Math 2C03 Practice problem set #2 Jan2021 (18369946)

ZillDiffEQ9 2.1.001. [3876604]

Reproduce the given computer-generated direction field. Then sketch an approximate solution curve that passes through each of the indicated points.

$$\frac{dy}{dx} = x^2 - y^2$$

(a)
$$y(-2) = 1$$

(b)
$$y(3) = 0$$

Need Help? Read It

ZillDiffEQ9 2.1.003. [3876592]

Reproduce the given computer-generated direction field. Then sketch an approximate solution curve that passes through each of the indicated points.

$$\frac{dy}{dx} = 1 - xy$$

(a)
$$y(0) = 0$$

Assignment Previewer

Need Help? Read It

The given figure represents the graph of f(y). Sketch a direction field over an appropriate grid for dy/dx = f(y).

Need Help?

Read It

ZillDiffEQ9 2.1.019. [3748710]

Consider the autonomous first-order differential equation $dy/dx = y - y^3$ and the initial condition $y(0) = y_0$. Sketch the graph of a typical solution y(x) when y_0 has the given values.

(a)
$$y_0 > 1$$

(b)
$$0 < y_0 < 1$$

(d)
$$y_0 < -1$$

ZillDiffEQ9 2.1.021. [4568199]

Consider the following autonomous first-order differential equation.

$$\frac{dy}{dx} = y^2 - \frac{2}{2}y$$

Find the critical points and phase portrait of the given differential equation.

Classify each critical point as asymptotically stable, unstable, or semi-stable. (List the critical points according to their stability. Enter your answers as a comma-separated list. If there are no critical points in a certain category, enter NONE.)

asymptotically stable

unstable

semi-stable

ZillDiffEQ9 2.1.023. [3748722]

Consider the following autonomous first-order differential equation.

$$\frac{dy}{dx} = (y - 3)^4$$

Find the critical points and phase portrait of the given differential equation.

Classify each critical point as asymptotically stable, unstable, or semi-stable. (List the critical points according to their stability. Enter your answers as a comma-separated list. If there are no critical points in a certain category, enter NONE.)

asymptotically stable

unstable

semi-stable

Sketch typical solution curves in the regions in the *xy*-plane determined by the graphs of the equilibrium solutions.

ZillDiffEQ9 2.1.025. [3876574]

Consider the following autonomous first-order differential equation.

$$\frac{dy}{dx} = y^2(9 - y^2)$$

Find the critical points and phase portrait of the given differential equation.

Classify each critical point as asymptotically stable, unstable, or semi-stable. (List the critical points according to their stability. Enter your answers as a comma-separated list. If there are no critical points in a certain category, enter NONE.)

asymptotically stable

unstable

semi-stable

Sketch typical solution curves in the regions in the *xy*-plane determined by the graphs of the equilibrium solutions.

ZillDiffEQ9 2.1.027. [4805224]

Consider the following autonomous first-order differential equation.

$$\frac{dy}{dx} = y \ln(y + 2)$$

Find the critical points and phase portrait of the given differential equation.

Classify each critical point as asymptotically stable, unstable, or semi-stable. (List the critical points according to their stability. Enter your answers as a comma-separated list. If there are no critical points in a certain category, enter NONE.)

asymptotically stable

unstable

semi-stable

Fill	in	the	h	lan	ks

The linear DE, y' + ky = A, where k and A are constants, is autonomous. The critical point

of the equation is a(n) ---Select--- for k > 0 and a(n) ---Select--- for k < 0.

Need Help? Read It

7	Watch It
_	

10. Question Details ZillDiffEQ9 2.R.013. [3876551]

ZillDiffEQ9 2.R.001. [4568072]

Construct an autonomous first-order differential equation dy/dx = f(y) whose phase portrait is consistent with the given

$$\frac{dy}{dx} =$$

Need Help? Read It

Question Details

ZillDiffEQ9 2.R.035. [3876545]

Solve the given initial-value problem for $y_0 > 0$.

$$\frac{dy}{dx} = \sqrt{y}, \quad y(x_0) = y_0$$

$$y(x) =$$

Find the largest interval I on which the solution is defined. (Enter your answer using interval notation.)

Need Help?

