Chapter 3
‘Compact and Connected Sets

In this chapter, we study two of the mo

metric spaces and especially in R”, Intuitively, we want to say that a set in ®” ig
compact when it ig closed and is contained in a bounded region, and that 2 set is
connected when it is “in one piece.” Figure 3-1 gives some examples, As usual,
itis necessary to turn these ideas into rigorous definitions. In each case the most

useful technical definition appears to be a little removed from our intuition, but

in the end we will see that it is in good accord with it. The fruitfulness of these

hotions will be revealed in Chapter 4, where they will be applied to the study
of continwous functions,

st important and useful kinds of sets in

§3.1 Compactness

esull, special to the meliic space R”
Recall from our discussion of co
ounded sequence has a convereent

» is discussed in §3.2,

t M be a merric space. A subset A C M is colled
if every sequence in A has a subseguence thar converges
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compact noncompact noncompact

connected

not connected

FIGURE 3-1  Compact and connected sets in 2

This property is equivalent to another property, called compactness, that
we shall now develop. This property is less obvious, and irg equivalence to
seéquential compactness is far from clear, at least at first.

Here is some terminology we need for our formal definition. Let M be a
metric space and A C M a subsel. A coyer of A is a collection {U:} of sets
whose union contains A: it is an open cever if each U; is open. A subcover of
a given coveris a subcollection of {U,-} whose union also contains 4 or, as we
say, covers A; it is a finite subcover if the subcollection contains only a finite
number of sets.

Open covers are not necessarily countable collections of open sets. For
example, the uncountable set of disks {D((x,0), D) | x € R} in R? covers the real
axis, and the subcollection of all disks D((n, 0), 1) centered at integer points on -
the real line forms a countable subcover. Note that the set of disks D((2r,0), 1) -

centered at even integer points on the real line does not form a subcovering .
(why?). "

3.1.2 Definition 4 subser A of a me

tric space M is called compact if every ;
open cover of A has a finite subcover

Here is the first major result, which links co

mpactness and sequential com-
pactness.
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3.1.3 Bolzano-Weierstrass Theore
compact iff it is sequentially compact,

M A subset of a metric space is

Some simple observations wiil help
theorem. First, g sequentially compact

t}

= cannot have any convergent subse-
, quence. To show directly that a compact set is bounded, use the fact that for any

Xp € A, the open balls D{xo,n),n=1,2,... » COver A, so there is a finjte subcover,
Note that in the definitions, one can take A =M, in which case one just

speaks of a compact metric space. We shall develop examples of compact
spaces in due course.

Another characterization of tompactness relates to completeness,

it is a
nseful technical tool used in the proof of the Bolzano-Weiersirass theore

.

3.1.4 Definition 4 set A

C M is called totally bounded if for each ¢ > (
there is a finite set {x,, ..

A} in M such that A C U¥, Dix;, &),

238, that o
'ence o 3.1.5 Theorem A mety
" bounded.

ic space is compact iff it is complete and totally

M be a

of sets Let A C M, and assume that M is complete. If we apply this theorem to
over of .. the metric space A, we conclude that A js cotnpact iff it is closed and totally
| as we ©: bounded.

a finite In Theorem 3.1.5, a few ¢

hings are obvious, others legs obvious. First, note
that D(x;, ¢) D{x1,e + d(x;, x1)), so that if

s. For :

e real i R= c+max{d(x2,x1),...,d(xN,xl)},

més) OIl)l - .- then A D{x,R) and 50 ¢ totally bounded set is bounded. This is consistent
1,0}, b B

! 1.~ with our earlier remark that compact sets are bounded.
) o ST N .
venng At this stage we do not have effectiv

& methods for telling when a given set
is compact. We will remedy this in the

next section.
Fevery 3.1.6 Example The en

tire real line R is not compact, for it is unbounded,
Another reason is that

: {Dn, 1) = i — Ln+llln=0,41,42,..
. com-

is an open cover of R but does not have a finite subcover (why?), ¢
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3.1.7 Example Let A =10,1). Find an open cover with no finite subcover

