
Bounds on Kolmogorov spectra for the Navier – Stokes equations

Andrei Biryuka, Walter Craigb

aMathematics Department, Kuban State University
Stavropolskaya street 149, 350040 Krasnodar, Russia

bDepartment of Mathematics & Statistics, McMaster University
Hamilton, Ontario L8S 4K1 Canada

Abstract

Let u(x, t) be a (possibly weak) solution of the Navier - Stokes equations on all of R3, or on the torus R3/Z3.
Denoting the Fourier transform by û = Fu, the energy spectrum of u(·, t) is the spherical integral

E(κ, t) =
∫
|k|=κ

|û(k, t)|2dS(k), 0 ≤ κ <∞,

or alternatively, a suitable approximate sum. An argument involking scale invariance and dimensional
analysis given by Kolmogorov [7, 9] and Obukhov [14] predicts that in three dimensions large Reynolds
number solutions of the Navier - Stokes equations should obey

E(κ, t) ∼ C0ε
2/3κ−5/3

over an inertial range κ1 ≤ κ ≤ κ2, at least in an average sense. We derive a global estimate on weak
solutions in the norm ‖F∂xu(·, t)‖∞ which gives bounds on a solution’s ability to satisfy the Kolmogorov
law. A subsequent result gives rigorous upper and lower bounds on the inertial range, and an upper bound
on the time of validity of the Kolmogorov spectral regime.
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1. Introduction

An important issue in the study of solutions of the Navier – Stokes equations in the large is the principle
governing the distribution of energy in Fourier space. The theory of Kolmogorov [7, 8, 9] and Obukhov [14]
plays a central rôle, predicting power law decay behavior of the Fourier space energy density for solutions
which exhibit fully developed turbulence. In outline, a basic prediction is that energy spectral functions
E(κ, t), or possibly its average over a statistical ensemble, is expected to satisfy

E(κ, t) ' C0ε
2/3κ−5/3 (1)

over an inertial range of wavenumbers κ ∈ [κ1, κ2], where C0 is a dimensionless constant, ε is a parameter
interpreted physically as the energy transfer rate per unit volume, and the exponents are determined by
dimensional analysis [14][6]. This famous statement has been very influential in the field, and considerable
experimental and numerical evidence has been gathered to support it. Despite its success, there have been
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relatively few rigorous mathematical results on the analysis of solutions of the Navier – Stoke equations,
with or without bulk inhomogeneous forces, which have addressed the question as to whether solutions
exhibit spectral behavior as described by (1). Among those papers which do address certain aspects of these
questions, we cite in particular two sources. Firstly, the book by C. Doering & J. Gibbon [5] reviews the
Kolmogorov – Obukhov theory, and discusses the compatibility of spectral aspects of solutions with the L2

regularity theory for the Navier — Stokes equations. Secondly, S. Kuksin [11] proves that solutions to the
nonlinear Schrödinger equation with added dissipation and with stochastic forces exhibit spectral behavior
over an inertial range, with some positive exponent (which is not known explicitly). This latter work serves
as an important mathematical model of generation of spectral behavior of solutions under stochastic forcing,
despite the basic difference in the equations that are addressed.

In this paper we give a new global estimate in the norm ‖F ∂xu(·, t)‖L∞ on weak solutions of the Navier
– Stokes equations which have reasonably smooth initial data, where it is also possible that the solution is
subject to reasonably smooth inhomogeneous forces. This estimate has implications on the energy spectral
function for such solutions, and in particular in the case that there is no inhomogeneous force, we show that
weak solutions of the initial value problem have spectral energy function which for all κ ∈ R+ satisfies

E(κ, t) ≤ 4πR2
1 , (2)

and time averages which satisfy
1
T

∫ T

0

E(κ, t) dt ≤ 4πR2
2

νκ2T
, (3)

again for all κ, where ν is the coefficient of viscosity. In the case that a bounded inhomogeneous force is
applied to the solution of the initial value problem, we find similarly that

E(κ, t) ≤ 4πR2
1(t) , (4)

and furthermore
1
T

∫ T

0

E(κ, t) dt ≤ 4πR2
2(T )

νκ2T
, (5)

for constants R1(t) and R2(t) which may be time dependent. In the situation of forcing being given by a
stationary process, it is to be expected that for typical solutions the quantity R2

2(T )/T has a limit R
2

2 for
large T , giving a constant upper bound for the time average of E(κ, T ). Since these estimates give rigorous
bounds on E(κ, t) with a faster rate of decay in wavenumber κ than that stated in (1), this result presents a
conundrum. Either it is the case that solutions which exhibit large scale spectral behavior as in (1) are not
smooth, and in particular do not arise from the initial value problem with reasonably smooth initial data.
Or else the bounds (2)(3) (and (4)(5) respectively, in the case with inhomogeneous forces) give restrictions
on the spectral behavior of solutions, and in particular an upper bound on the value of the parameter ε, a
restriction on the extent of the inertial range [κ1, κ2], and in the case of (2)(3), an upper bound on the time
interval [0, T0] over which spectral behavior may occur for a solution.

