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My research is in elliptic partial differential equations and systems and in the calculus of
variations. I am especially interested in finding solutions and mathematical clarifications of
physical phenomena through rigorous methods of analysis.

Recently I have worked on Ginzburg–Landau equations and systems which describe phase
transitions in high-temperature superconductors, superfluids, and liquid crystals. A Ginzburg–
Landau (G–L) model is defined by a nonlinear functional for an complex scalar or vector “order
parameter” Ψ ∈ Cm and a vector field A (the magnetic potential in superconductors). The
functional takes the general form

(GL) E(Ψ, A) =
∫

Ω

{
|(∇− iA)Ψ|2 + κ2Fpot(Ψ) + Fmag(Ψ, A)

}
dx,

where Ω is a domain in Rn (n = 2, 3) (the physical sample or its cross-section) and the po-
tential Fpot and field energy Fmag depend on the physical context. In the classical G–L model
of superconductivity Ψ ∈ C is scalar, and the potentials are given by Fpot = 1

2 (|Ψ|2 − 1)2 and
Fmag = (∇×A− hex)2 with hex an external applied field.

In recent years G–L systems have provided a wonderful setting for new results in nonlinear
analysis: the Euler–Lagrange equations are an elliptic system which regularizes a classical (but
analytically difficult) harmonic map problem. In an appropriate singular limit the solutions
develop singularities (such as vortices in the U(1) model of superconductivity), and the presence,
number, location and local structure of these singularities is an area of intensive mathematical
activity.

My goal is to further develop this exciting interplay between analysis and physics, and to
introduce new techniques in PDE, the calculus of variations, and nonlinear functional analysis
which are both inspired by and shed new light upon these phenomena.

Brief summary of recent published work (1999-2004):
I. Pinning effects in Ginzburg–Landau models

In a series of papers ([1], [5], [6]) we study two-dimensional Ginzburg–Landau models for
inhomogeneous or multiply connected superconductors and Bose–Einstein Condensates (BEC).
An inhomogeneous superconductor is described variationally by (GL) for a scalar complex Ψ ∈ C,
with an inhomogeneous potential term,

Fpot(Ψ) =
1
4

(
|Ψ|2 − a(x)

)2
,

with a(x) ∼ (Tc − T ), with T the temperature and Tc = Tc(x) the critical temperature for the
onset of superconductivity in the material, non-constant to model impurities. For BEC, the
unknown magnetic potential A is replaced by an imposed external rotation A→ ωx⊥, with given
constant angular speed ω playing the role of the applied field in superconductivity.
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Most previous mathematical work on pinning has been restricted to the case where a(x) ≥ 0
in the sample domain Ω (see [ASaSe], [AnSh], [AnBP], for instance.) We consider the case where
a(x) < 0 on smooth, open subdomains in Ω. In this situation, the pinning sites (where a(x) < 0)
act as giant vortices, acquiring large degree for large but bounded (independent of κ) applied
fields. For bounded fields the order parameter |Ψ| →

√
a+(x) in the region where a(x) > 0, and

there are no interior vortices. This result is similar to the behavior described in [AnBP] for a(x)
which vanish at isolated points in Ω.

The most interesting regime is when the applied field is allowed to grow with κ, hex = O(lnκ).
We prove that there is a critical value of hex for which vortices first begin to appear in the region
where a(x) > 0. Rather than cluster near the pinning sites, vortices will first nucleate in the
interior, at points which are specifically identified via the solution of a singular elliptic boundary-
value problem. This elliptic problem defines a sort of harmonic conjugate for the limiting problem
(a weighted harmonic map functional), and some non-trivial regularity problems must be resolved
near the boundaries of the pinning sites, where the equation loses uniform ellipticity. Similar
phenomena also occur if we take a multiply-connected domain Ω with non-vanishing a(x) (taken
to be constant, for example.) This is because the negativity of a also leads to a multiply-connected
domain for the limiting harmonic map problem which determines the vorticity of the giant vortices
in the pinning sites.