Solution Consider the open cover {]1/n,2[ | n = 1,2,3,...}. (Why does
the union contain all of A7) It clearly cannot have a finite subcover. This time,
compactness fails because A is. not closed; the point 0 is “missing” from A.
This collection is not a cover for [0,1]; in fact any open cover for [0, 1]
must have a finite subcover, because, as we prove in the next section, [0,1] is .
compact.” ¢

3.1.8 Example Give an example of a bounded and closed set thai is not
compact.

Solution Let M be any infinite set with the discrete metric: d(x,y) = 0 if
x=yand d(x,v) = 1if x #y. Clearly, M C D(xp,2) for any xg € M, and so M -
is bounded. Since it is already the entire metric space, it is closed. However,
it is not compact. Indeed, {D{x, 1/2) | x € M} is an open cover with no finite
subcover. &

3.1.9 Example A collection of closed sets {K,} in a metric space M is .
said to have the finite intersection property for A if the intersection of any finite
number of the K, with A is nonempty. Show that A C M is compact iff every
collection of closed sets with the finite interseciion property for A has nonempiy
intersection with A.

Solution First, assume A is compact. Let {F;} be a collection of closed sets -
and let U; = M\ F;, so that U; is open. Suppose that A N (NS F5) = @, Taking
complements, this means that the U; cover A. Since the covering is open, there
is a finite subcovering, say, A C Uy U---UUy. ThenA N (F1N--- N Fy) =2,
and so {F;} does not have the finite intersection property. Thus, if {F;} is a
collection of closed sets with the finite intersection property, then AN{F;} #@.
Conversely, let {U;} be an open covering of A and let F; = M\U;. Then
ANNZ Fi) = @, and so, by assumption, {F;} cannot have the finite intersection -
property for A. Thus, A N (F, N--- N Fy) = @ for some members F,..., Fy
of the collection. Hence, Uy, ..., Uy is the required finite subcover and thus A

is compact. ¢4




-§3.2 The Heine-Borel Theorem

Exercises for §3.1

L Show that A C M is sequentially compact iff every infinite subset of A
has an accumulation point in A.

2. Prove that {(x,y) e R*|0 < x < 1,0 < y < 1} is not compact.

3. Let M be complete and A C M be totally bounded. Show that cl(4) is
compact.

4, Lel xx — x be a convergent sequence in a metric space and let A =
{x1 a0, U {x}.
a. Show that A is compact.
b.  Verify that every open cover of A has a finite subcover.

5. Let M be a set with the discrete metric. Show that any infinite subset of M
is noncompact. Why does this not contradict the statement in Exercise 47

§3.2 The Heine-Borel Theorem

In Euclidean space we can easily tell if a set is compact from the following
theorem:

3.2.1 Heine-Borel Theorem A ser A ¢ R” is compact iff it is closed
and bounded.

One half of this was already indicated in §3.1. In fact, a compact set is
closed and bounded in any metric space. The converse must be special in view
of Example 3.1.8. Indeed, it is not even obvious that the closed interval [0, 1]in
R is compact. In fact, [0, 1] is compact, and one of the proofs of the Heine-Borel
theorem begins by treating this case.

3.2.2 Example Determine which of the following are compact:

2 [xeR|x>0}CR

b. [0,1JU[23]cR

¢ {xyeR|2+y <i}cR?
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Selution

&  Noncompact, because it is unbounded.

b.  Compact, because it is closed and bounded.

c Noncompact, because it is not closed. 4

3.2.3 Example Let x; be a sequence of points in R™ with ||| < 3 for all
k. Show that x; has a convergent subsequence.

Solution The set A = {x € R" | ||x|| < 3} is closed and bounded, and hence
compact. Since x; € A, we can apply the Bolzano-Weiersirass theorem to obtain
the conclusion. &

3.2.4 Example In the definition of a compact set, can “every" be replaced
by “some”?

Solution No. Let A = R, and let the open cover consist of the single open
set R. This has a finite subcover, namely, itself, but being unbounded, R is not
compact. &

3.2.5 Example Let A={0}U{1,1/2,...,Y/n,...}. Show directly that A
satisfies the definition of compaciness.

Solution Let {U;} be an arbitrary open cover of A. We must show that there
is a finite subcover. The point 0 lies in one of the open sets—relabeling if
needed, we can suppose that 0 € U/). Since U} is open and 1/n — 0, there is an
N such that 1/N, 1/(N+1),... lie in [/|. Relabeling again if needed, suppose
that [ € Us, ..., 1/(1 = N) € Uy. Then Uy,..., Uy is a finite subcover, since it
is a finite subcollection of the {U;} and it includes all of the points of A. Notice
that if A were the set {1,1/2,...}, then the argument would not work. In fact,
this set is not closed, and so it is not compact. 4

Exercises for §3.2

Which of the following sets are compact?

