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12.1:0rthogonal Functions

* Recallthat R” = {(x1,...,2,), ; €R, i =1,...n}.

* fu=(uy...,u,)andv=(vy...,v,) belong to R", their dot
product is the number

(u,v) :ulvl—l—o-o—l—unvn:Zuivi.

* The dot product has the following properties:
° (u,v) = (v,u)

° (au,v)=a(u,v)=(u,av), a€R

° (u+v,w)=(u,w)+ (v,w)
(u,u) >0and (u,u) =0iff u =20

(@)
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Orthogonal collections

 The norm of a vector: |jul| = /u? + - - +u2 = (u,u)/2
* Orthogonality of two vectors: u L v iff (u,v) = 0.

* Orthogonality of a collection of vectors: {uy,...,u,,}is an
orthogonal collection of vectors iff (u;, u;) = 0if i # j.

* Orthogonal basis: If m = n, the dimension of the space, then an
orthogonal collection {uy, ..., u,} where u; # 0 for all 7, forms an
orthogonal basis. In that case, any vector v € R" can be expanded
In terms of the orthogonal basis via the formula

n

u;
vV = Z (v, u;) —||11H2
i=1 ’
* Orthonormal basis: orthogonal basis {uy, ..., u,} with ||u;|| = 1 for

all 7.
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Orthogonal Functions

* In what follows, we will always assume that the functions
considered are piecewise continuous on some interval |a, b|.

* Inner product: If f1, f> are two functions defined on |a, b], we define
their inner product as

(Fir fo) = / £1(@) fal) de

* Orthogonality: Two functions f;, fo are orthogonal on [a, b] if
(f1, f2) =0.
* Example: f(x) = sin(3x), g(z) = cos(3z). We have

/ " sin(3z) cos(3x) dz = 0

— 7T

since sin(3x) cos(3x) is odd and the interval [—=, 7] is symmetric
about 0. Thus f(x) = sin(3x) and g(x) = cos(3x) are orthogonal on

|—m, 7.
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Orthogonal Functions contd.

* Example: f(x) = sin(3z), g(x) = cos(3x). We have

/7T sin(3x) cos(3x) dx =0

— T

since sin(3x) cos(3z) is odd and the interval |—m, 7] is Symmetric
about 0. Thus f(x) = sin(3x) and g(x) = cos(3z) are orthogonal on
[_7T7 ﬂ-]'

* Orthogonal collections: A collection of functions

{do(x), p1(x), ..., dm(x),...} defined on [a, b] is called orthogonal
on [a, b] if

b
(i, ;) = / ¢i(x) pj(x)dr =0, when i # j.

Lecture: January 10, 2011 — p. 5/:



An example

The collection {1, cos(z), cos(2x), cos(3z), ...} = {cos(kx),k > 0} is
orthogonal on [—, 7].

* To show this, we use the identity

cos(A + B) + cos(A — B)
> .

cos A cos B =

* We have, if m,n > 0 are integers with m # n,

/7T cos(max) cos(nz) dx

—TT

dx

_ / cos((m + n)x) + cos((m — n)x)
2

1 [sin((m+n)x) sin((m —n)x)
-1 [ i

T

=0

m—+n m—n -
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Orthonormality

* If f(x) is a function defined on [a, b], we define the norm of f to be

171l = (7, )2 = (/ fla )

* A collection of functions {¢g(x), ¢1(x), ..., ¢m(x),...} defined on
la, b] is called orthonormal on [a, 0] if

b 17+ )
(¢4, ¢5) :/ )= {(1)7 zij

* Note that if the collection {¢o(z), p1(z), ..., ¢m(x),... } IS
orthogonal on [a, b] and ||¢;|| # 0, the collection

(o, el =& }is orthonormal on [a, .
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An example

* Consider the collection {1, cos(x), cos(2z), cos(3x), ...} or
{cos(kx),k > 0} which we have shown to be is orthogonal on
|—m, 7).

We have ||1||* = [ 12dz =2, so ||1]| = V2.

For m > 1, we have

T T 1 2
| cos(ma)||* = / cos®(mz) dx = / il COZ( ma) dx

— 7T — 7T

T sin(2max) "
= |= = T.
2 4m L

Thus || cos(mz)|| = /7.

