Assignment Previewer

Math 2C03 2021 Assignment #3 (18451606)

Question	1	2	3	4	5	6	7	8	9	10

1. Question Details

ZillDiffEQ9 2.3.028.EP. [4603934]

Consider the following differential equations.

$$y \frac{dx}{dy} - x = 6y^2$$
, $x(9) = 1$

Find the coefficient function P(y) when the given differential equation is written in the standard form $\frac{dx}{dy} + P(y)x = f(y)$.

$$P(y) =$$

Find the integrating factor for the differential equation.

$$e^{\int P(y)dy} =$$

Solve the given initial-value problem.

Give the largest interval I over which the solution is defined. (Enter your answer using interval notation.)

2. Question Details

ZillDiffEQ9 2.3.029. [3876533]

Solve the given initial-value problem.

$$L\frac{di}{dt} + Ri = E$$
, $i(0) = i_0$, L , R , E , i_0 constants

$$i(t) =$$

Give the largest interval I over which the solution is defined. (Enter your answer using interval notation.)

1 of 4

3. Question Details

ZillDiffEQ9 2.3.034. [3876514]

Solve the given initial-value problem.

$$x(x + 1)\frac{dy}{dx} + xy = 1, \quad y(e) = 1$$

$$y(x) =$$

Give the largest interval I over which the solution is defined. (Enter your answer using interval notation.)

4. **Question Details**

ZillDiffEQ9 2.3.052. [3744668]

Reread the discussion following Example 5 in Section 2.3. Construct a linear first-order differential equation for which all solutions are asymptotic to the line y = 5x - 8 as $x \to \infty$.

$$y' + y = -5x + 8$$

$$y' + y = 5x - 8$$

$$y' + y = 8x - 3$$

$$y' + y = 5x/8$$

$$y' + y = 5x - 3$$

5. Question Details

ZillDiffEQ9 2.3.501.XP. [3876614]

Consider the initial-value problem $y' + e^{x}y = f(x)$, y(0) = 1. Express the solution of the IVP for x > 0 as a nonelementary integral when f(x) = 1.

$$y = e^{-e^{x}} \left(\int_{0}^{x} \left(\right) dt + \right) dt +$$

What is the solution when f(x) = 0?

What is the solution when $f(x) = e^x$?

Need Help? Read It

_		
6.	Question Details	ZillDiffE

Q9 4.1.010. [3894050]

Find the largest interval centered about x = 0 for which the given initial-value problem has a unique solution. (Enter your answer using interval notation.)

$$y'' + (\tan(x))y = e^{x}, \quad y(0) = 1, \quad y'(0) = 0$$

Need Help? Read It

7. Question Details

ZillDiffEQ9 4.1.016. [3894069]

Determine whether the given set of functions is linearly independent on the interval $(-\infty, \infty)$.

$$f_1(x) = 0$$
, $f_2(x) = x$, $f_3(x) = e^x$

- linearly dependent
- linearly independent

Need Help?

8. Question Details

ZillDiffEQ9 4.1.018. [3876439]

Determine whether the given set of functions is linearly dependent or linearly independent on the interval $(-\infty, \infty)$.

$$f_1(x) = \cos(2x), \quad f_2(x) = 1, \quad f_3(x) = \cos^2(x)$$

- linearly dependent
- linearly independent

Need Help?

Read It

9. **Ouestion Details**

ZillDiffEQ9 4.1.026. [3876436]

Consider the differential equation

$$4y'' - 4y' + y = 0$$
; $e^{x/2}$, $xe^{x/2}$.

Verify that the functions $e^{x/2}$ and $xe^{x/2}$ form a fundamental set of solutions of the differential equation on the interval $(-\infty, \infty)$.

The functions satisfy the differential equation and are linearly independent since

$$W(e^{x/2}, xe^{x/2}) =$$
 $\neq 0 \text{ for } -\infty < x < \infty.$

Form the general solution.

Need Help? Read It

ZillDiffEQ9 4.1.028. [3894068]

10. Question Details

Consider the differential equation

$$x^2y'' + xy' + y = 0; \quad \cos(\ln(x)), \, \sin(\ln(x)), \, (0, \, \infty).$$

Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval.

The functions satisfy the differential equation and are linearly independent since

$$W(\cos(\ln(x)), \sin(\ln(x))) =$$
 $\neq 0 \text{ for } 0 < x < \infty.$

Form the general solution.

Assignment Details

Name (AID): Math 2C03 2021 Assignment #3 (18451606)

Submissions Allowed: 5 Category: Homework

Code: Locked: Yes

Author: Lia Bronsard (bronsard@mcmaster.ca)

Last Saved: Jan 29, 2021 10:54 PM EST

Permission: Protected Randomization: Person Which graded: Last

Feedback Settings

Before due date **Question Score** Assignment Score Publish Essay Scores **Question Part Score**

Mark Help/Hints Response Save Work After due date Question Score Assignment Score Publish Essay Scores Key

Question Part Score

Solution Mark

Add Practice Button

Help/Hints Response

2021-01-30, 9:32 p.m. 4 of 4