We have also been working on a three-dimensional analogue for the BEC functional, with our
postdoc J.A. Montero, which we will discuss in the following paragraph.

II. Vortices in 3D With our postdoc J.A. Montero we have some results on vortices in three-
dimensional superconductors and BEC.

In our paper [4] we consider a three-dimensional solid Ω subjected to a constant applied field
~hex = λ lnκ ê3 along the vertical axis. The energy functional is then:

Eκ(Ψ, A) =
∫

Ω

{
1
2
|(∇− iA)Ψ|2 +

κ2

4
(
|Ψ|2 − 1

)2
}
dx+

1
2

∫
R3

∣∣∣∇×A− ~hex

∣∣∣2 dx.
Formally, we expect that vortices will first appear in Ω at a critical value λ∗, and that the vortices
should be curves γ minimizing the limit functional (in the sense of Γ-convergence of de Giorgi),

Gλ(γ) =
∫

γ

ds− λ

∫
γ

B0 · d~s,

where B0 is a vector field satisfying ∇×(∇×B0) = ê3, with B0×ν = 0 on ∂Ω, ν the exterior unit
normal. This limiting energy is formally obtained by expanding the energy about the vortexless
“Meissner state” solution, and B0 comes from a Hodge-type decomposition theorem.

The analysis of the limit process is possible because of the work of Jerrard & Soner [JS], who
recognized that the important quantity in passing to the limit is the weak Jacobian of Ψ, J(Ψ) =
1
2∇×={Ψ̄∇Ψ}, which is weakly compact in a space of 1-currents. Thus the vortices associated
to minimizing (Ψ, A) are not a priori curves, but integer rectifiable 1-currents. Connecting global



STANLEY ALAMA 3

minimizers of Eκ to minimizers of Gλ remains an open question, as we lack control of the norm
of the Jacobians for fields of order lnκ where global minimizers first exhibit vortices in a general
domain.

Instead, we use the method of [JMS] to constuct local minimizers to Eκ which converge (in the
sense of weak Jacobians) to minimizers of Gλ. This method enables us to have concrete results
on the critical λ∗ in the case where Ω = BR(0) is a solid ball. For the ball, we have an explicit λ∗

(given as a function of the radius R) such that: if λ < λ∗, the global minimizer of Gλ is the zero
current, that is, no vortex in the ball; if λ > λ∗, the global minimizer is the vertical diameter of
the ball. We conjecture that λ∗ lnκ gives the highest-order term in the expansion of the critical
applied field, at which global minimizers first acquire vortices. Indeed, we also give a value λ∗∗,
with λ∗∗ < λ∗ but λ∗∗

λ∗→1 for radii R→∞, so that global minimizers have no vortices for λ < λ∗∗.

We are currently writing up a similar result for BEC where Ω is a circular torus in R3.
This result combines some of the features of our work XXX on pinning and multiply connected
superconductors with the 3-D superconductivity result mentioned above. The energy functional
is now

Eε(u) =
∫

Ω

{
1
2
|∇u|2 − ω (−y, x, 0) · ={ū∇u}+

1
4ε2

(a(x)− |u|2)2
}
dx,

for complex-valued u ∈ H1
0 (Ω; C). Here ω is a (given) real angular speed, which plays the role of

the applied field in the superconductivity model. As in our pinning problems, a(x) is a smooth
function which vanishes at ∂Ω, which in this context represents the trapping potential by which
the BEC is confined (via lasers.) The case of an ellipsoidal domain Ω was studied by [AfJ], [J2],
who found that vortices are bent, and not straight. These bent vortices have been observed in
experiments on BEC.

