Measurable Functions

Prof. S. Alama

McMaster University

Math 721

Measurable functions

Let (X, \mathcal{M}, μ) be a measure space, $E \in \mathcal{M}$, and $f : E \subset X \to \mathbb{R}$ a real-valued function.

Definition

We say f is measurable if $\forall a \in \mathbb{R}$,

$$\{x \in E \mid f(x) < a\} = f^{-1}((-\infty, a)) \in \mathcal{M}.$$

Measurable functions

Let (X, \mathcal{M}, μ) be a measure space, $E \in \mathcal{M}$, and $f : E \subset X \to \mathbb{R}$ a real-valued function.

Definition

We say f is measurable if $\forall a \in \mathbb{R}$,

$$\{x \in E \mid f(x) < a\} = f^{-1}((-\infty, a)) \in \mathcal{M}.$$

We can also define measurability for extended real-valued functions, $f: \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$, provided we assume the sets $\{f(x) = \pm \infty\}$ are measurable.

Lemma

Each of the following is equivalent:

- \bigcirc f is measurable if and only if
 - ▶ $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - ▶ $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.

- \bigcirc f is measurable if and only if
 - ▶ $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - ▶ $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.
- **②** If f is continuous then f is Lebesgue measurable (and Borel measurable). If Φ is continuous and f is measurable, then $\Phi \circ f$ is measurable.

- - ▶ $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - ▶ $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.
- **②** If f is continuous then f is Lebesgue measurable (and Borel measurable). If Φ is continuous and f is measurable, then $\Phi \circ f$ is measurable.
- **4** Assume f_n is a sequence of measurable functions. Then each is measurable:

$$\sup_{n} f_{n}(x), \quad \inf_{n} f_{n}(x), \quad \limsup_{n \to \infty} f_{n}(x), \quad \liminf_{n \to \infty} f_{n}(x)$$

- - ▶ $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - ▶ $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.
- **②** If f is continuous then f is Lebesgue measurable (and Borel measurable). If Φ is continuous and f is measurable, then $\Phi \circ f$ is measurable.
- **4** Assume f_n is a sequence of measurable functions. Then each is measurable:

$$\sup_n f_n(x), \quad \inf_n f_n(x), \quad \limsup_{n \to \infty} f_n(x), \quad \liminf_{n \to \infty} f_n(x)$$

1 If f_n is measurable $\forall n$, and $f(x) = \lim_{n \to \infty} f(x)$, then f is measurable.

- - ▶ $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - ▶ $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.
- **②** If f is continuous then f is Lebesgue measurable (and Borel measurable). If Φ is continuous and f is measurable, then $\Phi \circ f$ is measurable.
- **4** Assume f_n is a sequence of measurable functions. Then each is measurable:

$$\sup_n f_n(x), \quad \inf_n f_n(x), \quad \limsup_{n \to \infty} f_n(x), \quad \liminf_{n \to \infty} f_n(x)$$

- If f_n is measurable $\forall n$, and $f(x) = \lim_{n \to \infty} f(x)$, then f is measurable.
- \bullet If f, g are measurable, then so are f + g and fg.

- - ▶ $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.
- **9** If f is continuous then f is Lebesgue measurable (and Borel measurable). If Φ is continuous and f is measurable, then $\Phi \circ f$ is measurable.
- **3** Assume f_n is a sequence of measurable functions. Then each is measurable:

$$\sup_n f_n(x), \quad \inf_n f_n(x), \quad \limsup_{n \to \infty} f_n(x), \quad \liminf_{n \to \infty} f_n(x)$$

- **1** If f_n is measurable $\forall n$, and $f(x) = \lim_{n \to \infty} f(x)$, then f is measurable.
- If f, g are measurable, then so are f+g and fg. We say two functions f(x)=g(x) almost everywhere (or a.e.) if $m(\{x\mid f(x)\neq g(x)\})=0$.
- \bullet If f is measurable and f = g a.e., then g is measurable.

Simple and step functions

Here are some kinds of functions which are easy to deal with.

▶ Let $E \in \mathcal{M}$. Its characteristic function

$$\chi_E(x) = \begin{cases} 1, & \text{if } x \in E, \\ 0, & \text{if } x \notin E. \end{cases}$$

Simple and step functions

Here are some kinds of functions which are easy to deal with.

