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Our concern in this talk is the problem of free surface water waves, the form of
solitary wave solutions, and their behavior under collisions. Solitary waves for the
Euler equations have been described since the time of Stokes. In a long wave per-
turbation regime they are well described by single soliton solutions of the Korteweg
deVries equation (KdV). It is a famous result that multiple soliton solutions of the
KdV exhibit elastic collisions. The question is as to what extent interactions be-
tween Stokes solitary waves deviate from being elastic. In this talk I will present
numerical, experimental and analytical results on this question, concerning both
co-propagating and counter-propagating cases of large amplitude solitary waves.
In all cases we find evidence of inelastic interactions, but it is remarkable to me
how collisions of even large solitary waves are very close to being elastic, and how
small is the residual. This work is the result of a collaboration with P. Guyenne
(Delaware), J. Hammack and D. Henderson (PSU), and C. Sulem (Toronto), which
appears in the paper [4].
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1. Equations of motion for potential flow

The presentation is a discussion of the classical problem of interactions between
solitary water waves. There are two basic cases; the interaction between counter-
propagating waves (either symmetric collisions or collisions between waves of differ-
ent amplitudes), and co-propagating or overtaking interactions. This work updates
the well-known numerical simulations of Chen and Street [2], Fenton and Reinecker
[7], and Cooker, Weidman and Bale [3]. It has also been compared with the ex-
perimental results of Maxworthy [10] and our own experiments [4]. We work with
potential flow, for which the velocity potential satisfies

∆ϕ = 0 , (1.1)

in the fluid domain. It is bounded below by {y = −h}, while the free surface is
given in the form of a graph {y = η(x, t)}. On the bottom boundary of the fluid
domain we impose

N · ∇ϕ = 0 on y = −h , (1.2)

and on the free surface we impose the two classical boundary conditions

∂tϕ + 1
2 |∇ϕ|2 + gη = 0

∂tη + ∂xη · ∂xϕ − ∂yϕ = 0

}

on y = η(x, t) , (1.3)
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These equations can be posed in the form of a Hamilton system, a fact which is
due to V.E. Zakharov [13]. Zakharov’s Hamiltonian can be rewritten [6] as

H(η, ξ) = 1

2

∫

∞

−∞

ξG(η)ξ + gη2 dx . (1.4)

In this expression we write ξ(x) := ϕ(x, η(x)), and the Dirichlet integral, which
represents the kinetic energy, is expressed in terms of the Dirichlet – Neumann
operator

G(η)ξ :=
√

1 + |∂xη|2 N · ∇ϕ
∣

∣

∣

y=η
, (1.5)

The equations (1.1) through (1.3) are written in the canonical form

∂t

(

η

ξ

)

=

(

0 1

−1 0

) (

δηH

δξH

)

. (1.6)

Explicitely, Hamilton’s canonical equations (1.6) have the form

∂tη = G(η)ξ , (1.7)

∂tξ = −gη +
−1

2(1 + |∂xη|2)
[

(∂xξ)2 − (G(η)ξ)2 − 2∂xη∂xξ G(η)ξ
]

. (1.8)

The second component (1.8) of this Hamiltonian vector field has an additional term
in the case of the water wave equations in three dimensions.

The time evolution of (1.6) conserves a number of physical quantities in addition
to the Hamiltonian, including the added mass

M(η) =

∫

∞

−∞

η(x, t) dx (1.9)

and the momentum, or impulse

I(η, ξ) =

∫

∞

−∞

η(x, t)∂xξ(x, t) dx . (1.10)

This is verified by the following identities

{M, H} = 0 , {I, H} = 0 , (1.11)

where the Poisson bracket between two functionals F and H is given by

{F, H} =

∫

δηFδξH − δξFδηH dx . (1.12)

The center of mass of a solution is given by the expression

C(η) =

∫

∞

−∞

xη(x, t) dx . (1.13)

It evolves linearly in time; indeed its time derivative is a constant of motion

d

dt
C =

∫

∞

−∞

x∂tη(x, t) dx =

∫

∞

−∞

xG(η)ξ dx (1.14)

=

∫

∞

−∞

ξG(η)x dx =

∫

∞

−∞

ξ(−∂xη) dx = I(η, ξ) .
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2. Numerical method

Our numerical method consists essentially in making good approximations for the
Dirichlet – Neumann operator (1.5), and using them in a time discretized version
of the evolution equations (1.7). This approach was introduced in [6] and used in a
variety of settings, including [5][1].