We follow the same scheme as in our paper [X??], and construct locally minimizing solutions to
Eε near the minimizers of the limiting line energy associated to this problem via Γ-convergence.
Analysis of the limiting problem shows that vortices must bend, and are located in a region of a
vertical cross-section strictly to the left of the center line. As in the 2-D problem, some interesting
technical issues due to the vanishing of a(x) near ∂Ω must be resolved. The tools developed in
[J2] for the compactness of the Jacobians in the ellipsoidal case must be modified (and in some
cases may be simplified.)

III. Spin-coupled systems. We consider a family of functionals (GL) for a complex vector order
parameter, Ψ : Ω → C2 which carries both the usual information concerning superconductivity
(the density of superconducting electrons and their currents) but also defines a spin S = <Ψ×=Ψ.
The potential and magnetic energies are Fpot = 1

2 (|Ψ|2− 1)2 + γ|ψ2
1 +ψ2

2 |2 and Fmag = (∇×A−
hex)2 − 2 g hexS, with g > 0 the Zeeman coupling constant. These models have been proposed to
study superconductors with ferromagnetic properties as well as certain Bose-Einstein condensates
(BEC). The properties of minimizers of this functional depend strongly on the sign of the spin-
coupling term: in “Phase I” (termed “ferromagnetic” in BEC) γ > 0 and the potential favors
spins of constant size 1

2 , while in “Phase II” (“antiferromagnetic” in BEC) 0 < γ < 1 and this
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term penalizes the spin vector.
•Half-integer vortices. The results for “Phase II” (−1 < γ < 0) are the most surprising. In this
case, the singular limit of the energy leads to a harmonic map problem on a 2-torus, and the
least energy solutions will carry two half-integer degrees. With L. Bronsard [3], [10] we studied
a simplified Dirichlet problem in order to describe the local structure of vortices. We prove an
asymptotic expansion of the energy in the spirit of Bethuel, Brezis, and Hélein [BBH] which shows
that minimizers generally prefer the fractional degree to integer degree vortices. In subsequent
work with Bronsard and P. Mironescu we have shown that the fractional degree vortices have
nontrivial “spin polarized” cores: To resolve the singularity at the center of a half-degree vortex
Ψ will rotate away from the limiting torus and acquire a non-zero spin rather than vanishing (as
it does in the classical G-L vortices.) To do this, we blow up near a fractional degree vortex to
obtain an entire, locally minimizing solution (in the sense of De Giorgi) to the G-L equations in
all of R2, and use the local minimizing property to show that one component cannot vanish. It
is still an open question whether the only solution to the limiting problem in R2 is the radially
symmetric one.

•Critical fields with spin. In joint work with L. Bronsard ([8], [9]) we have studied the upper
and lower critical fields in the “Phase I” regime in the singular limit as the Ginzburg–Landau
parameter κ → ∞. First, we show that the effect of spin coupling is to significantly decrease
the lower critical field Hc1 = O(lnκ), the smallest value of the applied field at which minimizers
exhibit vortices. For large enough g = O(lnκ) we show the existence of a “spontaneous vortex
state” whereby minimizers always have vortices for any applied field (and thus Hc1 = 0.) In the
second paper, we consider the transition to the normal state in high fields (hex = O(κ2).) We show
that the critical field Hc2, the smallest applied field for which minimizers lose superconductivity
in the interior of the sample, increases significantly with spin coupling. In fact, for sufficiently
large g = O(1) the upper critical field is also absent, and the normal state (Ψ ≡ 0) is never
minimizing. These results are based on techniques of Sandier and Serfaty [SS1], [SS2], developed
for the classical G–L model.

IV. The Lawrence–Doniach system. The Lawrence–Doniach system is a variational model
for layered superconductors, and is commonly used by physicists to study many of the high-
temperature superconductors. In this model the material is described by a coupled array of
superconducting planes rather than as a three-dimensional solid. The functional (GL) is modified
by defining Ψ as a sequence (ψn(x)) of complex order parameters, one for each superconducting
plane, and by replacing z derivatives by gauge-invariant finite differences in the gradient term.
Our recent results treat the situation where an external magnetic field is directed parallel to these
planes.

