Math 2C03 2021 Assignment #4 (18512423)

								Г
Question	1	2	3	4	5	6	7	

Description

constant coeff

1. Question Details ZillDiffEQ9 4.3.014. [4568061]

Find the general solution of the given second-order differential equation.

8

$$2y'' - 5y' + 6y = 0$$

$$y(x) =$$

Need Help?	Read It	Watch It
reced ricip:	Itteau	VVACOTITE

2. Question Details ZillDiffEQ9 4.3.024.EP. [4903581]

Consider the following higher-order differential equation.

$$y^{(4)} - 2y'' + y = 0$$

Find all the roots of the auxiliary equation. (Enter your answer as a comma-separated list.)

Find the general solution of the given equation.

Need Help? Read It

3. Question Details ZillDiffEQ9 4.3.026. [4568062]

Find the general solution of the given higher-order differential equation.

$$\frac{d^4y}{dx^4} - 23\frac{d^2y}{dx^2} - 50y = 0$$

Need Help? Read It Watch It

4. Question Details ZillDiffEQ9 4.3.030. [4568014]

Solve the given initial-value problem.

$$\frac{d^2y}{d\theta^2} + y = 0, \quad y(\pi/3) = 0, \quad y'(\pi/3) = 4$$

$$y(\theta) =$$

Need Help?	Read It	Watch It
Meed Help:	Read It	vvatenit

5. Question Details

ZillDiffEQ9 4.3.035.MI.SA. [4605517]

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Solve the given initial-value problem.

$$y''' + 8y'' + 16y' = 0$$
, $y(0) = 0$, $y'(0) = 1$, $y''(0) = -7$

Need Help? Read It Watch It

6. Question Details ZillDiffEQ9 4.3.043. [4568153]

Match the solution curve with one of the differential equations.

- y'' + y = 0
- v'' + 4v = 0
- v'' 4v' 5v = 0
- y'' + 2y' + y = 0
- y'' 7y' + 12y =
- y'' + 2y' + 2y = 0

Explain your reasoning. (Assume that k, k_1 , and k_2 are all positive.)

- The auxiliary equation should have one positive and one negative root, so that the solution has the form $c_1e^k1^x + c_2e^{-k}2^x$.
- The auxiliary equation should have a repeated negative root, so that the solution has the form $c_1e^{-kx}+c_2xe^{-kx}$.
- The auxiliary equation should have two positive roots, so that the solution has the form $c_1e^{k_1x}+c_2e^{k_2x}$.
- The auxiliary equation should have a pair of complex roots $\alpha \pm \beta i$ where $\alpha < 0$, so that the solution has the form $e^{\alpha x}(c_1 \cos(\beta x) + c_2 \sin(\beta x))$.
- The differential equation should have the form $y'' + k^2y = 0$ where k = 1, so that the period of the solution is 2π
- The differential equation should have the form $y'' + k^2y = 0$ where k = 2, so that the period of the solution is π .

Need Help?

Read It

Watch It

7. Question Details

ZillDiffEQ9 4.3.045. [4568115]

Match the solution curve with one of the differential equations.

Assignment Previewer 2021-02-21 18:38

$$y'' + y = 0$$

$$y'' + 2y' + y = 0$$

$$y'' - 3y' - 4y = 0$$

$$y'' + 2y' + 2y = 0$$

$$y'' - 5y' + 4y = 0$$

$$y'' + 9y = 0$$

Explain your reasoning. (Assume that k, k_1 , and k_2 are all positive.)

- The auxiliary equation should have one positive and one negative root, so that the solution has the form 0 $c_1 e^{k_1 x} + c_2 e^{-k_2 x}$.
- The auxiliary equation should have a repeated negative root, so that the solution has the form $c_1e^{-kx}+c_2xe^{-kx}$.
- The auxiliary equation should have a pair of complex roots $\alpha \pm \beta i$ where $\alpha < 0$, so that the solution has the 0 form $e^{\alpha x}(c_1 \cos(\beta x) + c_2 \sin(\beta x))$.
- The differential equation should have the form $y'' + k^2y = 0$ where k = 2 so that the period of the solution is π .
- The differential equation should have the form $y'' + k^2y = 0$ where k = 1 so that the period of the solution is
- The auxiliary equation should have two positive roots, so that the solution has the form $c_1e^k1^x + c_2e^k2^x$.

Need Help?

Watch It

Question Details ZillDiffEQ9 4.3.056. [3894091] R.

Find a homogeneous linear differential equation with constant coefficients whose general solution is given.

$$y = c_1 + c_2 e^{2x} \cos(4x) + c_3 e^{2x} \sin(4x)$$

$$y'' + 4y' + 20y = 0$$

$$y''' - 4y'' + 20y' = 0$$

$$y'' + 20y' + 16y = 0$$

$$y''' - 4y'' - 20y' + 16y = 0$$

$$y''' - 4y'' + 20y' + 16y = 0$$

Need Help? Read It

Assignment Details

Name (AID): Math 2C03 2021 Assignment #4 (18512423)

Submissions Allowed: 7 Category: Homework

Code: Locked: Yes

Author: Lia Bronsard (bronsard@mcmaster.ca)

Last Saved: Feb 11, 2021 10:59 PM EST

Permission: Protected Randomization: Person Which graded: Last

Feedback Settings

Before due date Question Score Assignment Score Publish Essay Scores **Question Part Score**

Mark

Add Practice Button

Help/Hints Response Save Work After due date Question Score Assignment Score Publish Essay Scores

Key

Question Part Score

Solution Mark

Add Practice Button

Help/Hints Response