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12.1:Orthogonal Functions

• Recall that R
n = {(x1, . . . , xn), xi ∈ R, i = 1, . . . n}.

• If u = (u1 . . . , un) and v = (v1 . . . , vn) belong to R
n, their dot

product is the number

(u,v) = u1 v1 + · · · + un vn =

n
∑

i=1

ui vi.

• The dot product has the following properties:
◦ (u,v) = (v,u)
◦ (αu,v) = α (u,v) = (u, αv), α ∈ R

◦ (u + v,w) = (u,w) + (v,w)
◦ (u,u) ≥ 0 and (u,u) = 0 iff u = 0
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Orthogonal collections

• The norm of a vector: ‖u‖ =
√

u2
1 + · · · + u2

n = (u,u)1/2

• Orthogonality of two vectors: u ⊥ v iff (u,v) = 0.
• Orthogonality of a collection of vectors: {u1, . . . ,um} is an

orthogonal collection of vectors iff (ui,uj) = 0 if i 6= j.
• Orthogonal basis: If m = n, the dimension of the space, then an

orthogonal collection {u1, . . . ,un} where ui 6= 0 for all i, forms an
orthogonal basis. In that case, any vector v ∈ R

n can be expanded
in terms of the orthogonal basis via the formula

v =
n
∑

i=1

(v,ui)
ui

‖ui‖2
.

• Orthonormal basis: orthogonal basis {u1, . . . ,un} with ‖ui‖ = 1 for
all i.
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Orthogonal Functions

• In what follows, we will always assume that the functions
considered are piecewise continuous on some interval [a, b].

• Inner product: If f1, f2 are two functions defined on [a, b], we define
their inner product as

(f1, f2) =

∫ b

a

f1(x) f2(x) dx

• Orthogonality: Two functions f1, f2 are orthogonal on [a, b] if
(f1, f2) = 0.

• Example: f(x) = sin(3x), g(x) = cos(3x). We have
∫ π

−π

sin(3x) cos(3x) dx = 0

since sin(3x) cos(3x) is odd and the interval [−π, π] is symmetric
about 0. Thus f(x) = sin(3x) and g(x) = cos(3x) are orthogonal on
[−π, π].

Lecture: January 10, 2011 – p. 4/30



Orthogonal Functions contd.

• Example: f(x) = sin(3x), g(x) = cos(3x). We have
∫ π

−π

sin(3x) cos(3x) dx = 0

since sin(3x) cos(3x) is odd and the interval [−π, π] is symmetric
about 0. Thus f(x) = sin(3x) and g(x) = cos(3x) are orthogonal on
[−π, π].

• Orthogonal collections: A collection of functions
{φ0(x), φ1(x), . . . , φm(x), . . . } defined on [a, b] is called orthogonal
on [a, b] if

(φi, φj) =

∫ b

a

φi(x) φj(x) dx = 0, when i 6= j.
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An example

The collection {1, cos(x), cos(2x), cos(3x), . . . } = {cos(k x), k ≥ 0} is
orthogonal on [−π, π].

• To show this, we use the identity

cosA cosB =
cos(A + B) + cos(A − B)

2
.

• We have, if m, n ≥ 0 are integers with m 6= n,
∫ π

−π

cos(mx) cos(nx) dx

=

∫ π

−π

cos((m + n)x) + cos((m − n)x)

2
dx

=
1

2

[

sin((m + n)x)

m + n
+

sin((m − n)x)

m − n

]π

−π

= 0
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Orthonormality

• If f(x) is a function defined on [a, b], we define the norm of f to be

‖f‖ = (f, f)1/2 =

(

∫ b

a

f(x)2 dx

)1/2

• A collection of functions {φ0(x), φ1(x), . . . , φm(x), . . . } defined on
[a, b] is called orthonormal on [a, b] if

(φi, φj) =

∫ b

a

φi(x) φj(x) dx =

{

0, i 6= j

1, i = j.

• Note that if the collection {φ0(x), φ1(x), . . . , φm(x), . . . } is
orthogonal on [a, b] and ‖φi‖ 6= 0, the collection

{φ0(x)
‖φ0‖ , φ1(x)

‖φ1‖ , . . . , φm(x)
‖φm‖ , . . . } is orthonormal on [a, b].
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An example

• Consider the collection {1, cos(x), cos(2x), cos(3x), . . . } or
{cos(k x), k ≥ 0} which we have shown to be is orthogonal on
[−π, π].

