in marginal prediction (they want to know what
the effects are at the whole population), which allows them to use the easy
one-parameter-per-variance rule; applied ecologists might be more likely to
want conditional predictions for specific groups. If you are using Bayesian
MCMC to fit your models there is an analogous metric called the deviance
information criterion (DIC: Spiegelhalter et al. 2002), which has a similar
issue in that the so-called “level of focus” must be defined explicitly.

* Ifyou are trying to use an information-theoretic score that includes a finite-
size correction term, such as AlCc, you need to decide on what to include as
the number of observations (e.g. for a nested design is it the number of
individual observations, or the number of groups?) as well as the effective
number of parameters; this is analogous to the “denominator degrees of
freedom” issue discussed above, and you can probably use the same
solutions (e.g. assign one degree of freedom for a scalar random effect if you
are interested in population-level estimation), but be aware that the AICc has
really not been tested in the context of GLMMs.

In general it is best practice to pick one method of modeling and inference in advance,
or after brief exploration of the feasibility of different approaches for a specific
problem, in order to avoid the ever-present temptation of cherry-picking the best
results.

6.3 Examples

For completeness, I tried to compare a variety of different inference methods for
each example (i.e. Wald, profile, parametric bootstrap, Bayesian credible interval). I



also give an example of how I might report the results in each case. You should in
general report something about the among-group variation, whether it is of primary
interest or not; if it is not, don’t report p-values. Whether you report among-group
variation as standard deviation or variance depends on the goals of your analysis. If
you want to partition variance across levels, then report among-group variances;
otherwise (and probably more generally), report among-group standard deviations,
as these are expressed in the same units as the corresponding fixed effects.

In some places below I quote results (estimates, confidence intervals, p-values) from
several different methods, for comparison purposes only. As recommended above,
you should choose one method and stick to it in any given analysis.

FIGURE: TO DO: add multi-panel figure comparing point estimates and CIs for fixed
effects and random effects variances for different approaches for each example ...

* (Coral symbionts: in the original paper (McKeon et al. 2012), we used a log link
function to test the null hypothesis that the effect of multiple defenders on
predation probability was independent and proportional (i.e., that if crab-
protected and shrimp-protected corals were attacked with probability p. and
ps respectively, that doubly protected corals would be attacked with
probability pc ps), by quantifying a two-way interaction between crab and
shrimp presence. We failed to reject that null hypothesis: “the best estimate
of the [multiple defender effect] on frequency of predation was only a 6%
reduction, but the confidence interval was wide (51% reduction to 90%
increase).” (The paper also reported effects on volume removed when
predation did occur, which was analyzed with a LMM and did show
significant effects.) We did not report the size of the block effect, but we
should have. For the analysis done here (logit link, one-way comparison of
crab/shrimp/both to control) [ would quote either the fixed-effect parameter
estimates (clarifying to the reader that these are differences between
treatments and the baseline control treatment, on the logit or log-odds scale),
or the changes in predation probability from one group to another. For
example: “Crab and shrimp treatments had similar effects (-3.8 log-odds
decrease in predation probability for crab, -4.4 for shrimp); the dual-
symbiont treatment had an even larger effect (-5.5 units), but although the
presence of any symbiont caused a significant drop in predation probability
relative to the control, none of the symbiont treatments differed significantly
from each other (likelihood ratio test p=0.27, parametric bootstrap test
(N=220) p=0.23). The among-block standard deviation in log-odds of
predation was 3.4, nearly as large as the symbiont effect.” Alternately, one
could quote the predicted predation probabilities for each group, which
might be more understandable for an ecological audience.

* Gopher tortoise: The main point of interest here is the effect of prevalence on
the (per-area) density of fresh shells. This makes reporting easy, since we
can focus on the estimated effect of prevalence. Because the model is fitted



on a log scale and the parameter estimate is small, it can be interpreted as a
proportional effect. For example: “A 1% increase in seroprevalence was
associated with an approximately 2.1% increase (log effect estimate=0.021)
in the density of fresh shells (CI 0.013-0.29 [Wald]; 0.012-0.29 [likelihood
profile]; 0.013-0.031 [parametric bootstrap=PB]). Both of the years
subsequent to 2004 had lower shell densities (log-difference =-0.64 (2005), -
0.43 (2006)), but the differences were not statistically significant (95% PB
CI: 2005={-1.34,0.05}, 2006={-1.04,0.18}). There was no detectable
overdispersion (Pearson squared residuals/residual df=0.85; estimated
variance of an among-observation random effect was zero). The best
estimate of among-site standard deviation was zero, indicating no
discernable variation among sites, with a 95% PB CI of {0,0.38}.”

