Math 2C03 2021 Assignment #9 (18669919)

Due: Fri, Apr 2, 2021 11:00 PM EDT

Question 1 2 3 4 5 6 7 8 9 10

1. Question Details

ZillDiffEQ9 7.1.008.MI.SA. [4605471]

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Consider the following function.

Use Definition 7.1.1, to find $\mathcal{L}\{f(t)\}$.

Need Help? Read It

Question Details

ZillDiffEQ9 7.1.038. [3897235]

Find $\mathcal{L}{f(t)}$ by first using a trigonometric identity. (Write your answer as a function of s.)

$$f(t) = \cos^2(t)$$

$$\mathscr{L}{f(t)} =$$

Need Help? Read It

3. Question Details

ZillDiffEQ9 7.1.050. [3744680]

Under what conditions is a linear function f(x) = mx + b, $m \ne 0$, a linear transform? (Enter conditions as a comma-separated list of equations and inequalities. If there are no conditions under which the function is a linear transform, enter NONE.)

Need Help? Read It

4. Question Details

ZillDiffEQ9 7.2.020. [4568154]

Use appropriate algebra and Theorem 7.2.1 to find the given inverse Laplace transform. (Write your answer as a function of t.)

$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+s-12}\right\}$$

ກາ			м	\sim		N
U:	ıeı	- 1	u	u	u	IV
p?	ıeı	г	a	е	е	N

Read It

Watch It

5. Question Details

ZillDiffEQ9 7.2.040.EP. [4603945]

Consider the following initial-value problem.

$$y'' - 3y' = 8e^{2t} - 2e^{-t}, \quad y(0) = 1, y'(0) = -1$$

Find $\mathcal{L}{f(t)}$, for $f(t) = 8e^{2t} - 2e^{-t}$. (Write your answer as a function of s.)

$$\mathcal{L}(f(t)) =$$

Use the Laplace transform to solve the given initial-value problem.

$$y(t) =$$

Need Help? Read It

6. Question Details

ZillDiffEQ9 7.2.050. [3744669]

Make up two functions f_1 and f_2 that have the same Laplace transform. Do not think profound thoughts.

- $f_1(t) = 1 \text{ and } f_2(t) = \begin{cases} 1, & t \ge 0, & t \ne 1 \\ 0, & t = 0 \end{cases}$

- $f_1(t) = 1 \text{ and } f_2(t) = 0$

Need Help? Read It

7. Question Details

ZillDiffEQ9 7.3.004. [3877285]

Find F(s).

$$\mathcal{L}\left\{t^{10}e^{-9t}\right\}$$

$$F(s) =$$

Need Help? Read It

8. Question Details

ZillDiffEQ9 7.3.016. [4568344]

Find f(t).

$$\mathcal{L}^{-1}\left\{\frac{2s+7}{s^2+8s+65}\right\}$$

$$f(t) =$$

Need Help? Read It Watch It

9. Question Details

ZillDiffEQ9 7.3.024. [3897245]

Use the Laplace transform to solve the given initial-value problem.

$$y'' - 4y' + 4y = t^3 e^{2t}$$
, $y(0) = 0$, $y'(0) = 0$

$$y(t) =$$

Need Help?

Read It

10. Question Details

ZillDiffEQ9 7.4.018. [4568219]

Consider the differential equation

$$2y'' + ty' - 2y = 18$$
, $y(0) = y'(0) = 0$.

In some instances, the Laplace transform can be used to solve linear differential equations with variable monomial coefficients. Use Theorem 7.4.1.,

THEOREM 7.4.1 Derivatives of Transforms

If
$$F(s) = \mathcal{L}\{f(t)\}\$$
and $n = 1, 2, 3, ...,$ then

$$\mathcal{L}\lbrace t^n f(t)\rbrace = (-1)^n \frac{d^n}{ds^n} F(s),$$

to reduce the given differential equation to a linear first-order DE in the transformed function $Y(s) = \mathcal{L}\{y(t)\}$.

Solve the first-order DE for Y(s).

Then find $y(t) = \mathcal{L}^{-1}\{Y(s)\}.$

$$y(t) =$$

Read It

Watch It

Assignment Details

Name (AID): Math 2C03 2021 Assignment #9 (18669919)

Submissions Allowed: 5
Category: Homework

Code: Locked: **Yes**

Author: Lia Bronsard (bronsard@mcmaster.ca)
Last Saved: Mar 26, 2021 09:48 PM EDT

Permission: **Protected**Randomization: **Person**Which graded: **Last**

Feedback Settings

Before due date Question Score Assignment Score Publish Essay Scores Question Part Score

Mark
Help/Hints
Response
Save Work
After due date
Question Score
Assignment Score
Publish Essay Scores
Key
Question Part Score
Solution

Assignment Previewer 2021-04-13 12:26

Mark Add Practice Button Help/Hints Response