• We have ‖1‖2 =
∫ π

−π
12 dx = 2 π, so ‖1‖ =

√
2π.

• For m ≥ 1, we have

‖ cos(mx)‖2 =

∫ π

−π

cos2(mx) dx =

∫ π

−π

1 + cos(2mx)

2
dx

=

[

x

2
+

sin(2mx)

4m

]π

−π

= π.

• Thus ‖ cos(mx)‖ =
√

π.

• The collection { 1√
2π

, cos x√
π

, cos(2x)√
π

, cos(3x)√
π

, . . . } is thus orthonormal

on [−π, π].
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Section 12.1 continued

• Suppose that the collection {φn(x)}n≥0 is an orthogonal collection
(or “system”) on [a, b] and that the function f(x) defined on [a, b]
can be expanded as a series

f(x) = c0 φ0(x) + c1 φ1(x) + · · · + cn φn(x) + . . . , (1)

how can we compute the coefficients c0, c1, c2, . . . ?
• Note that if (1) holds, we have, for each n ≥ 0,

(f, φn) =

∫ b

a

f(x) φn(x) dx =

∫ b

a

{ ∞
∑

k=0

ck φk(x)

}

φn(x) dx

=

∞
∑

k=0

ck

∫ b

a

φk(x) φn(x) dx = cn

∫ b

a

φ2
n(x) dx = cn ‖φn‖2.
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Orthogonal systems

• It follows thus that, if (1) holds, then

cn =
(f, φn)

‖φn‖2
, n ≥ 0 .

and

f(x) =
∞
∑

n=0

(f, φn)

‖φn‖2
φn(x). (2)

• However, the expansion formula (2) does not hold in general for an
arbitrary orthogonal system on [a, b]. For example, it could happen
that f 6= 0 but f(x) is orthogonal to each function φn(x) in the
system and thus the RHS of (2) would be 0 in that case while
f(x) 6= 0.

• In order for (2) to hold for an arbitrary function f(x) defined on
[a, b], there must be “enough” functions φn in our system.
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Completeness

• Definition: An orthogonal system {φn(x)}n≥0 on [a, b] is complete if
the fact that a function f(x) on [a, b] satisfies (f, φn) = 0 for all
n ≥ 0 implies that f ≡ 0 on [a, b], or, more precisely, that

‖f‖2 =
∫ b

a
f2(x) dx = 0.

• If {φn(x)}n≥0 on [a, b] is a complete orthogonal system on [a, b],
then every (piecewise continuous) function f(x) on [a, b] has the
expansion

f(x) ≃
∞
∑

n=0

(f, φn)

‖φn‖2
φn(x). (3)

on [a, b] in the L2-sense which means that

lim
N→∞

∫ b

a

∣

∣f(x) −
N
∑

n=0

(f, φn)

‖φn‖2
φn(x)

∣

∣

2
dx = 0.
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Some remarks

• If {φn(x)}n≥0 on [a, b] is a complete orthogonal system on [a, b],
the expansion formula (3) holds for every (pwc) function f(x) on
[a, b] in the L2-sense, but not necessarily “pointwise”, i.e. for a fixed
x ∈ [a, b] the series on the RHS of (3) might not necessarily
converge and, even if it does, it might not converge to f(x).

• The system {1, cos(x), cos(2x), cos(3x), . . . } = {cos(k x), k ≥ 0} is
orthogonal on [−π, π] but it is not complete on [−π, π].

• Indeed, if f(x) any odd function on [−π, π] (f(−x) = −f(x)) with
‖f‖ 6= 0, such as f(x) = x or f(x) = sinx, we have

∫ π

−π

f(x) cos(nx) dx = 0, n ≥ 0,

since f(x) cos(nx) is odd and [−π, π] is symmetric about 0.
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Section 12.2: Fourier series

• Theorem: The system

T := {1, cos(x), sin(x), cos(2x), sin(2x), cos(3x), sin(3x), . . . }

is a complete orthogonal system on [−π, π].
• To show the orthogonality of this system, one needs to show that

∫ π

−π

cos(mx) cos(nx) dx = 0, m, n ≥ 0, m 6= n, (a)

∫ π

−π

sin(mx) sin(nx) dx = 0, m, n ≥ 1, m 6= n, (b)

∫ π

−π

cos(mx) sin(nx) dx = 0, m ≥ 0, n ≥ 1. (c)

Lecture: January 10, 2011 – p. 13/30



Fourier series contd.