1 cosxz cos(2x) cos(3x)

2n’ Vw7 om0 T

The collection {
on [—m, 7.

, ...} Is thus orthonormal

Lecture: January 10, 2011 — p. 8/:



Section 12.1 continued

* Suppose that the collection {¢,(z)},>0 is an orthogonal collection
(or “system”) on [a, b] and that the function f(x) defined on |a, b]
can be expanded as a series

f(@) =cogo(z) +crdn(z)+ - +engn(z)+..., (1)

how can we compute the coefficients ¢y, ¢y, ca,...7?
* Note that if (1) holds, we have, for each n > 0,

k=0

/m ) u(c /¢ ) do = e [|6n®
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Orthogonal systems

* |t follows thus that, if (1) holds, then

e o

C gall?

and

N Fodn)
fl@)=)_ o,z @ @)

* However, the expansion formula (2) does not hold in general for an
arbitrary orthogonal system on [a, b|. For example, it could happen
that f +# 0 but f(x) is orthogonal to each function ¢,,(x) in the
system and thus the RHS of (2) would be 0 in that case while

flx) # 0.

* In order for (2) to hold for an arbitrary function f(z) defined on
la, b], there must be “enough” functions ¢,, in our system.

n=0
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Completeness

 Definition: An orthogonal system {¢,,(x)},>0 On [a, b] is complete if
the fact that a function f(x) on [a, b] satisfies (f, #,,) = 0 for all
n > 0 implies that f = 0 on [a, b], or, more precisely, that

I£12 = J, f2(x) da = 0.
* If {¢n(x)}n>0 ON [a,b] is @ complete orthogonal system on |a, b],

then every (piecewise continuous) function f(x) on [a, b] has the
expansion

)= (“@—ﬁ‘) bn@).  (3)

on [a, b] in the L?-sense which means that

n=0

b N

lim f(z) — Z L/, én) qbn(:zj)‘2 dx = 0.

N—oo Jg &2

n=0
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Some remarks

° If {¢n(x)}n>0 ON [a,b] is @ complete orthogonal system on |a, b],
the expansion formula (3) holds for every (pwc) function f(x) on
la, b] in the L?-sense, but not necessarily “pointwise”, i.e. for a fixed
x € |a, b] the series on the RHS of (3) might not necessarily
converge and, even if it does, it might not converge to f(x).

* The system {1, cos(x), cos(2x), cos(3x),...} = {cos(kx),k > 0} is
orthogonal on [—, 7] but it iS not complete on [—, 7].

* Indeed, if f(x) any odd function on [—7, 7| (f(—z) = —f(x)) with
||| # 0, such as f(x) = x or f(x) = sinx, we have

f(x) cos(nz)dr =0, n >0,

— T

since f(x) cos(nx) is odd and [—m, 7| is symmetric about 0.
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Section 12.2: Fourier series

* Theorem: The system

7T :={1,cos(z),sin(x), cos(2x), sin(2x), cos(3x), sin(3x), ... }

IS a complete orthogonal system on [, 7].
* To show the orthogonality of this system, one needs to show that

/ cos(mx) cos(nx)dxr =0, m,n>0,m#*n, (a)

— T

/ sin(maz) sin(nx)dx =0, m,n>1,m #n, (b)

— 7T

/ cos(maz) sin(nz)dx =0, m >0,n>1. (¢

—TT
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Fourier series contd.

* For example, to show (b), we use the formula

cos(A — B) — cos(A + B)

sin A sin B = 5 :

* We have then, if m,n > 1 and m # n,

/ " sin(mz) sin(nz) dz

— 7T

_ /7T cos((m — n)x) — cos((m + n)x) I
2
_ [Sin((m —n)xr) sin((m+n)z)]" 0
m—n m—+n -

— 7T

* We have also, for m,n > 1,

I1))* =27, | cos(ma)||* ==, |sin(nz)|* =
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Fourier series expansions

* Note that the completeness of the system 7 is much more difficult
to prove.

* Using the previous theorem, it follows that every (pwc) function
f(xz) on |[—7, w] admits the expansion

f(z) = % — Z {a, cos(nx)+ b, sin(nz)}|(4),

n=1

where % = (1) — L [ f(z)dz = average of f on [—m, ],

2 T 1P ™
o T|fc§;(ig)xll)2) :% " J(@) cos(na) da, 0> 1,
by = (f,sin(n)) L f(x) sin(nz)dx n > 1.

Isin(nz)|* 7 J_;
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Fourier series on general intervals

* The series expansion (4) in terms of the trigonometric system 7 is
called the Fourier series expansion of f(z) on [—m, 7].