2 {xeR|0<x<1andxis irrational}

LS



cled Sets

3 for all

nd hence
to obtain

replaced

gle open
R is not

Iy thar A

hat there
beling if
ere is an
suppose
; since it
i. Notice

In fact,

§3.3 Nested Set Property 157

b. {tx,y»eR?|0<x<1}

¢ {GMeR | xy213n{kxy|2+y? < 5}

2. Let ry, r2,r3,... be an enumeration of the rational numbers in [0, 1], Show
that there is a convergent subsequence. :

3. LetM={(xy) € R*[ 1 +y* < 1} with the standard metric. Show that
A C M is compact iff 4 is closed.

4, Let A be a bounded set in B”. Prove that cl(A) is compact.

5. Let A be an infinite set in R with a single accumulation point in A. Must
A be compact?

§3.3 Nested Set Property

The next theorem is an important consequence of the Bolzano-Weierstrass the-
orefi.

3.3.1 Nested Set Property Let Fy be a sequence of compact nonempty
sels in a metric space M such that Fiy C Fyforall k=1,2,.... Then there is
at least one point in N, Fy.

Intaitively, the sets Fy, are nonempty and decreasing, and so it seems rea-
sonable that there should be a point in all of them. However, if the F, are not
compact, then the intersection can be empty (see Example 3.3.4). Thus, the
actual proof requires more care,

To prove the nested set property usin g the Bolzano-Weierstrass theorem, pick
X; € Fy for each k. The sequence x; has a convergent subsequence, since it lies
in the compact set Fy. The limit point lies in all of the sets F; because they are
closed (see Figure 3.3-1). An alternative proof is given at the end of the chapter,

One can rephrase the nested set property in terms of “growing sets” this way.
Let U = M\F,, so that the U, are open and Ugy 3 Up. Then U Uy # M is
equivalent to N2, Fy, # &. Thus, if M is a metric space and the open seis Uy are

increasing—i.e., Upy O Up—and have compact complements, then the union of
the Uy is nor all of M.
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Theorem Proofs for Chaprer 3

Theorem Proofs for Chapter 3

3.1.3 Bolzano-Weierstrass Theorem
compact iff it is sequentially compact,

Proof We begin with two lemmas,
Lemma 1 4 compact set A C M is closed.

Proof We will show that M\A is open. Let x ¢ M\A and consider the

following collection of open sets: Un={y | dy,x) > 1 /n}. Since every y € M

with y # x has d(y,x) > 0, ¥ lies in some U,. Thus, the U, cover A, and so there

must be a finite subcover, One of these has a largest index, say, Uy. Ife =1 /N,
- then, by construction, D(x, I/N) C M\A, and so M\Ais open. ¥

Lemma 2 pyumisq compact metric

space and B C M is closed, then B s
compact.

Proof Let {U:} be an open coverin
open. Thus {U;, V} is an open cover of
{U], ey UN, V}. Then {U;,_.

g of B and let V = M\B, so that V js
M. Therefore, M has a finite cover, say,
-, Un} is a finite open cover of B. ¥

Proof of 3.1.3 1LetA be compact. Assume there exists a sequence x; € A that
has no convergent subsequences. In particular, this means that X has infinitely
many distinct points, say, y;, Ya,.... Since there are no convergent subsequences,
there is some neighborhood Ui of y; containing no other y:. This is because
if every neighborhood of Y& contained another y;, we could, by choosing the
neighborhoods Doy, 1 /my,m=1,2,..., select a subsequence converging to y;.
We claim that the set {¥1:2,-..} is closed. Indeed, it has no accumulation
- points, by the assumnption that there are no convergent subsequences. Applying
Lemma 2 to Ly Jasa subset of A, we find that AZTRZ I T compact,
But {U;} is an open cover that has no finite subcover, a contradiction, Thus
X has a convergent subsequence, The limit lies in A, since A ig closed, by
‘Lemma 1.
Conversely, assume that A4 is sequentially compact. To prove that A ig
Ompact, let {U;} be an open cover of A, We need to prove that this has a
finite subcover, To show this, we proceed in several steps.

