Section 7.1 (geese) 6.1 (elephants) Euler's Method

1. (a) What is Euler's Method used for?

To find an exproximation of a solution of an initial value problem

2. In this exercise we get familiar with the notation used in Euler's method. We consider a pure-time differential equation f'(t) = G(t), with initial condition $f(t_0) = y_0$. The step size is denoted by Δt .

If
$$f'(t) = e^{-2t} + t^3$$
, what is $G(t)$?

If
$$f'(t) = \sec(2t - 4)$$
, what is $G(t)$?
$$G(t) = \sec(2t - 4)$$

If
$$f'(t) = \ln(t^2 + 1)$$
, and $f(2) = -2$, what are $G(t)$, t_0 and y_0 ?

G(t) = \lambda \left(\frac{t^2}{2} + \frac{1}{2}\right) \quad \tau = 2, \quad \frac{t}{2} = -2.

If
$$f'(t) = 3\sin(4t)$$
, and $f(\pi) = 1$, what are $G(t)$, t_0 and y_0 ?
$$G(t) = 3\sin(4t), \quad t_0 = \pi, \quad t_0 = 1$$

Given that f(2) = -2 and $\Delta t = 0.1$, find the values of t_0 , t_1 , t_2 , t_3 , and t_4 for which we compute the approximations.

Given that f(0) = 5 and $\Delta t = 0.25$, find the values of t_0 , t_1 , t_2 , t_3 , and t_4 for which we compute the approximations.

to =0 (that's given)

$$t_1 = t_0 + \Delta t = 0 + 0.25 = 0.25$$

 $t_2 = t_1 + \Delta t = 0.5$
 $t_3 = 0.75$
 $t_4 = 1$

3. (a) Given that $f'(t) = \ln(t^2 + 1)$ f(2) = -2 and $\Delta t = 0.1$, write down the formulas [look at algorithm 7.1.1 on page 467 (geese) 6.1 on page 413 (elephants)] for Euler's Method.

$$t_0 = 2$$
 $t_{n+1} = t_n + \Delta t$
 $y_0 = -2$ $y_{n+1} = y_n + G(t_n) \Delta t = y_n + l_n(t_n + 1) \Delta t$

(b) Compute t_1 and y_1 .

$$t_1 = t_0 + \Delta t = 2.1$$

 $y_1 = y_0 + \ln(t_0^2 + 1) \Delta t$
 $= -2 + \ln(5) \cdot 0.1 \approx -1.839$

Compute
$$t_2$$
 and y_2 .
 $t_2 = t_1 + \Delta t = 2.2$
 $y_2 = y_1 + lm(t_1^2 + 1) \Delta t$
 $= -1.839 + lm(2.1^2 + 1) \cdot 0.1 \approx -1.670$

t3=t2+1t=2,3 Compute t_3 and y_3 . 43=42+ h(t2+1) st =-1,670+lm(2,22+1),0,1 =-1,494

(c) What is the meaning of y_1 in (b)?

What is the meaning of y_2 in (b)?

What is the meaning of y_3 in (b)?

- 4. Consider the initial value problem $f'(t) = 3t^2$, f(0) = 4.
- (a) Compute the first three steps of Euler's Method with step size $\Delta t = 0.5$.

$$t_1 = t_0 + \Delta t = 0 + 0.5 = 0.5 \quad \forall y_1 = y_0 + 3t_0^2(0.5)$$

$$= 4 + 3(0)^2(0.5) = 4$$

$$t_2 = t_1 + \Delta t = 1 \quad \forall y_2 = y_1 + 3t_1^2(0.5) = 4 + 3(0.5)^2(0.5) = 4.375$$

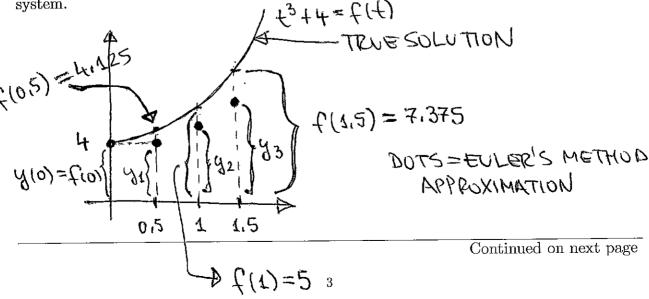
$$t_3 = t_2 + \Delta t = 1.5 \quad \forall y_3 = y_2 + 3t_2^2(0.5) = 4.375 + 3(1)^2(0.5) = 5.875$$

(b) Solve the given initial value problem algebraically.

$$\frac{(t+)=t_3+t_1}{t(0)=t_1-t_2+t_1}$$

$$t_1(t)=3t_5-t_2+t_1$$

(c) Plot the function in (b) and the values you obtained in (a) in the same coordinate system.

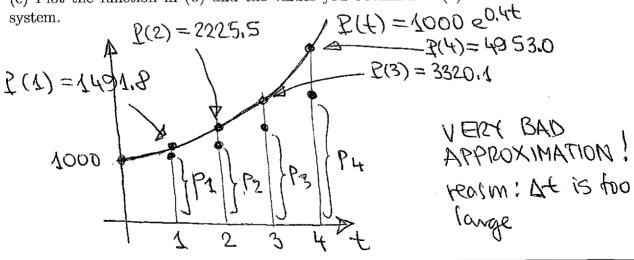


- 5. Consider the initial value problem P'(t) = (0.4P(t)), P(0) = 1000.
- (a) Compute the first four steps of Euler's Method with step size $\Delta t = 1$.

$$t_{n+1} = t_{n+\Delta}t$$
, $p_{n+1} = p_n + 0.4p_n \Delta t = p_{n+0.4p_n}$
 $t_1 = 1$ $p_1 = 1.4 p_0 = 1400$
 $t_2 = 2$ $p_2 = 1.4 p_1 = 1960$
 $t_3 = 3$ $p_3 = 1.4 p_2 = 2744$
 $t_4 = 4$ $p_4 = 1.4 p_3 = 3841.6$
(recall from before: $p_n = 1000.1.4^n$)

(b) Show that $P(t) = 1000e^{0.4t}$ is the solution of the given initial value problem.

(c) Plot the function in (b) and the values you obtained in (a) in the same coordinate



THE END