MATHEMATICS 1LS3 TEST 2

Day Class

E. Clements, M. Lovrić, E. Miller

Duration of Examination: 60 minutes McMaster University, 28 October 2019

First name (PLEASE PRINT):	SOLUTIONS
Family name (PLEASE PRINT):	
Student No.:	

THIS TEST HAS 8 PAGES AND 6 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

Total number of points is 40. Marks are indicated next to the problem number. Calculator allowed: McMaster standard calculator Casio fx991MS or Casio fx991MS PLUS or lower Casio which has two lines of display and no graphing capabilities.

EXCEPT ON QUESTIONS 1 AND 2, you must show work to receive full credit.

Problem	Points	Mark
1	10	
2	6	
3	6	
4	7	
5	7	
6	4	
TOTAL	40	

1. Multiple choice questions: circle ONE answer. No justification is needed.

- (a) 2 If $f(x) = \ln(ax) \ln(bx)$ then f'(1) is equal to
- (A) $\ln a \ln b$
- (B) $\ln(a+b)$
- $(D) \frac{\ln(a+b)}{a+b}$

(E)
$$\frac{\ln(ab)}{a+b}$$

(F)
$$\frac{\ln a \ln b}{a+b}$$
 (G) $\frac{1}{ab}$ (H) $\frac{1}{a} + \frac{1}{b}$

(G)
$$\frac{1}{ab}$$

$$(\mathrm{H}) \; \frac{1}{a} + \frac{1}{b}$$

$$f'(1) = lub + lua = lu(ab)$$

(b) [2] The graph of the second derivative f''(x) of a function f(x) is given. Which statement(s) is/are true?

- (A) none
- (B) I only
- (C) II only
- (D) III only

F

 \oplus

- (E) I and II
- (F) I and III
- (G) II and III
- (H) all three

(c)[2] It is known that the function f(x) is defined for all real numbers, and its derivative is given by $f'(x) = \frac{(x-3)e^{-2x}}{(4-x)^{1/3}}$. Find all its critical points.

- (A) no critical points (B) 0 only
- (C) 3 only
- (D) 4 only

- (E) 0 and 3
- (F) 0 and 4
- (G) 3 and 4
- (H) 0, 3 and 4

(d) [2] It is known that f(3) = 4 and f'(3) = 0 and f''(3) = -2. Which statements is/are true for all functions f(x) which satisfy these three conditions?

- (I) f(3) = 4 is a local (relative) maximum of f(x) Second derivative rest
- (II) the tangent line to the graph of f(x) at x = 3 is y = 0
- (III) the linear approximation of f(x) at x = 3 is $L_3(x) = 4$.
- (A) none
- (B) I only
- (C) II only
- (D) III only

- (E) I and II
- (F) I and III
- (G) II and III
- (H) all three

(e)[2] If $f(x) = 2^{\ln x} + (\ln x)^2 + \ln 2$, then f'(1) is equal to

- (A) $1 + \ln 2$
- (B) $2^{\ln 2}$
- (C) $2^{\ln 2} + (\ln 2)^2$
- (D) 0

(E) 1

- (F) ln 2
- (G) $4 \ln 2$
- (H) $2 \ln 2$

 $f'(x) = 2^{\ln x} \cdot \ln 2 \cdot \frac{1}{x} + 2 \cdot \ln x \cdot \frac{1}{x} + 0$ $f'(1) = 2^{\circ} \cdot \ln 2 \cdot 1 + 2 \cdot 0.1 = \ln 2$

2. True/false questions: circle ONE answer. No justification is needed.

(a)[2] From $f''(x) = e^{-x}(3-x)$ we conclude that the graph of f(x) is concave down on the interval (0,3).

$$f''(x) = \underbrace{e^{-x}(3-x)}_{\bigoplus} >0$$

$$\bigoplus_{\widehat{w}} (0,3)$$

(b) [2] The function f(x) has a horizontal tangent at x = 1. Therefore, it must have a local maximum or a local minimum at x = 1.

TRUE

(c)[2] If f(x) = g(x)h(x), then by the product rule, f''(x) = g''(x)h(x) + g(x)h''(x).

$$f'=g'h+gh'$$

Questions 3-6: You must show correct work to receive full credit.

