Signed Measures

Prof. S. Alama

McMaster University

Math 721

Signed measures, or charges

If (X, \mathcal{M}) is a measurable set, and μ_1, μ_2 are two measures, then it is easy to show that $\alpha \mu_1, \forall \alpha > 0$, and $\mu_1 + \mu_2$ are measures on the same (X, \mathcal{M}) .

How about $v = \mu_1 - \mu_2$?

Signed measures, or charges

If (X, \mathcal{M}) is a measurable set, and μ_1, μ_2 are two measures, then it is easy to show that $\alpha \mu_1, \forall \alpha > 0$, and $\mu_1 + \mu_2$ are measures on the same (X, \mathcal{M}) .

How about $v = \mu_1 - \mu_2$?

Definition

A signed measure (or "charge") v on (X, \mathcal{M}) is a function $v: \mathcal{M} \to \mathbb{R} \cup \{-\infty \text{ or } +\infty\}$ such that

- $\mathbf{0}$ $\nu(\emptyset) = \mathbf{0}$;
- ② For any countable disjoint union $E = \bigcup_{n \in \mathbb{N}} E_n$, $E_n \in \mathcal{M}$, $\forall n \in \mathbb{N}$, we have

$$v(E) = \sum_{n=1}^{\infty} v(E_n)$$
, converging absolutely if $v(E)$ is finite.

Ex: If $f(x) \in L'(X, \mu)$, and $F \in \mathcal{M}$, $v(F) = \int_{F} f(x) d\mu$

When $f \ge 0$, we used the test that V(E) defined that way is a meanting on (X, M) when f charges sign, write $f = f^* - f^-$, $f^- \ge 0$,

(b18) warding hy (b18) will min h

If we call $A = \{x \mid f(x) \ge 0\}$, $B = \{x \mid f(x) < v\}$, then $A \cap B = \emptyset$, $A \vee B = X$, and $Y^{*}(E) = V(E \cap A)$, $Y^{*}(E) = -Y(E \cap B)$.

This signed measure splits I into complementary

who A, B, and earl it vivo is supported

on one of the two sets.

Will prove this is always the case!

Positive and negative sets

Definition

Let v be a signed measure on (X, \mathcal{M}) .

- ▶ We say that $A \in \mathcal{M}$ is a positive set for v if every measurable $E \subset A$ has $v(E) \geq 0$.
- ▶ We say that $B \in \mathcal{M}$ is a negative set for v if every measurable $E \subset \mathbf{B}$ has $v(E) \leq \mathbf{0}$.
- We say **N** is a null set for v if every measurable subset **E** of **N** has v(E) = 0.

Positive and negative sets

Definition

Let v be a signed measure on (X, \mathcal{M}) .

- ▶ We say that $A \in \mathcal{M}$ is a positive set for v if every measurable $E \subset A$ has $v(E) \geq 0$.
- ▶ We say that $B \in \mathcal{M}$ is a negative set for v if every measurable $E \subset A$ has $v(E) \leq 0$.
- We say N is a null set for v if every measurable subset E of N has v(E) = 0.

Hahn Decomposition Theorem

Let ν be a signed measure on (X, \mathcal{M}) . Then \exists positive set A and negative set B for ν , with $A \cap B = \emptyset$ and $X = A \cup B$.

Proof of the Hahn Decomposition

Lemma

Let v be a signed measure, and assume $E \in \mathcal{M}$ with $0 < v(E) < \infty$. Then E contains a positive set $A \subset E$ with v(A) > 0.

```
If E is a positive set, vière done.
If not, then E contains subtito FCE, with VE) COO.
   Let m = inffne IN | = E, em, F, CE, and V(F,) (-m).
   Chart E. & M with 8(F1) < - 1 < 0.
If E-E, is a passitive sats, let A=F-E, and otyp.
  If not, E'EI romfains subdate with V(F) <0.
   Let M2 = inffnen | = Ezem, EzelEn Ei), and VIEZ) < - 1).
    Chara F2 FM with 8/F2) < m2 <0, and F2 C E) F1.
```

Continue like this, defining disjoint sets E, Fz, --, En CE

and M, Mz, --, M, EN, with E, CE \ JE | E | And

VIE) < -m, . It E \ JE is a product who

stop (all it A, done.) It mb, Mis iteration

antinus H M F.M.

Coll $A = E - \emptyset E_j$, so $E = A \cup (\bigvee_{j=1}^{\alpha} E_j)$ is a disjoint union.

Sina 0 < >(E) < 00,

$$-\alpha < \gamma(\mathcal{D}_{\mathcal{E}_{j}}) = \sum_{\alpha} \gamma(\mathcal{E}_{j}) < -\sum_{\beta} m_{\beta}.$$

$$\Rightarrow \sum_{\beta} m_{\beta} < \infty \Rightarrow \lim_{\beta \to \alpha} \gamma(\mathcal{E}_{j}) < -\sum_{\beta} m_{\beta}.$$

LIT FCA, FEM. Then I ken,

FCACE SES. By chim of 5

W(F) 7 mkn, I me V ken.