It was already described by J. Hadamard [8] in his Collège de France lectures
that Green’s function for Laplace’s equation is differentiable with respect to the
domain on which it is given. Indeed he gave a formula for its variations, and in
[9] he proposed hydrodynamical applications. In fact in the appropriate setting it
has been shown that the closely related Dirichlet – Neumann operator is analytic
with respect to its dependence upon the domain. Putting this into practice in the
neighborhood of a fluid domain at rest, we base our simulations on the Taylor
expansion of the Dirichlet – Neumann operator to arbitrarily high order in the
equations of motion (1.7). The first several Taylor approximations to G(η) are

G(0) = D tanh(hD) ,

G(1) = DηD − G(0)ηG(0) ,

G(2) = 1

2

(

G(0)Dη2D − D2η2G(0) − 2G(0)ηG(1)
)

. (2.1)

In our notation, D = −i∂x, and G(0) is a Fourier multiplier operator which is given
by the expression

G(0)ξ(x) :=
1√
2π

∫

eikxk tanh(hk)ξ̂(k) dk (2.2)

Such expressions can be implemented efficiently using the Fast Fourier Transform.
As well, there is a recursion formula for the Taylor series for G(η) which can be
incorporated into very efficient numerical schemes of arbitrarily high order in the
(slope of the) surface elevation η(x). This is essentially what we have done in [4]
for our study of solitary water wave interactions.

Initial data for our simulations consists of two well separated solitary water
waves, of nondimensional amplitudes S1/h and S2/h, which are set to collide within
the computational domain. The solitary wave profiles for this are generated using
the numerical method proposed by M. Tanaka [12], giving us highly accurate results.

3. Head-on collisions

This section is concerned with collisions between two counter-propagating solitary
waves, of nondimensional elevation S1/h and S2/h respectively. The first simula-
tions presented here are symmetric head-on collisions between two solitary waves of
equal amplitudes S/h. Features of note are the degree of run-up of the wave crest
during the interaction, given by supx,t |η(x, t)|/h − 2S/h; the phase lag due to the
moment’s hesitation of the crests during their interaction; the change in amplitude
of the solitary waves after the interaction, S/h 7→ S+/h; their phase lag a 7→ a+;
and the residual waves ηR(x, t) trailing the solitary waves as they exit the collision.
We observe that the solitary waves in head-on collisions always lose a small amount
of amplitude due to the collision; S+

j < Sj , although this is very small even for
interactions between large solitary waves.
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Figure 1. Head-on collision of two solitary waves of equal height S/h = 0.1: The amplitude
after collision is S+/h = 0.0997 at t/

p

h/g = 90. The phase lag is (aj − a+

j )/h = 0.1370.
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Figure 2. Head-on collision of two solitary waves of equal height S/h = 0.4: The amplitude
after collision is S+/h = 0.3976 at t/

p

h/g = 90. The phase lag is (aj − a+

j )/h = 0.3257.

The residual is clearly visible in the figure 2, but it is essentially too small to be
detected in figure 1 without magnification. A snapshot plot of the computation in
figure 1 at time t/

√

h/g = 90, with magnified vertical scale, is given in the figure 3.
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Figure 3. Results of the collision of two solitary waves of equal height S/h = 0.1 after the
collision, at time t/

p

h/g = 90. The dispersive residual wave trailing the solitary waves
after the collision are visible under magnification.
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Figure 4. Results of the collision of two solitary waves of equal height S/h = 0.4 after the
collision at time t/

p

h/g = 780. The residual has a characteristic tear-shaped envelope

Viewing the interaction of two solitary waves of amplitude S/h = 0.4 after long
time illustrates the asymptotic tear-shaped form of the residual, as well as the fact
that the solitary waves separate from each other and from the the residual after
the collision. This is shown in figure 4; it is an indication of the stability of solitary
waves to such head-on collisions, at least within this range of amplitudes.

4. Overtaking collisions

We have also run simulations of overtaking collisions with this numerical scheme,
where we find yet smaller changes of amplitude ∆Sj := Sj − S+

j , j = 1, 2 and
residual ηR after a collision. Normalize the notation so that the larger incoming
solitary wave has amplitude S1 and the second S2. In these simulations, we observe
that the amplitude of the first solitary wave is slightly increased, S+

1 > S1, while the
second decreases as is necessary. We also observe that the amplitude of the solution
never exceeds the maximum of the amplitudes of the entering and exiting solitary
waves, nor at any time does the maximum crest dip below the minimum. Just as
in the situation of the two-soliton solution of the KdV equation, the solitary waves
experience a positive phase shift due to the collision, as though the two waves
were repelling particles. Figure 5 shows the interaction of two solitary waves of
amplitudes S1/h = 0.4 and S2/h = 0.1333, this being chosen so that the interaction
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Figure 5. Overtaking collision of two solitary waves of height S1/h = 0.4, S2/h = 0.1:
The amplitudes after collision are S+

1 /h = 0.4003, S+

2 /h = 0.0999 at t/
p

h/g = 1000
for the large, small wave respectively. The phase shifts are (a+

1 − a1)/h = 2.2974,
(a+

2 − a2)/h = 3.6159 respectively.
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Figure 6. Overtaking collision of two solitary waves of height S1/h = 0.4, S2/h = 0.1 at
t/

p

h/g = 745, which is after the collision. The vertical scale is magnified in order to
observe the dispersive trailing wave generated by the interaction.

is of the Lax category (b) in its form. The simulation is displayed in a frame of
reference in motion at approximately the mean velocity of the two solitary waves.