• For example, to show (b), we use the formula

sinA sinB =
cos(A − B) − cos(A + B)

2
.

• We have then, if m, n ≥ 1 and m 6= n,
∫ π

−π

sin(mx) sin(nx) dx

=

∫ π

−π

cos((m − n)x) − cos((m + n)x)

2
dx

=

[

sin((m − n)x)

m − n
− sin((m + n)x)

m + n

]π

−π

= 0.

• We have also, for m, n ≥ 1,

‖1‖2 = 2π, ‖ cos(mx)‖2 = π, ‖ sin(nx)‖2 = π.
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Fourier series expansions

• Note that the completeness of the system T is much more difficult
to prove.

• Using the previous theorem, it follows that every (pwc) function
f(x) on [−π, π] admits the expansion

f(x) ≃ a0

2
+

∞
∑

n=1

{an cos(nx) + bn sin(nx)} (4),

where a0

2 = (f,1)
‖1‖2 = 1

2 π

∫ π

−π
f(x) dx = average of f on [−π, π],

an =
(f, cos(nx))

‖ cos(nx)‖2
=

1

π

∫ π

−π

f(x) cos(nx) dx, n ≥ 1,

bn =
(f, sin(nx))

‖ sin(nx)‖2
=

1

π

∫ π

−π

f(x) sin(nx) dx n ≥ 1.
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Fourier series on general intervals

• The series expansion (4) in terms of the trigonometric system T is
called the Fourier series expansion of f(x) on [−π, π].

• More generally, if p > 0 and f(x) is pwc on [−p, p], then it will have
a Fourier series expansion on [−p, p] given by

f(x) ≃ a0

2
+

∞
∑

n=1

{

an cos

(

nπx

p

)

+ bn sin

(

nπx

p

)}

(4),

where the Fourier coefficients an, bn are defined by

an =
1

p

∫ p

−p

f(x) cos

(

nπx

p

)

dx, n ≥ 0,

bn =
1

p

∫ p

−p

f(x) sin

(

nπx

p

)

dx n ≥ 1.
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An example

• The function

f(x) =

{

0, −π < x ≤ 0

x, 0 < x < π

has a Fourier series expansion on [−π, π] given by

f(x) ≃ π

4
+
∑

n≥1
n odd

( −2

πn2

)

cos(nx) +
∑

n≥1

(−1)n+1

n
sin(nx)

≃ π

4
− 2

π
cos(x) − 2

9π
cos(3x) − 2

25π
cos(5x) + . . .

sin(x) − 1

2
sin(2x) +

1

3
sin(3x) − 1

4
sin(4x) + . . . (∗)
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Periodic extension

•• If a function f(x) defined on the interval [−p, p] is expanded as the
Fourier series

f(x) ≃ a0

2
+

∞
∑

n=1

{

an cos

(

nπx

p

)

+ bn sin

(

nπx

p

)}

(5),

we can view the RHS of (5) as a function defined om all of R.
• Since

cos

(

nπ(x + 2p)

p

)

= cos

(

nπx

p
+ 2nπ

)

= cos

(

nπx

p

)

,

sin

(

nπ(x + 2p)

p

)

= sin

(

nπx

p
+ 2nπ

)

= sin

(

nπx

p

)

,

the RHS of (5) is 2p-periodic and thus equal to the 2p-periodic
extension of f(x) to the real line.
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Piecewise continuity

• Recall that a function f(x) defined on the interval [a, b] is piecewise
continuous (pwc) on [a, b] if [a, b] can be divided into N subintervals
[ai, ai+1], i = 0, . . . , N − 1 with
a = a0 < a1 < a2 < · · · < aN−1 < aN = b and such that f(x) is
continuous on each open interval (ai, ai+1), i = 0, . . . , N − 1 and

lim
x→a+

i

f(x) = f(a+
i ), lim

x→a−
i+1

f(x) = f(a−
i+1)

both exist (and are finite) for each i = 0, . . . , N − 1.
• A function f(x) defined on R is pwc if it is pwc on every interval

[a, b] ⊂ R.
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Pointwise convergence

• Note that, in the theory of Fourier series, if f(x) is pwc, the value of
the function f(x) at the end points ai where f(x) is discontinuous
is unimportant (as they do not affect the integral to compute the
Fourier coefficients of f(x)).