* More generally, if p > 0 and f(x) is pwc on [—p, p|, then it will have
a Fourier series expansion on [—p, p| given by

f(z) ~ % + i {an cos (@) + b, sin (@H (4),

n=1 p p

where the Fourier coefficients a,,, b,, are defined by

1 [P
Ay = — / f(x) cos (@) dr, n >0,
pJ_, p

1 p
by, = — f(x) sin (@> drn > 1.
pJ_, p
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An example

* The function

f(x):{o, r<z<0

r, O<z<m

has a Fourier series expansion on |—m, 7| given by

T —1)n+d
~ o+ Z (W) cos(nx) + Z sin(nx)
n>1 n>1
n odd
2 2 2
~ % - cos(x) — - cos(3x) — T cos(bx) + ...
: 1. I I
sin(x) — 5 sin(2x) + > sin(3x) — i sin(4x) + ... (%)
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Periodic extension

* If a function f(z) defined on the interval [—p, p| is expanded as the
Fourier series

f(z) =~ % + 5:1 {an cos (7%”) + b, sin (?)} (5),

we can view the RHS of (5) as a function defined om all of R.
* Since

2
. (mr(x—l- p>) o (@ +2m) s (@) |
p p p

2
sin (mr(:z: v p)) — sin (@ -+ 2n7r) — sin <@> 3
P p P

the RHS of (5) is 2p-periodic and thus equal to the 2p-periodic
extension of f(x) to the real line.
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Piecewise continuity

* Recall that a function f(x) defined on the interval [a, b] IS piecewise
continuous (pwc) on [a, ] if |a, b] can be divided into N subintervals
[ai,aiﬂ], 1= O, .. .,N — 1 with
a=ag<a <ay<---<ay_1 <ay =bandsuchthat f(x)is

continuous on each open interval (a;,a;11),7=0,...,N —1 and
lim f(z) = f(a}), lm f(z) = fla;)
$—>CL,L- $—>CL,L-_|_1
both exist (and are finite) foreach: =10,..., N — 1.

* A function f(x) defined on R is pwc if it is pwc on every interval
la,b] C R.
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Pointwise convergence

* Note that, in the theory of Fourier series, if f(x) is pwc, the value of
the function f(x) at the end points a; where f(x) is discontinuous
IS unimportant (as they do not affect the integral to compute the
Fourier coefficients of f(x)).

* Definition: If a function f(x) defined on R is 2p-periodic
(f(x + 2p) = f(x)), its Fourier series is the Fourier series of its
restriction to the interval [—p, p].

* Theorem: Let f(x) be a 2p-periodic function defined on R such that
both f(x) and f’(x) are pwc on R. Then, the Fourier series of f(x)
converges for all = to a function S(x) where

S(z) f(z), if f(x) is continuous at =,
T) = -
f(f”+)‘gf("” ) if () is not continuous at z.
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Section 12.3: Fourier cosine and sine series

* Definition: Let f(x) be a function defined on [—p, p]
° f(z)isevenif f(—x) = f(z).
° f(z)isoddif f(—z) = —f(x).
* Note that if f(x) is even, then [* f(z)dx =2 [ f(z)dx.

* On the other hand, if f(z) is odd, [*  f(z)dz = 0.

* Note that

° f(xz) even and g(z) even = f(x
° f(z) even and g(z) odd = f(x)
f(x) odd and g(x) odd = f(z) g(x) even

(@)
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Fourier cosine and sine series

* If f(x) is even on [—p, p|, we have

Ay = L f(x) cos (@) dr = g/pf(:zj) cos (@) dx
- 0

p p p p

forn > 0, and

1 [P
bn:—/ f(x)sin(@) dr =0, n > 1.
pJ_, p

* Similarly, if f(x) is odd on [—p, p], we have

1 [P
an:—/ f(x)cos<@>da:20,n20
pJ_, p

and, forn > 1,

1 [? . (nmx Y . (nmx
b”:];/_pf(x) sin <7> da:—]—j/O f(z) sin <7> dx
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Fourier cosine and sine series contd.