Read It

ZillDiffEQ9 3.2.003.EP. [4903648]

A model for the population P(t) in a suburb of a large city is given by the initial-value problem

$$\frac{dP}{dt} = P(10^{-1} - 10^{-7}P), \qquad P(0) = 4000,$$

where t is measured in months.

Find the population P of the suburb at time t.

$$P(t) =$$

What is the limiting value of the population?

At what time will the population be equal to one-half of this limiting value? (Round your answer to one decimal place.)

months

Need Help? Read It Watch It

23 of 27

2021-01-30, 9:31 p.m.

13. Question Details ZillDiffEQ9 3.2.011. [3894163]

A tank in the form of a right-circular cylinder standing on end is leaking water through a circular hole in its bottom. As we saw in (10) of Section 1.3, when friction and contraction of water at the hole are ignored, the height h of water in the tank in feet after t seconds is described by

$$\frac{dh}{dt} = -\frac{A_h}{A_w} \sqrt{2gh},$$

where $A_{_{W}}$ and $A_{_{h}}$ are the cross-sectional areas of the water and the hole in square feet, respectively.

(a) Solve for h(t) if the initial height of the water is H. Give its interval I of definition in terms of the symbols $A_{W'}$, $A_{h'}$, and H. Use g=32 ft/s².

$$h(t) =$$
 , $0 \le t \le$

By hand, sketch the graph of h(t).

(b) Suppose the tank is 13 ft high and has radius 3 ft and the circular hole has radius $\frac{1}{2}$ in. If the tank is initially full, how long will it take to empty? (Round your answer to two decimal places.)

Need Help? Read It

ZillDiffEQ9 3.2.019. [3745191]

(a) A simple model for the shape of a tsunami is given by

$$\frac{dW}{dx} = W\sqrt{4 - 2W},$$

where W(x) > 0 is the height of the wave expressed as a function of its position relative to a point offshore. By inspection, find all constant solutions of the DE. (Enter your answers as a comma-separated list.)

(b) Solve the differential equation in part (a). A CAS may be useful for integration.

W(x) =

(c) Use a graphing utility to obtain the graphs of all solutions that satisfy the initial condition W(0) = 2.

Need Help?

Read It

ZillDiffEQ9 3.2.021. [4568162]

Consider the differential equation

$$\frac{dP}{dt} = kP^{1+c},$$

where k > 0 and $c \ge 0$. In Section 3.1 we saw that in the case c = 0 the linear differential equation dP/dt = kP is a mathematical model of a population P(t) that exhibits unbounded growth over the infinite time interval $[0, \infty)$, that is, $P(t) \to \infty$ as $t \to \infty$. See Example 1 in that section.

(a) Suppose for c = 0.01 that the nonlinear differential equation

$$\frac{dP}{dt} = kP^{1.01}, \, k > 0,$$

is a mathematical model for a population of small animals, where time t is measured in months. Solve the differential equation subject to the initial condition P(0) = 10 and the fact that the animal population has doubled in 7 months. (Round the coefficient of t to six decimal places.)

$$P(t) =$$

(b) The differential equation in part (a) is called a **doomsday equation** because the population P(t) exhibits unbounded growth over a finite time interval (0, T), that is, there is some time T such that $P(t) \to \infty$ as $t \to T^-$. Find T. (Round your answer to the nearest month.)

$$T =$$
 months

(c) From part (a), what is P(60)? P(120)? (Round your answers to the nearest whole number.)

$$P(60) =$$
 $P(120) =$

Need Help? Read It Watch It

Assignment Details

Name (AID): Math 2C03 Practice problem set #2 Jan2021 (18369946)

Submissions Allowed: 20 Category: Homework

Code: Locked: **Yes**

Author: Lia Bronsard (bronsard@mcmaster.ca)
Last Saved: Jan 30, 2021 01:57 PM EST

Permission: **Protected**Randomization: **Person**Which graded: **Last**

Feedback Settings

Before due date Question Score Assignment Score Publish Essay Scores Question Part Score

Help/Hints
Response
Save Work
After due date
Question Score
Assignment Score
Publish Essay Scores
Key

Question Part Score

Solution Mark

Mark

Add Practice Button

Help/Hints Response