and since the other conditions in the theorem are satisfied, the derivative $f^{\prime}(z)$ exists at each point where $f(z)$ is defined. The theorem tells us, moreover, that

$$
f^{\prime}(z)=e^{-i \theta}\left[\frac{1}{3(\sqrt[3]{r})^{2}} \cos \frac{\theta}{3}+i \frac{1}{3(\sqrt[3]{r})^{2}} \sin \frac{\theta}{3}\right],
$$

or

$$
f^{\prime}(z)=\frac{e^{-i \theta}}{3(\sqrt[3]{r})^{2}} e^{i \theta / 3}=\frac{1}{3\left(\sqrt[3]{r} e^{i \theta / 3}\right)^{2}}=\frac{1}{3[f(z)]^{2}} .
$$

Note that when a specific point z is taken in the domain of definition of f, the value $f(z)$ is one value of $z^{1 / 3}$ (see Sec. 9). Hence this last expression for $f^{\prime}(z)$ can be put in the form

$$
\frac{d}{d z} z^{1 / 3}=\frac{1}{3\left(z^{1 / 3}\right)^{2}}
$$

when that value is taken. Derivatives of such power functions will be elaborated on in Chap. 3 (Sec. 33).

EXERCISES

1. Use the theorem in Sec. 21 to show that $f^{\prime}(z)$ does not exist at any point if
(a) $f(z)=\bar{z}$;
(b) $f(z)=z-\bar{z}$;
(c) $f(z)=2 x+i x y^{2}$;
(d) $f(z)=e^{x} e^{-i y}$.
2. Use the theorem in Sec. 22 to show that $f^{\prime}(z)$ and its derivative $f^{\prime \prime}(z)$ exist everywhere, and find $f^{\prime \prime}(z)$ when
(a) $f(z)=i z+2$;
(b) $f(z)=e^{-x} e^{-i y}$;
(c) $f(z)=z^{3}$;
(d) $f(z)=\cos x \cosh y-i \sin x \sinh y$.
Ans. (b) $f^{\prime \prime}(z)=f(z) ; \quad$ (d) $f^{\prime \prime}(z)=-f(z)$.
3. From results obtained in Secs. 21 and 22, determine where $f^{\prime}(z)$ exists and find its value when
(a) $f(z)=1 / z$;
(b) $f(z)=x^{2}+i y^{2}$;
(c) $f(z)=z \operatorname{Im} z$.
Ans. (a) $f^{\prime}(z)=-1 / z^{2}(z \neq 0) ; \quad$ (b) $f^{\prime}(x+i x)=2 x ; \quad$ (c) $f^{\prime}(0)=0$.
4. Use the theorem in Sec. 23 to show that each of these functions is differentiable in the indicated domain of definition, and also to find $f^{\prime}(z)$:
(a) $f(z)=1 / z^{4} \quad(z \neq 0)$;
(b) $f(z)=\sqrt{r} e^{i \theta / 2} \quad(r>0, \alpha<\theta<\alpha+2 \pi)$;
(c) $f(z)=e^{-\theta} \cos (\ln r)+i e^{-\theta} \sin (\ln r) \quad(r>0,0<\theta<2 \pi)$.

Ans. (b) $f^{\prime}(z)=\frac{1}{2 f(z)} ; \quad$ (c) $f^{\prime}(z)=i \frac{f(z)}{z}$.
5. Show that when $f(z)=x^{3}+i(1-y)^{3}$, it is legitimate to write

$$
f^{\prime}(z)=u_{x}+i v_{x}=3 x^{2}
$$

only when $z=i$.
6. Let u and v denote the real and imaginary components of the function f defined by means of the equations

$$
f(z)= \begin{cases}\bar{z}^{2} / z & \text { when } \quad z \neq 0 \\ 0 & \text { when } \quad z=0\end{cases}
$$

Verify that the Cauchy-Riemann equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ are satisfied at the origin $z=(0,0)$. [Compare with Exercise 9, Sec. 20, where it is shown that $f^{\prime}(0)$ nevertheless fails to exist.]
7. Solve equations (2), Sec. 23 for u_{x} and u_{y} to show that

$$
u_{x}=u_{r} \cos \theta-u_{\theta} \frac{\sin \theta}{r}, \quad u_{y}=u_{r} \sin \theta+u_{\theta} \frac{\cos \theta}{r}
$$

Then use these equations and similar ones for v_{x} and v_{y} to show that in Sec. 23 equations (4) are satisfied at a point z_{0} if equations (6) are satisfied there. Thus complete the verification that equations (6), Sec. 23 , are the Cauchy-Riemann equations in polar form.
8. Let a function $f(z)=u+i v$ be differentiable at a nonzero point $z_{0}=r_{0} \exp \left(i \theta_{0}\right)$. Use the expressions for u_{x} and v_{x} found in Exercise 7, together with the polar form (6), Sec. 23 , of the Cauchy-Riemann equations, to rewrite the expression

$$
f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x}
$$

in Sec. 22 as

$$
f^{\prime}\left(z_{0}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)
$$

where u_{r} and v_{r} are to be evaluated at $\left(r_{0}, \theta_{0}\right)$.
9. (a) With the aid of the polar form (6), Sec. 23, of the Cauchy-Riemann equations, derive the alternative form

$$
f^{\prime}\left(z_{0}\right)=\frac{-i}{z_{0}}\left(u_{\theta}+i v_{\theta}\right)
$$

of the expression for $f^{\prime}\left(z_{0}\right)$ found in Exercise 8.
(b) Use the expression for $f^{\prime}\left(z_{0}\right)$ in part (a) to show that the derivative of the function $f(z)=1 / z(z \neq 0)$ in Example 1, Sec. 23, is $f^{\prime}(z)=-1 / z^{2}$.
10. (a) Recall (Sec. 5) that if $z=x+i y$, then

$$
x=\frac{z+\bar{z}}{2} \quad \text { and } \quad y=\frac{z-\bar{z}}{2 i}
$$