* The Fourier series of an even function f(x) on [—p, p] is thus a
Fourier cosine series

fla) = 90 i wwoos () welopal, )

p

9 [P
where |a,, = —/ f(x) cos (ﬁ) de, n>0].
P Jo D

* Similarly, the Fourier series of an odd function f(z) on |[—p,p]is a
Fourier sine series

flz) ~ ;:1 b, sin (n%x) z € [-p,pl, (7)

9 [P
where | b, = —/ f(x)sin (m) dr, n>1].
P Jo D
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Fourier sine series:an example

* The function f(x) = sin(z/2), —m < z < 7, IS odd.

* Its Fourier series on [—m, 7| is thus a sine Fourier series.

* |t is given explicitly by

fla) = =
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Half-range expansions; even 2p-periodic extension

* Suppose that f(x) is defined on the interval [0, p|]. Then, f(x) can
be expanded in a Fourier series in several ways.

* We can, for example, consider the even extension, f.(x), of f(x)
on [—p, p], defined by f.(z) = f.(—x) = f(z), 0 < z < p, and
compute its 2p-periodic cosine Fourier series expansion. The
coefficients can be computed directly in terms of the original
function f(x).

* We have fo(z) ~ 9L+ > | a, cos (%) for x € [—p, pl,
where, for n > 0,

e [ e () (-2 (5

In particular, since f.(z) = f(z) for 0 < z < p,

f(x) ~ % + Z ay COS (%) x € |0, p].
n=1
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Half-range expansions; odd 2p-periodic extension

* We can also consider the odd extension, f,(x), of f(xz) on [—p, p],
defined by

) f(z), 0<z<p,
fo(x) {f(ac), —p <z <0,

and compute its 2p-periodic sine Fourier series expansion. The
coefficients can be computed directly in terms of the original

function f(z).

* We have f,(z) ~> . b, sin (%) for x € [—p, p|, where,

n=1

2 () (-2 (1))

for n > 1. In particular, since f,(x) = f(x) for 0 < z < p,

f(x) ~ g:l by, sin (%) z € [0, p].
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Half-range expansions; full p-periodic Fourier series extension

* A third possibility is to extend f(x) as a p-periodic function on the

real line (f(x + p) = f(x)). The resulting function will have a full
Fourier series expansion.

* Itis calculated in the same way as for a function defined on [—p, p]
except that, in the formulas, p is replaced by p/2 and the
integration is done over the interval [0, p] instead of [—p, p|:

ao = 2nmx , 2nmx
f(x):?—l—z:ancos( )—I—bnSIH< ) x € |0, p|.

1 p p

2 [P 2
Ay = —/ f(x)cos( mr:z:) dr, n > 0,
P Jo p

2 [P 2
by, = —/ f(a:)sin( mm:) dr, n > 1.
P Jo p

where

Lecture: January 10, 2011 — p. 27/:



Section 12.4: Complex Fourier series

* Recall Euler’s formula: e** = cosx + isinz (and also

e~ " = cosx — 1sinx).

* If f(x) is a function defined on [—p, p] its Fourier series

f(x) ~ % —|—nz::1 Ay, COS (%) + b, sin (np%x) x € [—p,pl,

can also be written as

fla) = 2 +Zan ( — = p)m <2>
_ +Z< _Zb)e’”JWZ(a”ﬂb) o
:cO+chem§m+§:c_ne_m%,
n=1 n=1
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Complex Fourier series contd.

where the coefficients ¢,,, —o0o < n < oo, are defined by:

° cp = az—ozi ffp f(z)dx

2
:%/p f(x)cos (@) da:—z—/ f(x)sin (mrx) dx
— / f — nZ )

.b 1 'Lnﬂ'w
c_n:a’”zz’” f() dz, n>1.
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Complex Fourier series contd.

It follows that any (pwc) function f(x) defined on [—p, p] can be
expanded as a complex Fourier series

nez
where
o
1 p —IinmTx
Cn = — (x)e"» dx, neZ].
2p 0

* The complex Fourier series is more elegant and shorter to write
down than the one expressed in term of sines and cosines, but it
has the disadvantage that the coefficients ¢,, might be complex
even if f(x) is real valued.
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