•Vortex lattices. With L. Bronsard and A.J. Berlinsky [11], [13] we studied the structure of low-
energy critical points of the Lawrence–Doniach functional in a “weak-coupling” limit. We consider
two different settings: a bounded domain of rectangular cross-section, and planar solutions sat-
isfying a doubly-periodic ansatz. In the periodic case [13] we must develop a new functional
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setting for the variational problem in order to eliminate the infinite-dimensional degeracy due
to gauge invariance. In both cases, we use a Lyapunov–Schmidt decomposition to reduce to a
finite-dimensional variational problem on a smooth Hilbert manifold. We provide a complete
classification of all low energy solutions in the finite cross-section case. In the periodic setting
energy minimization selects a unique optimal choice of period lattice from all possible geometries.
Finally, we determine (in [11]) the range of validity of our perurbation approach (in terms of
various parameters in the model) via a priori estimates on solutions and an original argument
based on the implicit function theorem. One conclusion of this analysis is that the result seems
appropriate for large applied fields.

•Isolated interlayer vortices. In work with L. Bronsard and E. Sandier [7] we studied the struc-
ture of isolated interlayer vortices in the Lawrence–Doniach model. Because of the half-discrete,
half-continuous nature of the model, there can be no radially symmetric solutions to the Lawrence–
Doniach equations, and therefore the problem of finding an isolated vortex solution in a parallel
field is fully two-dimensional. Furthermore, the discreteness precludes an easy definition of “vor-
tices” in terms of the degree of the order parameter. We use methods of Jerrard [J1] and Sandier
[Sa] to locate the singularities and obtain uniform estimates away from them, in the continuum
limit as the fundamental length scales tend to zero. These methods were derived for the classical
G–L models, but have the advantage of being based entirely on the energy and do not rely on any
higher regularity of solutions (which is not available for the mixed finite difference and differential
equations setting of the LD model.)

Indeed, the local profile of the magnetic field induced by an interlayer vortex has been contro-
versial in the physics literature, and our result refutes physisists’ claim that Lawrence–Doniach
vortices have a “nonlinear core”.

With Sandier we are currently studying other limiting regimes with the goal of connecting the
weak-coupling solutions of [11] with high field behavior in a small length scales limit as in [7].
The methods are as in [SS2], [SS3].

Earlier work (before 2000)

V. Symmetric vortices. In joint work with L. Bronsard and T. Giorgi [15], [16], [17], we
study isolated, radially symmetric vortices for the classical gauge-invariant Ginzburg–Landau
model and for S. C. Zhang’s SO(5)-model which unifies high-temperature superconductivity and
antiferromagnetism.
•Uniqueness. For the classical G–L model, we give the first proof of uniqueness of symmetric
vortex solutions [17], a long-standing open problem in the well-known reference text of Bethuel,
Brezis, & Hélein [BBH]. In an interesting twist, we use the Mountain Pass Theorem to obtain
this uniqueness result. Our result complements the recent uniqueness results of Pacard & Rivière
[PR], who show that an entire degree-one solution of G–L must be radially symmetric.
•Core structures in the SO(5) model. The SO(5)-model introduces a scalar SC order parameter
ψ, a real antiferromagnetic order parameter m ∈ R3, and the usual magnetic potential A, with
Fpot = 1

2 (|ψ|2+|m|2−1)2+g|m|2 and Fmag = (∇×A−hex)2. (However, the gradient energy ofm is
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not coupled to the magnetic field.) Since whenm = 0 the SO(5) energy reduces to the classical G–
L energy we treat it as a perturbation problem and apply bifurcation theory to study the structure
of symmetric vortices. We build on our uniqueness result to give compactness, bifurcation results,
and an exact characterization of the solutions of the radially symmetric SO(5) vortex system
[15]. For these results we require energy-independent a priori estimates on solutions, topological
arguments from bifurcation theory, and Struwe’s min-max theory on convex sets in Banach spaces.