In figure 6 a view of this simulation with exagerated scale at a time after the
interaction shown clearly the very small but nonzero residual.

5. Energy transfer

Using the conservation laws (1.9)(1.10) and the Hamiltonian (1.4), one can derive
a relation between the change in amplitude through a solitary wave interaction
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and the energy that has been transferred to the residual. Using this, it is also
possible to derive a rigorous upper bound on the energy transfer in terms of the
parameters S1/h, S2/h of the initial data. The latter analysis appears in [4]. To
explain the first relation, an individual solitary wave has mass M(ηS) := m(S),
momentum I(ηS , ξS) := µ(S) and energy H(ηS , ξS) := e(S). Our initial data is
given by two asymptotically separated solitary waves as t 7→ −∞, therefore the
total mass, momentum and energy of our solution are given by

MT = m(S1) + m(S2)

IT = µ(S1) + µ(S2)

ET = e(S1) + e(S2) . (5.1)

After an interaction has occurred, we will assume that the solution is composed of
three distinct components; two solitary waves with possibly different amplitudes S+

1

and S+
2 , and a residual (ηR(x, t), ξR(x, t)). By conservation, their mass, momenta

and energies satisfy

MT = m(S+
1 ) + m(S+

2 ) + mR

IT = µ(S+
1 ) + µ(S+

2 ) + µR

ET = e(S+
1 ) + e(S+

2 ) + eR . (5.2)

Taking the difference, we find that

(m(S1) − m(S+
1 )) + (m(S2) − m(S+

2 )) = mR

(µ(S1) − µ(S+
1 )) + (µ(S2) − µ(S+

2 )) = µR

(e(S1) − e(S+
1 )) + (e(S2) − e(S+

2 )) = eR . (5.3)

Since the change in amplitude is very small, the difference m(Sj) − m(S+
j ) is very

small, j = 1, 2, and the same for µ(Sj) and e(Sj). Approximating by the derivative,
we conclude that

m′

1∆S1 + m′

2∆S2 = mR

µ′

1∆S1 + µ′

2∆S2 = µR

e′1∆S1 + e′2∆S2 = eR ; (5.4)

this is now three equations for the two unknowns ∆j , j = 1, 2, whose solution leads
us to an absolute bound on the energy loss due to a collision [4]. Separately from
this bound, equations (5.4) specify relationships between the mass, momentum and
energy loss to the residual and the change in amplitude ∆Sj from the interaction.

Let us consider the case of symmetric interactions as an example. In this case,
µ(S1) = −µ(S2) and therefore IT = 0 and µR = 0. The relation (5.4) then reports
that

2m′(S) = mR , 2e′(S) = eR . (5.5)

Since in particular e(S) ∼ S3/2 for small S, this predicts that

eR ∼ S1/2∆S . (5.6)

Figure 7 plots the quantity e(S) for a range of simulations ranging from S = 0.025
to S = 0.5, verifying its power law behavior. Figure 8 gives our measured values
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Figure 7. Total energy ET vs. wave amplitude S/h: numerical results (circles), power law
(S/h)3/2 (solid line).

of ∆S for these simulations, while figure 9 gives the energy eR of the residual.
The adherence of thie data to the asymptotic relation (5.6) is quite convincing.
The deviation of the lowest two data points from the power law behavior is due
to the long relaxation time of small solutions to their asymptotic values after an
interaction, we believe.

Our data, particularly in figure 8, are at odds with the asymptotic predictions of
C.-H. Su and R. M. Mirie [11], who put forward that ηR = O(S3) while ∆S = o(S3).

The relations (5.4) give a nontrivial result on the mass and energy of the residual
and the quantities ∆S+

j in the case of overtaking collisions. From our simulations
and from those in [7], it is observed that ∆S1 < 0. That is, the larger overtaking soli-
tary wave gains a (small amount of) amplitude due to the collision, at the expense of
the smaller one. We note that e(S) is a convex function of S, at least over the range
of values of S being considered. The implication of (5.4) is that, since eR ≥ 0, it must
be that |∆S1| < ∆S2; the larger solitary wave cannot gain more amplitude than the
smaller one loses. Using this, a related argument applied to the relation for mass im-
plies that mR < 0, because in this case m′(S) is decreasing in S. This fact is seen in
the slight depression left behind two separating solitary waves after their interaction.
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grant #DMS-0070218. All of the numerical simulations in this note were performed by P.
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