Math 2C03 2021 Practice pb set #7 (18594663)

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

1. Question Details ZillDiffEQ9 4.R.033. [3894150]

Write down the form of the general solution $y = y_c + y_p$ of the given differential equation in the two cases $\omega \neq \alpha$ and $\omega = \alpha$. Do not determine the coefficients in y_p .

$$y'' + \omega^2 y = \sin(\alpha x)$$

$$\omega \neq \alpha \qquad y =$$

$$\omega = \alpha \quad y =$$

Need	Help?	Read It

2. Question Details ZillDiffEQ9 5.1.019. [3748685]

A model of a spring/mass system is $4x'' + e^{-0.1t}x = 0$. By inspection of the differential equation only, discuss the behavior of the system over a long period of time.

For large values of t the differential equation is approximated by x'' = 0. The solution of this equation is the linear

function
$$x =$$
 . Thus, for large time,

. Thus, for large time, the restoring force will have ---Sele

l have	Select	0	to the poir	ıt

where the spring is incapable of returning the mass, and the spring will simply ---Select---

Need Help? Read It

3. Question Details ZillDiffEQ9 5.1.035. [4568307]

A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. Starting at t = 0, an external force equal to $f(t) = 4 \sin(4t)$ is applied to the system. Find the equation of motion if the surrounding medium offers a damping force that is numerically equal to 8 times the instantaneous velocity. (Use g = 32 ft/s² for the acceleration due to gravity.)

$$x(t) = \int_{-\infty}^{\infty} ft$$

Assignment Previewer 2021-03-06 08:39

4.	Question Details	ZillDiffEQ9 5.1.037. [[4568006]

When a mass of 2 kilograms is attached to a spring whose constant is 32 N/m, it comes to rest in the equilibrium position. Starting at t = 0, a force equal to $f(t) = 102e^{-2t}\cos(4t)$ is applied to the system. Find the equation of motion in the absence of damping.

$$x(t) =$$
 m

Need Help?	Read It	Watch It

5. Question Details ZillDiffEQ9 5.1.027. [3748759]

A 1-kilogram mass is attached to a spring whose constant is 21 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equations of motion if the following is true.

(a) the mass is initially released from rest from a point 1 meter below the equilibrium position

$$x(t) = \int_{t}^{t} m$$

(b) the mass is initially released from a point 1 meter below the equilibrium position with an upward velocity of 11 m/s

$$x(t) =$$
 m

Need Help?	Read It	Watch It
------------	---------	----------

6. Question Details ZillDiffEQ9 5.1.029. [4568030]

A force of 4 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force numerically equal to 0.4 times the instantaneous velocity.

(a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position.

$$x(t) = \int_{-\infty}^{\infty} ft$$

(b) Express the equation of motion in the form $x(t) = Ae^{-\lambda t} \sin\left(\sqrt{\omega^2 - \lambda^2}t + \varphi\right)$, which is given in (23) of Section

3.8. (Round φ to two decimal places.)

$$x(t) = \int_{-\infty}^{\infty} ft$$

(c) Find the first time at which the mass passes through the equilibrium position heading upward. (Round your answer to three decimal places.)

	_
	_

Need Help?	Read It	Watch It
------------	---------	----------

7. Question Details

ZillDiffEQ9 4.7.003. [3894127]

Solve the given differential equation.

$$6xy'' + 6y' = 0$$

$$y(x) = \begin{vmatrix} & & \\ & & \\ & & \end{vmatrix}, x > 0$$

Need Help? Read It

8. Question Details

ZillDiffEQ9 4.7.005. [3894179]

Solve the given differential equation.

$$x^2y'' + xy' + 49y = 0$$

$$y(x) = \begin{cases} x > 0 \end{cases}$$

Need Help? Read It

9. Question Details

ZillDiffEQ9 4.7.009. [3894211]

Solve the given differential equation.

$$36x^2y'' + 36xy' + y = 0$$

$$y(x) =$$
 , $x > 0$

Need Help? Read It

10. Question Details

ZillDiffEQ9 4.7.011. [3894136]

Solve the given differential equation.

$$x^2y'' + 9xy' + 16y = 0$$

Need Help? Read It

11. Question Details

ZillDiffEQ9 4.7.015. [3894141]

Solve the given differential equation.

$$x^3y^{\prime\prime\prime}-6y=0$$

Need Help? Re

12. Question Details

ZillDiffEQ9 4.7.019. [3894128]

Solve the given differential equation by variation of parameters.

$$xy'' - 6y' = x^6$$

$$y(x) = \begin{cases} x > 0 \end{cases}$$

Need Help? Read It

13. Question Details

ZillDiffEQ9 4.7.021.MI. [3894185]

Solve the given differential equation by variation of parameters.

$$x^2y^{\prime\prime} - xy^{\prime} + y = 10x$$

Need Help? Read It

14. Question Details

ZillDiffEQ9 4.7.023. [3894105]

Solve the given differential equation by variation of parameters.

$$x^2y^{\prime\prime} + xy^{\prime} - y = \ln(x)$$

$$y(x) = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}, x > 0$$

Need Help? Read It

15. Question Details

ZillDiffEQ9 4.7.031. [3894135]

Use the substitution $x=e^t$ to transform the given Cauchy-Euler equation to a differential equation with constant coefficients. (Use yp for $\frac{dy}{dt}$ and ypp for $\frac{d^2y}{dt^2}$.)

$$x^2y'' + 9xy' - 20y = 0$$

Solve the original equation by solving the new equation using the procedures in Sections 4.3-4.5.

$$y(x) =$$

Need Help? Read It

Assignment Previewer 2021-03-06 08:39

16. Question Details ZillDiffEQ9 4.7.033. [3894177]

Use the substitution $x = e^t$ to transform the given Cauchy-Euler equation to a differential equation with constant coefficients.

(Use
$$yp$$
 for $\frac{dy}{dt}$ and ypp for $\frac{d^2y}{dt^2}$.)

$$x^2y'' + 4xy' + 2y = x^2$$

Solve the original equation by solving the new equation using the procedures in Sections 4.3-4.5.

Assignment Details

Name (AID): Math 2C03 2021 Practice pb set #7 (18594663)

Submissions Allowed: 20 Category: Homework

Code: Locked: **No**

Author: Lia Bronsard (bronsard@mcmaster.ca)

Last Saved: Mar 6, 2021 08:38 AM EST

Permission: **Protected**Randomization: **Person**Which graded: **Last**

Feedback Settings

Before due date Question Score Assignment Score Publish Essay Scores Question Part Score

Mark
Help/Hints
Response
Save Work
After due date
Question Score
Assignment Score
Publish Essay Scores
Question Part Score
Solution

Mark

Add Practice Button

Help/Hints Response