Assignment Previewer 2021-03-06 08:30

Math	2003	2021	Assignment #6	(18560161)
watri	2003	2021	Assignment #6	(100001101)

Question	1	2	3	4

1. Question Details ZillDiffEQ9 5.1.026. [4568119]

A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to $\sqrt{2}$ times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 3 ft/s. (Use g = 32 ft/s² for the acceleration due to gravity.)

x(t) =

Find the time at which the mass attains its extreme displacement from the equilibrium position.

t =

What is the position of the mass at this instant?

The extreme displacement is $x = \frac{1}{x}$ feet.

Need Help? Read It Watch It

2. Question Details ZillDiffEQ9 5.1.031. [4568277]

A mass weighing 14 pounds stretches a spring 2 feet. The mass is attached to a dashpot device that offers a damping force numerically equal to β (β > 0) times the instantaneous velocity. Determine the values of the damping constant β so that the subsequent motion is overdamped, critically damped, and underdamped. (If an answer is an interval, use interval notation. Use g = 32 ft/s² for the acceleration due to gravity.)

(a) overdamped

(b) critically damped

(c) underdamped

Need Help? Read It Watch It

3. Question Details ZillDiffEQ9 5.R.012. [3877307]

A mass weighing 12 pounds stretches a spring 2 feet. The mass is initially released from a point 1 foot below the equilibrium position with an upward velocity of 4 ft/s. (Use g = 32 ft/s² for the acceleration due to gravity.)

(a) Find the equation of motion.

x(t) =

(b) What are the amplitude, period, and frequency of the simple harmonic motion?

amplitude

period s

frequency cycles/s

(c) At what times does the mass return to the point 1 foot below the equilibrium position? (Enter your answers as a commaseparated list. Let *n* represent an arbitrary integer.)

t = s

(d) At what times does the mass pass through the equilibrium position moving upward? (Let *n* represent an arbitrary integer.)

t = | s

At what times does the mass pass through the equilibrium position moving downward? (Let n represent an arbitrary integer.)

t = |

(e) What is the velocity of the mass at $t = 3\pi/16$ s?

ft/s

(f) At what times is the velocity zero? (Let n represent an arbitrary integer.)

t =

Need Help? Read It

Assignment Previewer 2021-03-06 08:30

4. Question Details ZillDiffEQ9 5.R.018. [3897289]

Find a particular solution for $x'' + 2\lambda x' + \omega^2 x = A$, where A is a constant force.

$$x_p(t) =$$

Need Help? Read It

Assignment Details

Name (AID): Math 2C03 2021 Assignment #6 (18560161)

Submissions Allowed: **7** Category: **Homework**

Code: Locked: **Yes**

Author: Lia Bronsard (bronsard@mcmaster.ca)

Last Saved: Feb 26, 2021 01:38 PM EST

Permission: **Protected**Randomization: **Person**Which graded: **Last**

Feedback Settings

Before due date

Question Score

Assignment Score

Publish Essay Scores

Question Part Score

Mark

Add Practice Button

Help/Hints Response

Save Work

After due date

Question Score

Assignment Score

Publish Essay Scores

Key

Question Part Score

Solution

Mark

Add Practice Button

Help/Hints

Response