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1. True/false questions: circle ONE answer. No Jjustification is needed.

arcsin(0.5 + h) — arcsin(0.5)

2
(a) (2] The formula }llinB — 7 is correct.

h —
= £75) o £ = arcsonn @ FALSE
|
“r(“)'ﬁ?
Flo.5) - = s = = 2

Vi-es? V2 3

(b) [2] If a function f(z) is positive, i.e., f(x) > 0 for all z, then its derivative f(z) is

positive. e
Not o w20 a/uly TRUE @
Comade + 4<)

4 >0 Va éw‘ Fl=-X<0 v

J =¥ F-V;/x) ) _e

(¢) [2] If f"(4) = 0, then the graph of f(z) has an mﬂectlon point when z -

: ‘-P/gc)
Not Mﬂﬁwdau,fy / li f TRUE @

(em _)A()L’f( ‘P/’k) (4( Lf)
L0 = gy u)3
Fl)=1a(x-4)" .
T3 -0 whin x=4 , bt F' dito mat charge sign o1 f
yr‘rif o A doo mat hare an P at %=1
FUTU
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2. Multiple choice questions: circle ONE answer. No justification is needed.

22 -1 if z<2
.

a) [2] Which of the following is/are true for the function f(z) = 7
25+1/z if z>2

(I) f is continuous at x = O\/(II) f is continuous at x = 2 ‘/(III) “'515 flz) = f(2.5) et

() Jmdx) = Jn (x21) =021 = — = £4)

K=30 x>0
) 1 = &__ =
(1) %j_:;’l‘P/’X) =f%gz;ﬂ ( x -l> 2-1=3 ﬁ&’j’ 1(‘/4()__ )[_‘{02)
Yoiic 1750 = ,am (25+3)=25+4=3
x>t

(E) /ETAH/ I 'ICJO covitinuous ot 4.5

(A) none (B) I only (C) II only (D) III only
(E) I and II (F) 1 and 11 (G) 11 and TII @all three
, " | +h L
T h = —
(b) [2) If f() = —=, then /(1) = h&é”[fmﬂh T3
A+l

- h->0 _h+4 “
h

{en -1 e -}
im 4 i ks d li el D) lim 2%
(A) .’1121% h (B) !lzn}%) h @nl—% h (D) h—0 h
;‘H-_l —1 k hq _ % h:"r_l?) —1
im 24— im =—/———=% G) lim &t H) none of these
(B) Jim == (F) fim =5 (G) fimg =5 (H)
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(c) [2] The resistance R of the blood flow through a vessel is given by R= Ki(y+ 1)2D4,
where [ is the length of the vessel, D is its diameter, v > 0 is the curvature, and K > 0
represents the viscosity of the blood. In this exercise, we treat R as a function of D, where
D > 0. Which of the following is/are true?

(I) Ris decreasing\/ (II) dR/dD is increasing ‘/(III) R has no critical numbers L~
2.5 Stz o o
(1) é‘%—g;uag_(%mp_, L0 = R 4o decransing
(I0) _Ofﬂ_: ;10KQ(D’+I)Q-D_b S0 = %g‘ Lo N B
Ad?
() A& -0 hao mo st?S and ,ﬁ% DVE Jo mo D>0

(A) none ° (B) 1 only (C) II only (D) III only
(E) I and II (F) I and 111 (G) I and III (H)jall three

(d) {2] The instantaneous rate( of cl)lange of f(z) =€} gt ¢ =0 is
] T
Flpo= ™, g2 () o

PO = 70 e (o) T =T
=} = |

(A)0 (B) 1 (C)=l w

(E) n/4 (F} —r (G) —=/4 (H) none of these

[2] Let g(z) = 22/ f(z), where f is a differentiable function such that f(1) = 4 and
"(1) = 1. Find ¢'(1).
g/(x%) = 2% NFlyy + X2 ; 'F”wf’/x)
\j X
/
& g0 a0 T L B - e f - 12
J

e

(A) 0 (B) 1/4 (C) 3/2 @)17/4

(E) 9/4 (F) 4 (G) 1/2 (H) 5/2
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3. [3] Find the critical numbers of g(z) = z*/°(2z — 1)2.