* Grouse ticks: In this case the random effects variation is the primary focus,
and we report the among-group variance rather than standard deviation
because we are interested in variance partitioning. “Approximately equal
amounts of variability occurred at the among-individual, among-brood, and
among-location levels (glmer/Laplace: o, ,=0.29, o, .= 0.56, 0,.=0.28;

loc

glmmADMB/Laplace, 95% Wald CI: o.,=0.31 [0.06-0.42], o..,= 0.48 [0.18-
0.84], o..=0.13 [0.14-0.47]; MCMCglmm (default priors), 95% credible

loc

intervals: 02,=0.31[0.02-0.44], &2, = 0.88 [0.52-1.30], 02.=0.26 [0-0.39];

loc

MCMCglmm (stronger priors), 95% credible intervals: o.,=0.31 [0.2-0.43],
O ooq= 0.59 [0.36-0.93], 0.,.=0.57 [0.29-1.0]). The among-brood variance is

rood — loc
estimated to be approximately twice the among-individual and among-
location variances, but there is considerable uncertainty in the
brood/individual variance ratio (MCMCglmm: o, , /0,,=2.01 [95% CI 1.007-
3.37]), and the among-location variance is somewhat unstable. There are also
strong effects of year and altitude (glmer/Laplace, 95% Wald CI). In 1996,
tick density increased by a factor of 3.3 relative to 1995 (1.18 [0.72,1.6] log
units); in 1997 density decreased by 38% (-0.98 [-1.49,-0.46] log units)
relative to 1995. Tick density increased by approximately 2% per meter
above sea level (-0.024 [-0.03,-0.017] log-units), decreasing by half for every

30 (log(2)/0.024) m of altitude.”
7 Conclusions

[ hope you are convinced by now that GLMMs are a widely useful tool for the
statistical exploration of ecological data. Once you get your head around the multi-
faceted concept of random effects, you can see how handy it is to have a modeling
framework that naturally combines flexibility in the response distribution (GLMs)
with the ability to handle data with a variety of sampling units with uneven and
sometimes small sample sizes (mixed models).

GLMMs cannot do everything; especially for very small data sets, they may be
overkill (Murtaugh 2007). Ecologists will probably always be faced with data sets



which are too small to fit as sophisticated a model as they would like, as in the first
two examples in this chapter (coral symbionts and gopher tortoises), but one can
often find a sensible middle ground.

In this chapter [ have slightly neglected the other end of the spectrum, very large
data sets. Ecologists dealing with Big Data from remote sensing, telemetry, or
citizen science, may have tens or hundreds of thousands of observations rather than
the dozens to hundreds represented in the examples here (although telemetry data
often contains huge amounts of detail about a very small number of individuals; in
this case a fixed-effect or two-stage (Murtaugh 2007) model may work as well as a
GLMM). The good news is that some of the computational techniques described here
scale well to very large data sets. In addition, finite-size corrections, and the
associated computationally intensive recipes such as parametric bootstrapping,
become essentially irrelevant when all the grouping variables have more than 50
levels.

Also neglected here has been a variety of useful GLM extensions: offsets (for
managing data sampled over different temporal and spatial extents); non-standard
link functions (for fitting specific nonlinear models such as the Beverton-Holt or
Ricker functions); methods for handling multinomial or ordinal data; and zero-
inflation. The good news is that most of these tricks are at least in principle
extendable to GLMMs, but your choice of software may be more limited (see e.g.
Bolker et al 2013 and the associated web resources).

Unfortunately, GLMMs do come with considerable terminological, philosophical and
technical baggage, which I have tried to clarify as much as possible. As GLMM
software, and computational power, continues to improve, many of the technical
difficulties will fade, and GLMMs will continue their growth in popularity; a firm
grasp of the conceptual basis of GLMMs will be an increasingly important part of the
quantitative ecologist’s toolbox.

9 Neglected

*  What to do when you can’t or don’t want to do a mixed model: two-stage
models (approx of variance); analyze residuals and hope for non-

significant/small block effects; computing E(ﬂ — 8)*/n as an approximation

of variance when there are too few RE levels
* GEEs; marginal vs conditional slopes of effects
* Regularization/priors
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