3. (a)[3] Let $h(x) = \sin(2f(x))$. The graph of f(x) is a line shown below. Find h'(6).

$$h'(x) = \cos(2f(x)) \cdot 2f'(x)$$
 $h'(6) = \cos(2 \cdot f(6)) \cdot 2f'(6)$
 -2

50 $h'(6) = -4$

(b)[3] Find y'(0), if $\arcsin(xy) = x^3 + y^2 - 1$, and y(0) = 1.

$$\frac{1}{\sqrt{1-(xy)^2}} \cdot (y + xy') = 3x^2 + 2yy'$$

$$y(0) = 1$$

 $y(0) = 1$
 $y(0) = 1$
 $y(0) = 1$

$$\frac{1}{\sqrt{1-0}} \cdot (1+0) = 0 + 2y'$$

$$2y' = 1, \quad y' = \frac{1}{2}$$

$$2y'=1$$
, $y'=\frac{1}{2}$

Name:	
Student No.:	

4. (a)[3] In the article Migration behaviour of grizzly bears in Northern British Columbia: contribution to a modelling approach we find the formula

$$P(t) = \arctan(1.7t) + 4.7$$

where t represents time. Next, we read "initially, $P(t) \approx 1.7t + 4.7$, which gives a linear relationship." Explain why this statement is correct. [Hint: Think in terms of the linear approximation at t = 0.]

$$L(t) = P(0) + P'(0) \cdot (t-0)$$

$$P(0) = \arctan(0) + 4.7 = 4.7$$

$$P'(t) = \frac{1}{1 + (1.7t)^2} \cdot 1.7 \longrightarrow P'(0) = \frac{1}{1+0} \cdot 1.7 = 1.7$$
thus, the lin. approx. is
$$L(t) = 4.7 + 1.7(t-0) = 4.7 + 1.7t$$

(b)[4] A simple model of diffusion states that the concentration of a substance diffusing in air is given by

$$c(x) = e^{-x^2 + 1}$$

where x is the distance from the source. This formula is sometimes simplified using a quadratic approximation near x = 0. Find that approximation.

$$T_{2}(x) = c(0) + c'(0)(x-0) + \frac{c''(0)}{2}(x-0)^{2}$$

$$c(0) = e^{\frac{1}{2}}$$

$$c'(x) = -2xe^{-x^{2}+1} \longrightarrow c'(0) = 0$$

$$c''(x) = -2e^{-x^{2}+1} - 2xe^{-x^{2}+1}(-2x)$$

$$-2e^{-x^{2}+1} - 2e^{-x^{2}+1}(-2x)$$

Name:	
Student No.:	

5. The function $c(t) = t^2 e^{-6t}$ has been used to model the absorption of a drug (such as morphine); c(t) is the concentration (in milligrams per millilitre, mg/mL) of the drug in the bloodstream, and $t \ge 0$ is time (in hours).

(a)[3] The function c(t) has two critical points such that $t \geq 0$. Find them.

$$c'(t) = 2te^{-6t} + t^2e^{-6t}(-6)$$

= $2te^{-6t}(1-3t)$
 $c'(t) = 0 \rightarrow t = 0 \text{ or } 1-3t=0, t=1|3$
 $c'(t) \text{ disc} \rightarrow \text{ no such } t$

(b)[2] Give a statement of the Extreme Value Theorem. Make sure to clearly identify assumption(s) and conclusion(s).

(c)[2] Find the absolute maximum and the absolute minimum values that the concentration c(t) reaches during the first hour after the drug is administered, i.e., over the interval [0,1].

$$\frac{t}{0} = t^{2} e^{6t}$$

$$\frac{0}{1} = e^{-6} \approx 0.002$$

$$\frac{1}{3} = \frac{1}{9} e^{-2} \approx 0.015$$

abs. min. = 0, at
$$t = 0$$

abs. max. = $\frac{1}{9}e^{2}$, at $t = 1/3$

Name:______Student No.: ______

6. Consider the function

$$f(x) = \begin{cases} \frac{x-1}{x^4 - x^2} & \text{if } x < 1 \\ \frac{1}{4} & \text{if } x = 1 \\ \frac{x}{2} & \text{if } x > 1 \end{cases}$$

(a)[2] Find $\lim_{x\to 1} f(x)$.

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x}{2} = \frac{1}{2}$$

$$\lim_{x\to 1^{-}} f(x) = \lim_{x\to 1^{-}} \frac{x-1}{x^{4}-x^{2}} = \lim_{x\to 1^{-}} \frac{x-1}{x^{2}(x-1)(x+1)}$$

$$= \frac{1}{1^{2}\cdot 2} = \frac{1}{2}$$

thus
$$\lim_{x\to 1} f(x) = \frac{1}{2}$$

(b)[2] Is f(x) continuous at x = 1? Explain why or why not.

NO because
$$\lim_{x\to 1} f(x) = \frac{1}{2}, \quad \text{but } f(1) = \frac{1}{4}$$