Practice Problems for the space $C(X)$ and Weierstrass Approx Thm

From the text:

pp. 168-169, \# 7, 10, 14, 15 (Hint: $\left|x-\frac{1}{2}\right|$ is continuous but not differentiable at $x=\frac{1}{2}$); 20, fill in the details of Application 11.6.

Other Problems:

1. Assume $\left(x_{n}(t)\right)_{n \in \mathbb{N}}$ is a sequence of continuous functions on $[0, T], x_{n} \rightarrow x$ uniformly on $t \in[0, T]$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous. Show that $f\left(x_{n}\right) \rightarrow f(x)$ uniformly on $t \in[0, T]$.
2. Show that there cannot be a sequence of polynomials P_{n} for which $P_{n} \rightarrow \sin x$ uniformly on \mathbb{R}.
3. Suppose f is continuous on $[0,1]$. Find the limit, and prove your answer:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}(n+1) x^{n} f(x) d x
$$

Hints: use $\int_{0}^{1}(n+1) x^{n} d x=1$ and the trick from the proof of Weierstrass to formulate the limit statement as an estimate of an integral. Divide the interval of integration into two pieces, $[0,1-\delta] \cup(1-\delta, 1]$, and treat each one separately.
4. Define $P_{t}(x)=\frac{1}{\pi} \frac{t}{x^{2}+t^{2}}$.
(a) verify the following properties of $P_{t}(x)$:

1. $P_{t}(x)>0$ for all $x \in \mathbb{R}, t>0$;
2. $\int_{-\infty}^{\infty} P_{t}(x) d x=1$ for all $t>0$;
3. For all $\delta>0$,

$$
\lim _{t \rightarrow 0^{+}}\left[\int_{-\infty}^{-\delta} P_{t}(x) d x+\int_{\delta}^{\infty} P_{t}(x) d x\right]=0
$$

(b) Let f be bounded $(|f(x)| \leq M \forall x \in \mathbb{R}$, $)$ and continuous on \mathbb{R}. Prove that

$$
\lim _{t \rightarrow 0^{+}} \int_{-\infty}^{\infty} f(x+y) P_{t}(x) d x=f(y)
$$

for all $y \in \mathbb{R}$.