A subset of a metric space is
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Lemma 3 There is an r > 0 such that for each 'y € A, D(y,r) C U; for
some U;.

Proof If not, then for every integer n, there is some y, such that D(y,, 1/n)
is not contained in any U By hypothesis, v, has a convergent subsequence,
say, z, — z € A. Since the U; cover A, z € Uj, for some U, Choose € > 0
such that Diz,£) ¢ U, which is possible since U, is open. Choose N large
enough so that d(zx,2) < /2 and 1/N < ¢/2. Then Dizw, I/N) C Uy, a
contradiction. ¥

Lemma 4 A is totally bounded (see Definition 3.1.4).

Proof If A is not totally bounded, then for some £ > 0 we cannot cover A
with finitely many disks. Choose y; € A and y2 € A\D(y1,¢). By assumption,
we can repeat; choose ¥, € A\[D(y;,&) U --- U D{yr—1,8)]. This is a sequence
with d(¥,, y) = € for all n and m, and so y, has no convergent subsequence, a
contradiction to the assumption that A is sequentially compact. ¥

To complete our proof, let r be as in Lemma 3. By Lemma 4 we can write
A C Dy, U- U D(y,7) for finitety many y;. By Lemma 3, Dy, n C U,-j,
j=1,...,n, for some index i;. Then U, ... ,U;,, coverA. B

3.1.5 Theorem A metric space is compact {ff it is complete and towlly

bounded.

Proof First assume that M is compact. By 3.1.3, it is sequentially compact.
Thus, if x; is a Cauchy sequence, it has a convergent subsequence, and so, as
in 1.4.7, the whole sequence converges. Thus M is complete, It is also totally
bounded, by Lemma 4.

Conversely, assume that M is complete and totally bounded. By 313, itis
enough to show that M is sequentially compact. Let y, be a sequence in M. We
can assume that the y; are all distinct, for if y; has infinitely many repetitions,
there is a trivially convergent subsequence, and if there are finite repetitions
we may delete them. Given an integer N, cover M with finitely maay balls,
D(xp,, 1/N), ..o, Dlagy, 1/N). An infinite number of the y; lie in one of these
balls. Start with ¥ = 1. Write M = D{x;,, DU - U D(xp,, 1), and so we can
select a subsequence of y; lying entirely in one of these balls. Repeat for N=2,
getting a further subsequence lying in a fixed ball of radius 1 /2, and so on. Now
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U jor choose the “diagonal subsequence, the first member from the firgt S€quence, the
second from the Second, and sg op This sequence 1s Cauchy ang since M ig
complete, it converges, g
' 1/0)
Juence, 3.2.1 Heine-Borel Theorem Aset A = Jpn is compacy iF it is closeq
£>0 y and boundeg
! large
Uis 2 Proof We have already proved that compacy Sets ate closed ang bounded. we
must now show that a set 4 C R”js compact if it jq closed and bounded We
will give two Proofs of this.

First Proof This proof g based on the Bolzano-We;ersU‘ass theorem and the
ver A fact that any bounded $equence in R hag 5 convergent subsequence, proved in
stion, : 14.3. In fact, we shajy Prove that a closed ang bounded set 4 Is sequentially com.
lence pact. Let x; = ():j.,xf, »X7) € R be 5 Sequence. Since 4 g bounded, x} has 2
e, a convergent subsequence, say, x's 0. Then 40 has a convergent subsequence

; S8Y X g0y Continuing, we get a further subsequencexf w =, X0 )y
all of whose components converge, Thug k) CONvergag in R" The limit Heg
In A since A g closed. Thus 4 is Sequentially Compact, and so jg Compact
vrite
(};"! £
4 Second Proof This proof yges the definition of compactness 1 terms of
open covers directly. We begin with 3 Special cage
2ty

Lemms 1 Closed interyqps la,b) in R gre compact.

et Proof Letif = { Ui} be an Open covering of la, b]. Defipe
[?S C={xelg, b] | the set la,x] can be
Y

We want 1o show