In continuing work with L. Bronsard and T. Giorgi we are looking at symmetric vortices in
other gauge field models and at multi-vortex configurations in the SO(5) model.

VI. Strongly indefinite variational problems: These projects concern semilinear elliptic
equations with nonlinear potentials which change sign. These can be formulated variationally,
but the associated functionals are strongly indefinite and classical methods based on convexity
or monotonicity fail. On the other hand, these equations exhibit a rich variety of solutions and
provide many very interesting new variational arguments and novel twists of the standard theory.
For example, some of the techniques which we use in the uniqueness of vortex solutions described
above appeared first in a simpler sub- and super-solution setting in the work described below.

•Multiplicity for positive solutions. Typically, we seek conditions on the indefinite nonlinearity
which ensure that its negative part generates a bifurcation curve of local minimizers. Then we
find a second solution created when the solution curve bends back under the influence of the
positive part. In some situations the structure of the nonlinearity allows the branch to bend
twice, giving a local minimizer separating a pair of (unstable) index-1 solutions. (See [18], [20],
[21], [22], [25].) One motivation for studying such equations comes from geometrical PDE: when
the nonlinearity has critical Sobolev growth (as in the prescribed scalar curvature equations, or the
self-dual Chern–Simons models in dimension two,) local minimizers inherit stronger compactness
properties and avoid blow-up problems which are common to these critical exponent problems
(see [ES] and [25]).

•C1 vs. H1 minimizers. One important issue addressed in our work is the relationship between
C1-minimizers (obtained by the sub- and supersolution method or in bifurcation, for example)
and H1-minimizers (true minima among all admissible variations of energy) for elliptic equations
with supercritical growth in the nonlinear term. The distinction between C1 and H1-minimizers
was first remarked by Brezis & Nirenberg [BN], who proved that the two notions coincide for
nonlinearities with subcritical or critical growth. In joint work with G. Tarantello [23], we present
examples which demonstrate that, for nonlinearities with supercritical growth, C1-minimizers may
or may not be H1-minimizers, depending on the explicit structure of the nonlinear terms.

VII. Heteroclinic solutions to PDE: We seek solutions to nonlinear elliptic problems on
all of RN with prescribed behavior at infinity. The technical difficulty in these problems is the
loss of compactness due to translation invariance and loss of mass at infinity, which makes the
direct application of global variational methods impossible. However, it is exactly because of this
non-compactness that we find such a rich collection of solutions to our problem!
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•Multibump solutions. In collaboration with Y. Y. Li, we consider nonlinear Schrödinger equations
with a potential which is (asymptotically) periodic in space, and we construct “multibump”
solutions, having nearly all of their mass concentrated in widely spaced packets [26]. The bumps
are nearly identical copies of a “ground state” single-bump solution. The method of proof follows
work by Séré [Sé] and Coti-Zelati & Rabinowitz [CZR] on heteroclinic solutions to Hamiltonian
systems, and is based on P.L. Lions’ concentration compactness principles and the construction
of a topological min-max problem taylored to produce solutions with the desired shape.

•Heteroclinic layers. In a different setting, I have worked with L. Bronsard and C. Gui [19] on
two-dimensional heteroclinic solutions to vector-valued PDE’s, which arise in connection with
some models of phase boundary motion. Because the conditions at infinity for this vector-valued
PDE are themselves nontrivial heteroclinic solutions of ODE’s, the desired solutions will have
infinite energy over R2, and even after “renormalizing” the energy (in the spirit of work of
Rabinowitz [Ra1] on heteroclinic solutions for reversible systems) we cannot use the direct method
of minimization globally. Instead we solve problems in bounded domains and obtain uniform a
priori estimates to pass to the limit as the bounded domains exhaust R2. More recently, other
examples of heteroclinic-type solutions to PDE have been found by P. Rabinowitz [Ra2].
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