and since the other conditions in the theorem are satisfied, the derivative f'(z) exists at each point where f(z) is defined. The theorem tells us, moreover, that

$$f'(z) = e^{-i\theta} \left[\frac{1}{3(\sqrt[3]{r})^2} \cos\frac{\theta}{3} + i\frac{1}{3(\sqrt[3]{r})^2} \sin\frac{\theta}{3} \right],$$

or

$$f'(z) = \frac{e^{-i\theta}}{3(\sqrt[3]{r})^2} e^{i\theta/3} = \frac{1}{3(\sqrt[3]{r}e^{i\theta/3})^2} = \frac{1}{3[f(z)]^2}.$$

Note that when a specific point z is taken in the domain of definition of f, the value f(z) is one value of $z^{1/3}$ (see Sec. 9). Hence this last expression for f'(z) can be put in the form

$$\frac{d}{dz}z^{1/3} = \frac{1}{3(z^{1/3})^2}$$

when that value is taken. Derivatives of such power functions will be elaborated on in Chap. 3 (Sec. 33).

EXERCISES

1. Use the theorem in Sec. 21 to show that f'(z) does not exist at any point if

(a)
$$f(z) = \overline{z}$$
;
(b) $f(z) = z - \overline{z}$;
(c) $f(z) = 2x + ixy^2$;
(d) $f(z) = e^x e^{-iy}$

2. Use the theorem in Sec. 22 to show that f'(z) and its derivative f''(z) exist everywhere, and find f''(z) when

(a)
$$f(z) = iz + 2;$$
 (b) $f(z) = e^{-x}e^{-iy};$
(c) $f(z) = z^3;$ (d) $f(z) = \cos x \cosh y - i \sin x \sinh y.$

Ans. (b)
$$f''(z) = f(z);$$
 (d) $f''(z) = -f(z).$

- 3. From results obtained in Secs. 21 and 22, determine where f'(z) exists and find its value when
 - (a) f(z) = 1/z; (b) $f(z) = x^2 + iy^2$; (c) $f(z) = z \operatorname{Im} z$. Ans. (a) $f'(z) = -1/z^2$ ($z \neq 0$); (b) f'(x + ix) = 2x; (c) f'(0) = 0.
- 4. Use the theorem in Sec. 23 to show that each of these functions is differentiable in the indicated domain of definition, and also to find f'(z):

(a)
$$f(z) = 1/z^4$$
 $(z \neq 0)$

 $(b) \ f(z) = \sqrt{r} e^{i\theta/2} \qquad (r > 0, \alpha < \theta < \alpha + 2\pi);$

(c)
$$f(z) = e^{-\theta} \cos(\ln r) + i e^{-\theta} \sin(\ln r)$$
 $(r > 0, 0 < \theta < 2\pi).$

Ans. (b)
$$f'(z) = \frac{1}{2f(z)};$$
 (c) $f'(z) = i\frac{f(z)}{z}.$

72 ANALYTIC FUNCTIONS

5. Show that when $f(z) = x^3 + i(1 - y)^3$, it is legitimate to write

$$f'(z) = u_x + iv_x = 3x^2$$

only when z = i.

6. Let u and v denote the real and imaginary components of the function f defined by means of the equations

$$f(z) = \begin{cases} \overline{z}^2/z & \text{when } z \neq 0, \\ 0 & \text{when } z = 0. \end{cases}$$

Verify that the Cauchy–Riemann equations $u_x = v_y$ and $u_y = -v_x$ are satisfied at the origin z = (0, 0). [Compare with Exercise 9, Sec. 20, where it is shown that f'(0) nevertheless fails to exist.]

7. Solve equations (2), Sec. 23 for u_x and u_y to show that

$$u_x = u_r \cos \theta - u_\theta \frac{\sin \theta}{r}, \quad u_y = u_r \sin \theta + u_\theta \frac{\cos \theta}{r}.$$

Then use these equations and similar ones for v_x and v_y to show that in Sec. 23 equations (4) are satisfied at a point z_0 if equations (6) are satisfied there. Thus complete the verification that equations (6), Sec. 23, are the Cauchy–Riemann equations in polar form.

8. Let a function f(z) = u + iv be differentiable at a nonzero point $z_0 = r_0 \exp(i\theta_0)$. Use the expressions for u_x and v_x found in Exercise 7, together with the polar form (6), Sec. 23, of the Cauchy–Riemann equations, to rewrite the expression

$$f'(z_0) = u_x + iv_x$$

in Sec. 22 as

$$f'(z_0) = e^{-i\theta}(u_r + iv_r),$$

where u_r and v_r are to be evaluated at (r_0, θ_0) .

9. (a) With the aid of the polar form (6), Sec. 23, of the Cauchy–Riemann equations, derive the alternative form

$$f'(z_0) = \frac{-i}{z_0}(u_\theta + iv_\theta)$$

of the expression for $f'(z_0)$ found in Exercise 8.

- (b) Use the expression for $f'(z_0)$ in part (a) to show that the derivative of the function f(z) = 1/z ($z \neq 0$) in Example 1, Sec. 23, is $f'(z) = -1/z^2$.
- 10. (a) Recall (Sec. 5) that if z = x + iy, then

$$x = \frac{z + \overline{z}}{2}$$
 and $y = \frac{z - \overline{z}}{2i}$.