 $\lim_{x \to \infty} |x| = |x| =$

Proof of Hohn Decomp. Assume v comment tobe the value + ou, Let P = { all provide subside of II). By 21mm Pantain sets with v(A) >0. Define Then, I segume (Ax) ken in P, with $2(A_k) \xrightarrow{k \to \infty} A$. Let $A = \bigcup_{k \in I} A_k$. First, claim $A \in \mathcal{O}$. Pf if claim: \temp E = A, let E, = EnA, Ez=(EnAz) E, , ..., Ek = (EnAk) ~ (A, v ~ · · · · Ak ~) , 10 the (Fin) is disjoint, Fix CAk VK, A Y(Fix) 20 · VIFI = Y[ŪFk) = EVIFK) DO, N AEP. Since $A \in \mathcal{O}$, $\forall (A) \in \lambda$. On the other had, A-ARCA SU V(A)AB) >0, and $V(A) = V(A_k) + v(A - A_k) \ge V(A_k)$ $\int_{a}^{b} k dx$ $\int_{a}^{b} k dx$ i y(A) > A, and hence

VIA) = D; we affailed the maxin O. Finally, let B< X > A. Need to show B is may africe ref. For contradiction, assume 3 Eam, ECB with 8(E) 20. By Limm, J EoCE, ForM, with $\nu(E_0) > v$ and E_0 a passitive R2.

Thus, $\gamma(A \cup E_0) = \gamma(A) + \gamma(F_0) > \gamma(A) = \lambda$, but $\lambda = snp \ v(6)$, === . B is nyabir Hr. and wire dint D.

The Jordan Decomposition

Let ν be a signed measure, with Hahn Decomposition sets A, B. Then

$$v^+(E) := v(E \cap A), \quad v^-(E) := -v(E \cap B), \quad E \in \mathcal{M},$$

are measures on (X, \mathcal{M}) .

The Jordan Decomposition

Let ν be a signed measure, with Hahn Decomposition sets A, B. Then

$$v^+(E) := v(E \cap A), \quad v^-(E) := -v(E \cap B), \quad E \in \mathcal{M},$$

are measures on (X, \mathcal{M}) .

Note that $v^+(B) = 0$ and $v^-(A) = 0$, with $X = A \cup B$ and $A \cap B = \emptyset$. We say the measures v^{\pm} are mutually singular.

M=B, Boris sifs Examples If v is a signed Brail measure on [a,b] c TR, then by the Hahn/Jurdan Decomposition S(E)= Nole) - Nole) and may of ve are (positive) Born measures on [h, b) c/2. - 3 mm tone non-decreosity F=(x), with $\sqrt{2}((\alpha,\beta)) = F^2(\beta) - F^*(\alpha)$ Convertly, it F2 are non-dervoir (vight antinnous)
finctims m [45], ve lette a hisnal measure using

8 in the algebra of ot intervols, as letter.

For a given non-monotone F(x), com we assuriate a Bout Mannone P(a, p) = F/p)-F/2)

with that F?

Need: F is a difference of minutime increasing transforms.

The total variation measure

Define the measure on (X, \mathcal{M}) ,

$$|\nu|(E) = \nu^+(E) + \nu^-(E), \quad E \in \mathcal{M}.$$

This is called the total variation of the signed measure ν .

For example
$$V(F) = \int_{E} f(x) dy f(x)$$
,
$$= \int_{E} f^{*}(x) dy - \int_{F} f^{*}(x) dy$$
Then $|V|(E) = \int_{E} |f| dy$

The total variation measure

Define the measure on (X, \mathcal{M}) ,

$$|v|(E) = v^+(E) + v^-(E), \quad E \in \mathcal{M}.$$

This is called the total variation of the signed measure ν .

Exercise: Show that

$$|v|(E) = \sup \sum_{k=1}^{n} |v(E_k)|,$$

where the sup is taken over all disjoint finite collections $\{E_k\}_{k=1,...,n}$ of measurable subsets of E.

Example: Signed Borel measures and BV functions.

If we have a Bond Digned monom,
$$\nu$$
 on $[a,b] \subset \mathbb{R}$, define

$$[a,b] \subset \mathbb{R}$$
, define
$$[a,b] = \nu((a,x))$$

So $\nu((a,\beta)) \subset F(\beta) - F(a)$

Parhithin $[a,b]$ indo $a = x_0 < x_1 < \dots < x_n = b$

$$[a,b] = [b] = [b] = [b] = [b] = [b]$$

$$[a,b] = [b] = [b] = [b] = [b]$$

$$[a,b] = [b] = [b] = [b] = [b]$$

$$[a,b] =$$

(sin the Total Variation is the sp)

tom A- any partition of CA, 17.

We say F: [a, b] -> 12 is of Bonn Add Variaban it is fruité.

Theorem? F is it Bonn All Ynvindsin on [m, b] CR iff F monstress, non-decreasing homehims $F(x) = F^{+}(x) - F^{-}(x)$.

Finally, finite Boul of menous appear nothingly
as the dual spara to C([a, 13)

on (a, 1), with

suprement

Riesz Representation Devenue! (C(En, 13) version)

Let l! C[En, 63) - SR Le a branded

linear transformal, that is

I M > 0 with | l|f) | \le M | H | H | av,

I f \(\tau \) (En, 63).

· l(atops) = all+) + pl(s)

> Pyr C([a,b]) and & apper.

Then, \exists signed limite Bird manager \forall hish $f(x) = \int_{C_1(x)} f(x) dV(x)$.

(Bart) 1 - 12. In R. C(K), Royder-Fitpatrick.