• Definition: If a function f(x) defined on R is 2p-periodic
(f(x + 2p) = f(x)), its Fourier series is the Fourier series of its
restriction to the interval [−p, p].

• Theorem: Let f(x) be a 2p-periodic function defined on R such that
both f(x) and f ′(x) are pwc on R. Then, the Fourier series of f(x)
converges for all x to a function S(x) where

S(x) =

{

f(x), if f(x) is continuous at x,
f(x+)+f(x−)

2 , if f(x) is not continuous at x.
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Section 12.3: Fourier cosine and sine series

• Definition: Let f(x) be a function defined on [−p, p]
◦ f(x) is even if f(−x) = f(x).
◦ f(x) is odd if f(−x) = −f(x).

• Note that if f(x) is even, then
∫ p

−p
f(x) dx = 2

∫ p

0
f(x) dx.

• On the other hand, if f(x) is odd,
∫ p

−p
f(x) dx = 0.

• Note that
◦ f(x) even and g(x) even =⇒ f(x) g(x) even
◦ f(x) even and g(x) odd =⇒ f(x) g(x) odd
◦ f(x) odd and g(x) odd =⇒ f(x) g(x) even
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Fourier cosine and sine series

• If f(x) is even on [−p, p], we have

an =
1

p

∫ p

−p

f(x) cos

(

nπx

p

)

dx =
2

p

∫ p

0

f(x) cos

(

nπx

p

)

dx

for n ≥ 0, and

bn =
1

p

∫ p

−p

f(x) sin

(

nπx

p

)

dx = 0, n ≥ 1.

• Similarly, if f(x) is odd on [−p, p], we have

an =
1

p

∫ p

−p

f(x) cos

(

nπx

p

)

dx = 0, n ≥ 0

and, for n ≥ 1,

bn =
1

p

∫ p

−p

f(x) sin

(

nπx

p

)

dx =
2

p

∫ p

0

f(x) sin

(

nπx

p

)

dx
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Fourier cosine and sine series contd.

• The Fourier series of an even function f(x) on [−p, p] is thus a
Fourier cosine series

f(x) ≃ a0

2
+

∞
∑

n=1

an cos

(

nπx

p

)

x ∈ [−p, p], (6)

where an =
2

p

∫ p

0

f(x) cos

(

nπx

p

)

dx, n ≥ 0 .

• Similarly, the Fourier series of an odd function f(x) on [−p, p] is a
Fourier sine series

f(x) ≃
∞
∑

n=1

bn sin

(

nπx

p

)

x ∈ [−p, p], (7)

where bn =
2

p

∫ p

0

f(x) sin

(

nπx

p

)

dx, n ≥ 1 .
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Fourier sine series:an example

• The function f(x) = sin(x/2), −π < x < π, is odd.
• Its Fourier series on [−π, π] is thus a sine Fourier series.
• It is given explicitly by

f(x) ≃ 2

π

∞
∑

n=1

(−1)n+1 n

n2 − 1/4
sin(nx), x ∈ [−π, π].

x
K15 K10 K5 5 10 15

K1.0
K0.5

0.5
1.0
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Half-range expansions; even 2p-periodic extension

• Suppose that f(x) is defined on the interval [0, p]. Then, f(x) can
be expanded in a Fourier series in several ways.

• We can, for example, consider the even extension, fe(x), of f(x)
on [−p, p], defined by fe(x) = fe(−x) = f(x), 0 < x < p, and
compute its 2p-periodic cosine Fourier series expansion. The
coefficients can be computed directly in terms of the original
function f(x).

