Measurable Functions

Prof. S. Alama

McMaster University

Math 721

Measurable functions

Let (X, \mathcal{M}, μ) be a measure space, $E \in \mathcal{M}$, and $f : E \subset X \to \mathbb{R}$ a real-valued function.

Definition

We say **f** is **measurable** if $\forall a \in \mathbb{R}$,

$$\{x \in E \mid f(x) < a\} = f^{-1} ((-\infty, a)) \in \mathcal{M}.$$

We can allow P(x) = a or values - "extended real valued"
functions.
$$M = 2^{n}$$
, "Cebisyna measurable functions"
 $M = B$, "Borra meas. Americans"
Borra

Measurable functions

Let (X, \mathcal{M}, μ) be a measure space, $E \in \mathcal{M}$, and $f : E \subset X \to \mathbb{R}$ a real-valued function.

Definition

We say **f** is **measurable** if $\forall \mathbf{a} \in \mathbb{R}$,

$$\{x \in E \mid f(x) < a\} = f^{-1} ((-\infty, a)) \in \mathcal{M}.$$

We can also define measurability for extended real-valued functions, $f: \mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$, provided we assume the sets $\{f(x) = \pm \infty\}$ are measurable.

Lemma

Each of the following is equivalent:

•
$$\{x \in E \mid f(x) < a\} \in \mathcal{M}, \forall a \in \mathbb{R}$$

$$2 \ \{x \in E \mid f(x) \geq a\} \in \mathcal{M}, \, \forall a \in \mathbb{R}$$

- *f* is measurable if and only if
 - $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - ► $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.

Recall ang QCR is a countrible disjoint union of
open intervals,
$$U = \bigvee_{j=1}^{\infty} (a_j, b_j)$$

and $f^{-1}(\bigcup_{j=1}^{\infty} (a_j, b_j)) = \bigvee_{j=1}^{\infty} f^{-1}((a_j, b_j))$, and
all is a Gradyabra.

IF F is clishly since $f^{-1}(F) = (f^{-1}(Fo))^{c}$ is again
this filling from the Gradgebra property of U .

- *f* is measurable if and only if
 - $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.
- If *f* is continuous then *f* is Lebesgue measurable (and Borel measurable). If Φ is continuous and *f* is measurable, then $\Phi \circ f$ is measurable.

-
$$f$$
 antimute $\implies f^{-1}(\mathcal{V})$ is open.
 \mathcal{V} upon $: f^{-1}(\mathcal{V}) \in \mathcal{I}$ or \mathcal{B}
 \mathcal{V} upon \mathcal{H} \mathcal{D}
 \mathcal{J}_{0} antimum $\implies \mathcal{L}_{0}$ by \mathcal{H} \mathcal{D}
 \mathcal{J}_{0} antimum $\implies \mathcal{L}_{0}$ by \mathcal{H} \mathcal{D} \mathcal{D}
 \mathcal{L}_{0} by \mathcal{H} \mathcal{D}
 \mathcal{L}_{0} by \mathcal{H} \mathcal{D}
 \mathcal{L}_{0} by \mathcal{H} \mathcal{L}_{0} \mathcal{L}_{0}
 \mathcal{L}_{0} \mathcal{L}_{0} \mathcal{L}_{0}
 \mathcal{L}_{0} \mathcal{L}_{0} \mathcal{L}_{0}
 \mathcal{L}_{0} \mathcal{L}_{0}
 \mathcal{L}_{0} \mathcal{L}_{0}
 \mathcal{L}_{0} \mathcal{L}_{0}
 \mathcal{L}_{0} \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}
 \mathcal{L}_{0}

- *f* is measurable if and only if
 - $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.
- If *f* is continuous then *f* is Lebesgue measurable (and Borel measurable). If Φ is continuous and *f* is measurable, then $\Phi \circ f$ is measurable.
- Solution Sequence of measurable functions. Then each is measurable:

- *f* is measurable if and only if
 - $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.
- If *f* is continuous then *f* is Lebesgue measurable (and Borel measurable). If Φ is continuous and *f* is measurable, then $\Phi \circ f$ is measurable.
- Solution Sequence of measurable functions. Then each is measurable:

$$\sup_{n} f_n(x), \quad \inf_{n} f_n(x), \quad \limsup_{n \to \infty} f_n(x), \quad \liminf_{n \to \infty} f_n(x)$$

• If f_n is measurable $\forall n$, and $f(x) = \lim_{n \to \infty} f(x)$, then f is measurable.

- *f* is measurable if and only if
 - $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.
- If *f* is continuous then *f* is Lebesgue measurable (and Borel measurable). If Φ is continuous and *f* is measurable, then $\Phi \circ f$ is measurable.
- Solution Sequence of measurable functions. Then each is measurable:

$$\sup_{n} f_n(x), \quad \inf_{n} f_n(x), \quad \limsup_{n \to \infty} f_n(x), \quad \liminf_{n \to \infty} f_n(x)$$

- If f_n is measurable $\forall n$, and $f(x) = \lim_{n \to \infty} f(x)$, then f is measurable.
- If f, g are measurable, then so are f + g and fg.

To show
$$(f_{+}g)$$
 is measurable, we claim
 $\{x \mid f(x) \neq g(x) > a\} = \bigcup_{r \in Q} \{x \mid f(x) > a - r\} A[x \mid g(x) > r]$

First, if
$$f(x) > n-r$$
, $g(x) > r$, $f(x) + g(x) > n$, $Jo \supset$.
Dh the other hand, if $f(x) + g(x) > n$, take $E > 0$ with
 $f(x) + g(x) > n + E$. Let $r \in \mathbb{R}$ with
 $r = g(x) < r + E$.
Then, $f(x) > n + E - g(x) > n + E - (r + E) = n - r$
Since \mathbb{R} is $r_{1} + r_{2} - g(x) > n + E - (r + E) = n - r$
Since \mathbb{R} is $r_{1} + n + f_{2} - g(x) > n + E - (r + E) = n - r$
For f_{3} , $R_{r3}t$ is $r_{1} + n + f_{2} - g(x) > n + E - (r + E) = n - r$
is menomenal f is $r_{1} + n + f_{2} - f_{2}$
is menomenal f is $r_{1} + n + f_{3} - f_{2}$
Then $f_{3} = (f + g)^{2} - (f - g)^{2}$ is measured f_{3} .

