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When n is a positive integer greater than 2, various mapping properties of
the transformation w = z", or w = r"e"?, are similar to those of w = z2. Such a
transformation maps the entire z plane onto the entire w plane, where each nonzero
point in the w plane is the image of n distinct points in the z plane. The circle
r =rp is mapped onto the circle p = r{; and the sector r <rp,0 <6 < 2m/n is

mapped onto the disk p < rj, but not in a one to one manner.

Other, but somewhat more involved, mappings by w = z> appear in Example
1, Sec. 97, and Exercises 1 through 4 of that section.

14. MAPPINGS BY THE EXPONENTIAL FUNCTION

In Chap. 3 we shall introduce and develop properties of a number of elemen-
tary functions which do not involve polynomials. That chapter will start with the
exponential function

(D et = e“el (z=x+1iy),

the two factors ¢* and ¢’ being well defined at this time (see Sec. 6). Note that
definition (1), which can also be written

Y = ¥l
is suggested by the familiar additive property
NI o1 0
of the exponential function in calculus.
The object of this section is to use the function e* to provide the reader with

additional examples of mappings that continue to be reasonably simple. We begin
by examining the images of vertical and horizontal lines.

EXAMPLE 1. The transformation
) w = é°

can be written w = e*e’Y, where 7 = x + iy, according to equation (1). Thus, if
w = pe'?, transformation (2) can be expressed in the form

3) p=e, ¢=y.

The image of a typical point z = (c1, y) on a vertical line x = c¢; has polar
coordinates p = expc; and ¢ = y in the w plane. That image moves counterclock-
wise around the circle shown in Fig. 20 as z moves up the line. The image of the
line is evidently the entire circle; and each point on the circle is the image of an
infinite number of points, spaced 27 units apart, along the line.
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FIGURE 20

w =expz.

A horizontal line y = ¢, is mapped in a one to one manner onto the ray
¢ = c». To see that this is so, we note that the image of a point z = (x, ¢p) has
polar coordinates p = e¢* and ¢ = c¢,. Consequently, as that point z moves along the
entire line from left to right, its image moves outward along the entire ray ¢ = c;,
as indicated in Fig. 20.

Vertical and horizontal line segments are mapped onto portions of circles and
rays, respectively, and images of various regions are readily obtained from obser-
vations made in Example 1. This is illustrated in the following example.

EXAMPLE 2. Let us show that the transformation w = ¢* maps the rect-
angular region a < x < b,c <y < d onto the region ¢? < p < el e < ¢ <d. The
two regions and corresponding parts of their boundaries are indicated in Fig. 21.
The vertical line segment AD is mapped onto the arc p = ¢%,c < ¢ < d, which is
labeled A’D’. The images of vertical line segments to the right of AD and join-
ing the horizontal parts of the boundary are larger arcs; eventually, the image of
the line segment BC is the arc p = e?, ¢ < ¢ < d, labeled B’C’. The mapping is
one to one if d — ¢ < 2m. In particular, if c =0 and d = 7, then 0 < ¢ < 7; and
the rectangular region is mapped onto half of a circular ring, as shown in Fig. 8§,
Appendix 2.
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w =expz.
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of

Our final example here uses the images of horizontal lines to find the image
a horizontal strip.

EXAMPLE 3. When w = €%, the image of the infinite strip 0 < y < 7 is the

upper half v > 0 of the w plane (Fig. 22). This is seen by recalling from Example 1
how a horizontal line y = c is transformed into a ray ¢ = ¢ from the origin. As the
real number ¢ increases from ¢ = 0 to ¢ = 7, the y intercepts of the lines increase
from O to 7 and the angles of inclination of the rays increase from ¢ =0to ¢ = 7.
This mapping is also shown in Fig. 6 of Appendix 2, where corresponding points
on the boundaries of the two regions are indicated.
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FIGURE 22
w =expz.
EXERCISES
1. By referring to Example 1 in Sec. 13, find a domain in the z plane whose image under

the transformation w = z? is the square domain in the w plane bounded by the lines
u=1,u=2v=1,and v =2. (See Fig. 2, Appendix 2.)

. Find and sketch, showing corresponding orientations, the images of the hyperbolas

x2—y2=c1 (c1 <0) and 2xy =c¢; (¢ <0)

under the transformation w = z2.

. Sketch the region onto which the sector » < 1,0 <6 < /4 is mapped by the trans-

formation (a) w = z%; (b) w = z°; (¢) w = z*.

. Show that the lines ay = x (a # 0) are mapped onto the spirals p = exp(a¢) under

the transformation w = exp z, where w = pexp(i¢).

. By considering the images of horizontal line segments, verify that the image of the

rectangular region a < x < b,c <y <d under the transformation w = expz is the
region e < p < el e < ¢ < d, as shown in Fig. 21 (Sec. 14).

. Verify the mapping of the region and boundary shown in Fig. 7 of Appendix 2, where

the transformation is w = exp z.

. Find the image of the semi-infinite strip x > 0,0 < y < 7 under the transformation

w = exp z, and label corresponding portions of the boundaries.
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8. One interpretation of a function w = f(z) = u(x, y) + iv(x, y) is that of a vector field
in the domain of definition of f. The function assigns a vector w, with components
u(x,y) and v(x,y), to each point z at which it is defined. Indicate graphically the
vector fields represented by (a) w = iz; (b) w = z/|z|.

15. LIMITS

Let a function f be defined at all points z in some deleted neighborhood (Sec. 11)
of zo. The statement that the /imit of f(z) as z approaches zo is a number wy, or
that

(D lim f(z) = wo,
20
means that the point w = f(z) can be made arbitrarily close to wg if we choose
the point z close enough to zo but distinct from it. We now express the definition
of limit in a precise and usable form.
Statement (1) means that for each positive number ¢, there is a positive number
8 such that

) | f(z) —wo| <& whenever 0 < |z—z9| <3.

Geometrically, this definition says that for each ¢ neighborhood |w — wy| < ¢ of
wo, there is a deleted § neighborhood 0 < |z — zg9| < § of z¢ such that every point
z in it has an image w lying in the & neighborhood (Fig. 23). Note that even though
all points in the deleted neighborhood 0 < |z — z9| < & are to be considered, their
images need not fill up the entire neighborhood |w — wg| < €. If f has the constant
value wy, for instance, the image of z is always the center of that neighborhood.
Note, too, that once a § has been found, it can be replaced by any smaller positive
number, such as §/2.

FIGURE 23

It is easy to show that when a limit of a function f(z) exists at a point zg, it is
unique. To do this, we suppose that

lim f(z) =wy and Ilim f(z) = w;.
=20 =20

Then, for each positive number ¢, there are positive numbers §y and §; such that

| f(z) —wo| <& whenever 0 < |z — 29| <o



