Math 3X03 / Second assignment: due March 14th in class.

Problem \# 1: 8th edition: page $171 \# 4 / 9$ th edition: page $170 \# 4$
Problem \# 2: Suppose that D is a bounded domain whose boundary is a simple closed contour $\partial D=C$, and that $f(z)$ is analytic on $D \cup C$.
(a) Show the following "isoperimetric" inequality:

$$
\sup _{z \in C}|\bar{z}-f(z)| \geq 2 \frac{\operatorname{Area}(D)}{\operatorname{Length}(C)}
$$

[Hint: Consider $\int_{C}(\bar{z}-f(z)) d z$, and use the estimate on the modulus of a contour integral and exercise \#7 page 163 (8th ed)/page 161 (9th ed) (done in the tutorial).]
(b) Show that when D is the unit disk, then there is an analytic function $f(z)$ for which equality holds,

$$
\sup _{z \in C}|\bar{z}-f(z)|=2 \frac{\operatorname{Area}(D)}{\operatorname{Length}(C)}
$$

Problem \# 3: Page 179 (8th ed) \#8/ page 178 (9th ed) \# 7

Extra problem to work on alongside this assignment. It will be presented in tutorials (but not graded.)

Problem \# 4: Suppose that $f(z)$ is entire and is doubly periodic in the sense that $f(z+1)=f(z+i)=f(z), \forall z \in \mathbb{C}$. Show that f is constant.
[Hint: first show that f is bounded in the closed unit square.]

