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188 ChapterS SequencesandSeriesofFunctions

integerN such that fut Q, < e l18M) forall n > N.If x e [0, 1] andn > N,then

lP"(x)  -  f (x) l :

Hence, the sequence {P,} converges uniformly to / on [0, 1]. This completes the
proof. r

The above proof, although not tenibly difficult, is not all that enlightening. It
is not easy to actually find the polynomials that approximate the function, and the
convergence of the polynomials is difficult to visualize. Neveftheless, a sequence
of polynomials that converges uniformly to / on [a, b] does exist.

The second result is even more surprising than the first. It states that there exists a
continuous, nowhere differentiable function. An example of such a function was first
published by Weierstrass in 1872, and it created quite a stir among mathematicians.
It had been taken for granted that continuous functions were differentiable at most
points; think about the type of graph you normally draw to represent a continuous
function. After rigorous definitions for continuity offunctions and convergence of
series were given, it was possible to see where these definitions led. It is imperative
that a simple mental picture of a continuous function be set aside; a continuous
function is a function that satisfies the def,nition of continuity. Results contrary to
intuition sometimes appear. When this occurs, either the definition has been poorly
formulated (and thus needs to be altered) or intuition needs to be expanded to include
new possibilities. In this case, since the definitions of continuity and convergence
are well established, it is the intuition that must adapt.

A construction of a continuous, nowhere differentiable function is given below.
(This example is different than the one published by Weierstrass.) This construction
uses a common device for creating continuous functions. Any function that is the
uniform limit of a series of continuous functions is itself continuous.

THEOREM 8.12 There exists a continuous function that is not differentiable at
any point.

Proof. Define a function g:lR. -+ IR by letting g@) : lxl for -I < x < 1 and
S@ -+ 2) : g(x) for all other values of x. (The graph of g can be found in Figure
8.4.) By definition, the function g is continuous on IR, 0 = g(x) < I for all x, and
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