• We have fe(x) ≃ a0

2 +
∑∞

n=1 an cos
(

nπx
p

)

for x ∈ [−p, p],

where, for n ≥ 0,

an =
2

p

∫ p

0

f(x) cos

(

nπx

p

)

dx

(

=
2

p

∫ p

0

fe(x) cos

(

nπx

p

)

dx

)

In particular, since fe(x) = f(x) for 0 ≤ x ≤ p,

f(x) ≃ a0

2
+

∞
∑

n=1

an cos

(

nπx

p

)

x ∈ [0, p].
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Half-range expansions; odd 2p-periodic extension

• We can also consider the odd extension, fo(x), of f(x) on [−p, p],
defined by

fo(x) =

{

f(x), 0 < x < p,

−f(−x), −p < x < 0,

and compute its 2p-periodic sine Fourier series expansion. The
coefficients can be computed directly in terms of the original
function f(x).

• We have fo(x) ≃∑∞
n=1 bn sin

(

nπx
p

)

for x ∈ [−p, p], where,

bn =
2

p

∫ p

0

f(x) sin

(

nπx

p

)

dx

(

=
2

p

∫ p

0

fo(x) sin

(

nπx

p

)

dx

)

,

for n ≥ 1. In particular, since fo(x) = f(x) for 0 ≤ x ≤ p,

f(x) ≃
∞
∑

n=1

bn sin

(

nπx

p

)

x ∈ [0, p].
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Half-range expansions; full p-periodic Fourier series extension

• A third possibility is to extend f(x) as a p-periodic function on the
real line (f(x + p) = f(x)). The resulting function will have a full
Fourier series expansion.

• It is calculated in the same way as for a function defined on [−p, p]
except that, in the formulas, p is replaced by p/2 and the
integration is done over the interval [0, p] instead of [−p, p]:

•

f(x) ≃ a0

2
+

∞
∑

n=1

an cos

(

2nπx

p

)

+ bn sin

(

2nπx

p

)

x ∈ [0, p].

where

an =
2

p

∫ p

0

f(x) cos

(

2nπx

p

)

dx, n ≥ 0,

bn =
2

p

∫ p

0

f(x) sin

(

2nπx

p

)

dx, n ≥ 1.
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Section 12.4: Complex Fourier series

• Recall Euler’s formula: eix = cosx + i sinx (and also
e−ix = cosx − i sinx).

• If f(x) is a function defined on [−p, p] its Fourier series

f(x) ≃ a0

2
+

∞
∑

n=1

an cos

(

nπx

p

)

+ bn sin

(

nπx

p

)

x ∈ [−p, p],

can also be written as

f(x) ≃ a0

2
+

∞
∑

n=1

an

(

e
inπx

p + e−
inπx

p

2

)

+ bn

(

e
inπx

p − e−
inπx

p

2i

)

=
a0

2
+

∞
∑

n=1

(

an − i bn

2

)

e
inπx

p +

∞
∑

n=1

(

an + i bn

2

)

e−
inπx

p

= c0 +

∞
∑

n=1

cn e
inπx

p +

∞
∑

n=1

c−n e−
inπx

p ,
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Complex Fourier series contd.

where the coefficients cn, −∞ < n < ∞, are defined by:

• c0 = a0

2 = 1
2 p

∫ p

−p
f(x) dx,

•

cn =
an − i bn

2

=
1

2p

∫ p

−p

f(x) cos

(

nπx

p

)

dx − i
1

2p

∫ p

−p

f(x) sin

(

nπx

p

)

dx

=
1

2p

∫ p

−p

f(x) e
−inπx

p dx, n ≥ 1,

•

c−n =
an + i bn

2
=

1

2p

∫ p

−p

f(x) e
inπx

p dx, n ≥ 1.
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Complex Fourier series contd.

It follows that any (pwc) function f(x) defined on [−p, p] can be
expanded as a complex Fourier series

•

f(x) ≃
∑

n∈Z

cn e
inπx

p ,

where
•

cn =
1

2p

∫ p

−p

f(x) e
−inπx

p dx, n ∈ Z .

• The complex Fourier series is more elegant and shorter to write
down than the one expressed in term of sines and cosines, but it
has the disadvantage that the coefficients cn might be complex
even if f(x) is real valued.
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