- *f* is measurable if and only if
 - $f^{-1}(\mathcal{O}) \in \mathcal{M}$, for all open $\mathcal{O} \subset \mathbb{R}$.
 - $f^{-1}(F) \in \mathcal{M}$, for all closed $F \subset \mathbb{R}$.
- If *f* is continuous then *f* is Lebesgue measurable (and Borel measurable). If Φ is continuous and *f* is measurable, then $\Phi \circ f$ is measurable.
- Solution Sequence of measurable functions. Then each is measurable:

$$\sup_{n} f_n(x), \quad \inf_{n} f_n(x), \quad \limsup_{n \to \infty} f_n(x), \quad \liminf_{n \to \infty} f_n(x)$$

- If f_n is measurable $\forall n$, and $f(x) = \lim_{n \to \infty} f(x)$, then f is measurable.
- If f, g are measurable, then so are f + g and fg.
 We say two functions f(x) = g(x) almost everywhere (or a.e.) if
 $m(\{x \mid f(x) \neq g(x)\}) = 0.$

• If f is measurable and f = g a.e., then g is measurable.

Recall - p dit it manne zur is manderalle

Simple and step functions

Here are some kinds of functions which are easy to deal with.

• Let $E \in \mathcal{M}$. Its characteristic function

Simple and step functions

Here are some kinds of functions which are easy to deal with.

• Let $E \in \mathcal{M}$. Its characteristic function

$$\chi_E(x) = \begin{cases} 1, & ext{if } x \in E, \\ 0, & ext{if } x \notin E. \end{cases}$$

A simple function is a finite linear combination of characteristic functions, 2 χ_[0,2] + χ_[1,2] = for $E_k \in \mathcal{M}$, $a_k \in \mathbb{R}$, of finite measure $\mu(E_k) < \infty$, $k = 1, \ldots, N$. R [2, 3] Remark: The same simple Annohim can have different reposedontabilies with different sets Fix, value an. But there is a representation st any U(x) with disjonit Fi, and distinct an values (no Roude a (re Barth)

Simple and step functions

Here are some kinds of functions which are easy to deal with.

• Let $E \in \mathcal{M}$. Its characteristic function

$$\chi_E(x) = \begin{cases} 1, & ext{if } x \in E, \\ 0, & ext{if } x \notin E. \end{cases}$$

A simple function is a finite linear combination of characteristic functions,

Approximation by simple functions

We do this for $f : \mathbb{R}^k \to \mathbb{R}$, but the same construction works for any σ -finite measure space.

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be a nonnegative measurable function. Then \exists an increasing sequence φ_n of simple functions, $0 \le \varphi_k(x) \le \varphi_{k+1}(x)$ with $f(x) = \lim_{k \to \infty} \varphi_k(x)$ pointwise on \mathbb{R}^d .

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be any measurable function. Then \exists a sequence φ_n of simple functions with $|\varphi_k(x)| \le |\varphi_{k+1}(x)|$ with $f(x) = \lim_{k \to \infty} \varphi_k(x)$ pointwise on \mathbb{R}^d .

Approximation by step functions

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be any measurable function. Then \exists a sequence ψ_n of step functions with $f(\mathbf{x}) = \lim_{k \to \infty} \psi_k(\mathbf{x})$ almost everywhere on \mathbb{R}^d .

Approximation by step functions

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be any measurable function. Then \exists a sequence ψ_n of step functions with $f(x) = \lim_{k \to \infty} \psi_k(x)$ almost everywhere on \mathbb{R}^d .

Exercise: any measurable $f : \mathbb{R}^d \to \mathbb{R}$ is the pointwise a.e. limit of a sequence of continuous functions with compact support.

Littlewood's Principles

• "Every measurable set is nearly a finite union of rectangles."

Littlewood's Principles

• "Every measurable set is nearly a finite union of rectangles."

A measurable function is nearly continuous."

Theorem (Lusin's Theorem)

Let $E \in \mathcal{L}$ and $m(E) < \infty$. Then $\forall \epsilon > 0$, \exists closed $F_{\epsilon} \subset E$ with $m(E \setminus F_{\epsilon}) < \epsilon$ such that $f|_{F_{\epsilon}}$ is continuous.

Littlewood's Principles

- "Every measurable set is nearly a finite union of rectangles."
- A measurable function is nearly continuous."

Theorem (Lusin's Theorem)

Let $E \in \mathcal{L}$ and $m(E) < \infty$. Then $\forall \epsilon > 0$, \exists closed $F_{\epsilon} \subset E$ with $m(E \setminus F_{\epsilon}) < \epsilon$ such that $f|_{F_{\epsilon}}$ is continuous.

Any pointwise convergent sequence of measurable functions is nearly uniformly convergent.]]

Theorem (Egorov's Theorem)

Assume $E \in \mathcal{L}$ with $m(E) < \infty$, and f_k is a sequence of measurable functions with $f_k(x) \to f(x)$ a.e. For all $\epsilon > 0$, \exists closed set $A_{\epsilon} \subset E$ for which $m(E \setminus A_{\epsilon}) < \epsilon$ and $f_k \to f$ uniformly on A_{ϵ} .