Math 4A3 / practice pbs on Fourier series

1. Assume that $f \in C^{2 \pi} \cap C^{1}(\mathbb{R})$, with $\int_{-\pi}^{\pi} f(x) d x=0$. Show that

$$
\int_{-\pi}^{\pi}[f(x)]^{2} d x \leq \int_{-\pi}^{\pi}\left[f^{\prime}(x)\right]^{2} d x
$$

with equality if and only if $f(x)=a \cos x+b \sin x$ for a, b constant.
[Hint: Find the Fourier Series for f^{\prime} in terms of the coefficients for f, and use Parseval's identity.]
2. Assume that f is 2π-periodic, and continuous on $[-\pi, 0) \cup(0, \pi]$, with a jump discontinuity at $x=0$,

$$
f(0-)=\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)=f(0+) .
$$

With f as above, prove that the Cesaro sums of the Fourier Series of f converge to the half-way point of the jump discontinuity:

$$
\lim _{n \rightarrow \infty} \sigma_{n}(f)(0)=\frac{1}{\pi} \lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(t) K_{n}(t) d t=\frac{1}{2}(f(0-)+f(0+))
$$

[Hint: K_{n} is even, so $\int_{0}^{\pi} K_{n}(t) d t=\frac{\pi}{2}=\int_{-\pi}^{0} K_{n}(t) d t$. Go back over the proof of Theorem 15.7 with this in mind.]

From the text:
p. $245 \# 1,2 ;$ p. 250, \# 7;