▶ Let $E \in \mathcal{M}$. Its characteristic function

$$\chi_E(x) = \begin{cases} 1, & \text{if } x \in E, \\ 0, & \text{if } x \notin E. \end{cases}$$

► A simple function is a finite linear combination of characteristic functions,

$$\varphi(x) = \sum_{k=1}^{N} a_k \chi_{E_k}(x),$$

for $E_k \in \mathcal{M}$, $a_k \in \mathbb{R}$, of finite measure $\mu(E_k) < \infty$, k = 1, ..., N.

Simple and step functions

Here are some kinds of functions which are easy to deal with.

▶ Let $E \in \mathcal{M}$. Its characteristic function

$$\chi_E(x) = \begin{cases} 1, & \text{if } x \in E, \\ 0, & \text{if } x \notin E. \end{cases}$$

► A simple function is a finite linear combination of characteristic functions,

$$\varphi(x) = \sum_{k=1}^{N} a_k \chi_{E_k}(x),$$

for $E_k \in \mathcal{M}$, $a_k \in \mathbb{R}$, of finite measure $\mu(E_k) < \infty$, k = 1, ..., N.

▶ a step function is a simple function whose sets $E_k = R_k$ are rectangles $\forall k = 1, ..., N$.

Approximation by simple functions

We do this for $f: \mathbb{R}^k \to \mathbb{R}$, but the same construction works for any σ -finite measure space.

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a nonnegative measurable function. Then \exists an increasing sequence φ_n of simple functions, $0 \le \varphi_k(x) \le \varphi_{k+1}(x)$ with $f(x) = \lim_{k \to \infty} \varphi_k(x)$ pointwise on \mathbb{R}^d .

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be any measurable function. Then \exists a sequence φ_n of simple functions with $|\varphi_k(x)| \le |\varphi_{k+1}(x)|$ with $f(x) = \lim_{k \to \infty} \varphi_k(x)$ pointwise on \mathbb{R}^d .

Approximation by step functions

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be any measurable function. Then \exists a sequence ψ_n of step functions with $f(x) = \lim_{k \to \infty} \psi_k(x)$ almost everywhere on \mathbb{R}^d .

Approximation by step functions

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be any measurable function. Then \exists a sequence ψ_n of step functions with $f(x) = \lim_{k \to \infty} \psi_k(x)$ almost everywhere on \mathbb{R}^d .

Exercise: any measurable $f: \mathbb{R}^d \to \mathbb{R}$ is the pointwise a.e. limit of a sequence of continuous functions with compact support.

Littlewood's Principles

• "Every measurable set is nearly a finite union of rectangles."

Littlewood's Principles

- "Every measurable set is nearly a finite union of rectangles."
- "A measurable function is nearly continuous."

Theorem (Lusin's Theorem)

Let $E \in \mathcal{L}$ and $m(E) < \infty$. Then $\forall \epsilon > 0$, \exists closed $F_{\epsilon} \subset E$ with $m(E \setminus F_{\epsilon}) < \epsilon$ such that $f|_{F_{\epsilon}}$ is continuous.

Littlewood's Principles

- "Every measurable set is nearly a finite union of rectangles."
- "A measurable function is nearly continuous."

Theorem (Lusin's Theorem)

Let $E \in \mathcal{L}$ and $m(E) < \infty$. Then $\forall \epsilon > 0$, \exists closed $F_{\epsilon} \subset E$ with $m(E \setminus F_{\epsilon}) < \epsilon$ such that $f|_{F_{\epsilon}}$ is continuous.

 "Any pointwise convergent sequence of measurable functions is nearly uniformly convergent.]

Theorem (Egorov's Theorem)

Assume $E \in \mathcal{L}$ with $m(E) < \infty$, and f_k is a sequence of measurable functions with $f_k(x) \to f(x)$ a.e. For all $\epsilon > 0$, \exists closed set $A_\epsilon \subset E$ for which $m(E \setminus A_\epsilon) < \epsilon$ and $f_k \to f$ uniformly on A_ϵ .