l dovnan © X ER

._/-—

g & #oc (ax-)"+ 5% g(,w-;)l-{_z)
if

N acan-) , 4x"% .5 TJ

(ol aaend o 4G

(Ax—1) agx-y)

5x'’s

i

Al

_ | - L
9'=0 whot (25— (285 4)=0 = X=5 00 X=3%
— 1
3!DNE whet 587 =0 = 4=0
. O 1L and £
i The cwtical HS are )7/ TR
4. [3] Find an equation of the tangent line to the curve y = 2 sin(1/x) at x = 1/m.

y(E)= (FF sen () = 0

¢'= ax o5 )+ A Go () (=)
=24 s (n) - coof3F)

V7)< 2d) son(F) - too( ) - |

ot The -ﬂ%f-{czilﬂ“-ff? q /#1\{ ‘&wy‘{ﬁ‘@.fr{_}l ,(4
y=0=1(x-;)

= y=x-_t
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5. (3] Consider the curve defined implicitly by In(z? + y?) — 23 — y* = 0. Compute 3’ when
x=1and y=1.

0;“—[)("—//[’”/’)(4"“{2) "Xa—f/q) :%(-/0)
| l) - 352 - yydyl = _
s (4 2yyl) =345 -4y 7yl =0 e

— 2y
'5—(“2?0 3-4y

2
012" 35 concave down.

Pl g0, 2n) e
fr-go ’“2(-0. 9_9(), (-0 2'3() 4 é:o'w /-—0,&)
= @010, 6447~ 0.2)
F'=0 when 004430, 5 =0
x=5
X -5

6. [3] Determine the interval(s) on which the graph of f(z) = e

5 T
74 | = 14

UMV

- -:D,w (ovitane dmm(’ﬁ){?)~




MATH 1LS3 * Test 2 * 3 March 2020 Name:
Student No.:

7. (a) [3] In the article Phenomenological Theory of World Population Growth by S. Kapitza,
Physics-Uspekhi (39)1, we find the formula
T 2
P(t) =443 (5 + arctan E)

where ¢ is the time in years, with ¢ = 0 representing 2007. Find the linear approximation of

P(t) at t = 0. Round off all numbers to two decimal places.

L(L)= Plo) + P/lo)(L£-0)
p{O)T ‘/.'-13[‘3:40&&?10) = L/‘f\g'ﬂ_l‘//‘\ (o’qé

/_ . L1

o LU =6.96 L0714

(b) [3] Estimate the value of v/15 using a quadratic approximation of f(z) = /7 at a suitable

base point. Round your answer to four decimal places.

e a=106
T ()= FU6) +F06) (% —16) + 13’%/4,_)(4(_./@)1

)= V1o =4 :
Y R ) { . / = o el
ﬁajxgsﬁ—-.-ﬁm) T B

L TR+ F 19 T g (k)

JTB & u+F(1570) - L(15-16)*
= 3. 8430
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10¢
0.16 + t2

morphine); where c(t) is the concentration (in milligrams per millilitre, mg/mL) of the drug
in the bloodstream, and ¢ > 0 is the time (in hours).

8. The function ¢(t) = has been used to model the absorption of a drug (such as

(a) [2] Find the critical number(s) of c(t).
¢ = 1000+ D - 10£(a) _ 10644 —4+2)
(O.ﬂa-f-‘ka)q [Olnp.’_.&a)i
c' bNE .. mo +
Whan £ 720, C(t) has one cuticad # 7 t=0.4

(b) [2] State the assumption(s) and conclusion(s) of the Extreme Value Theorem.
[ £ c(d) rocomtinuous o a closdy, %{»‘me.s’ ilbvvad
Ea,b]/ Ahenr c(E) hao av abootuts Miey  ang
arv alogtede arvusy. OV [a/é]

(c) [2] Find the absolute maximum and the absolute minimum values that the concentration
c(t) reaches during the first hour after the drug is administered, i.e., over the interval (0, 1].

4 |c4)
O\l 0
10/0 _
0.4 m,f?;‘jfbl,@_“"""’g
{2 K.
[ \oswrio “E6R

THE END