There is a well developed literature on the energy transfer rate ε, and other aspects of the Kolmogorov
– Obukhov theory, based on physical assumptions on the character of the fluid motion. These assumptions
are for flows exhibiting fully developed turbulence, and are described in Obukhov [14], for example. They
include the hypothesis that the flow is in a stochastically steady state, the energy transfer rate is of a certain
form and exhibits a particular scale invariance, and that the energy spectral function is negligible for wave
numbers higher than a cutoff κν . Under these assumptions, the cutoff κν is determined (it is known as the
Kolmogorov scale) and the energy transfer rate ε is identified with the energy dissipation rate

ε1 :=
ν

(2π)3

∫ +∞

0

κ2E(κ, t) dκ . (6)
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Using the latter statement, that ε = ε1, it is possible to find a better estimate of the behavior of ε with
respect to Reynolds’ number than ours in this paper, as for example in C. Doering & C. Foias [4]. The
difference between this body of work and our analysis is that we make no physical assumptions on solutions
of the Navier – Stokes equations, deducing our conclusions purely from known results about such flows. It
is worthwhile to point out as well that the upper and lower bounds to the inertial range in our work are
conclusions, as compared to prior work in which the upper bound κν on the inertial range is an assumption
of the theory, and no explicit lower bound is given.

In Section 2 we give a statement and the proofs of our estimates on the Fourier transform of weak
solutions of the Navier – Stokes equations, posed either on all of x ∈ R3 or else for x ∈ T3. Since there
is no known uniqueness result, one cannot speak of the solution map for Navier – Stokes flow, and we
emphasize that this estimate is valid for any weak solution that satisfies the energy inequality. In section 3
we interpret these estimates in the context of the spectral energy function, and we analyse the constraints
on spectral behavior of solutions mentioned above, giving specific and dimensionally appropriate estimates
for the endpoints of the inertial range κ1, κ2. In the case of no inhomogeneous forces, we give an upper
bound T0 on the time of validity of the spectral regime. The bounds on κ1 and κ2 are also valid in the
probabilistic setting, for statistical ensembles of solutions. That is, suppose that one is given an ergodic
probability measure (P,M) on the space of divergence free vector fields which is invariant under some choice
of definition of Navier – Stokes flow. As long as the inhomogeneous force and the support of the invariant
probability measure are contained in the closure of the set of reasonably smooth divergence free vector fields,
then our constraints on the spectral behavior of solutions apply. The final section gives a comparison of our
constraints on (κ1, κ2, T0) to the Kolmogorov length and time-scales of the classical theory, and a discussion
of the dimensionless parameter rν := κ2/κ1 as an indicator of spectral behavior of solutions.

2. Estimates on the Fourier transform in L∞

The incompressible Navier – Stokes equations in their usual form are written for the velocity field u(x, t)
of a fluid, its pressure p(x, t), and a divergence-free force f(x, t),

∂tu+ (u · ∇)u = −∇p+ ν∆u+ f

∇ · u = 0 , (7)
u(·, 0) = u0(·) ,

where we consider spatial domains either all of Euclidian space x ∈ R3, or else the compact and boundaryless
torus x ∈ T3 := R3/Γ, where Γ ⊆ R3 is a lattice of full rank. Denote by D either of the above spatial domains.
The time domain is 0 < t < +∞, and the inhomogeneous force function f is assumed to be divergence-free
and to satisfy f ∈ L∞loc([0,+∞);H−1(D) ∩ L2(D)). A ‘Leray’ weak solution to (7) on D × [0,+∞) satisfies
the three conditions.

1. Integrability conditions: For any T > 0 the vector function (u, p) lies in the following function spaces

u ∈ L∞([0, T );L2(D)) ∩ L2([0, T ); Ḣ1(D)) , (8)
p ∈ L5/3(D × [0, T )) , (9)

2. Weak solution of the equation: the pair (u, p) is a distributional solution of (7), and furthermore
limt→0+ u(·, t) = u0(·) exists in the strong L2 sense,

3. Energy inequality: the energy inequality is satisfied

1
2

∫
D

|u(x, t)|2 dx+ ν

∫ t

0

∫
D

|∇u(x, s)|2 dxds (10)

−
∫ t

0

∫
D

u(x, s) · f(x, s) dxds ≤ 1
2

∫
D

|u0(x)|2 dx
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for all 0 < t < +∞. The inequality (10) is an identity for solutions which are regular. It is well known that
weak solutions exist globally in time, either when f = 0, a result due to Leray [12, 13], or when f is nonzero.
The question of their uniqueness and regularity remains open.

Many facts are known about weak solutions, including that for any T > 0 the interpolation inequalities
hold; u ∈ Ls([0, T );Lp(D)) for all 3/p + 2/s = 3/2, for 2 ≤ p ≤ 6. That the L5/3 estimate for the pressure
in (9) is sufficient is due to [15]. Considering a weak solution as a curve in L2(D) defined over t ∈ R+, the
following proposition holds.

Proposition 2.1. A weak solution is a mapping [0, T ) 7→ L2(D) satisfying the continuity properties

u(·) ∈ L∞([0, T );L2(D)) ∩ C([0, T );L2(D)weak topology) ∩ C([0, T );H−δ(D)) (11)

for any δ > 0. Furthermore, as a curve in Sobolev space,

du

dt
∈ L2([0, T );H−3/2(D)) .

A clear exposition which includes these basic facts is the lecture notes of J.-Y. Chemin [2].
Being a curve in L2(D), the Fourier transform of a weak solution makes sense, and û(·, t) = Fu(·, t) is

again a curve in L∞([0, T );L2
k) ∩ C([0, T );L2

k;weak topology). We will make use of a dimensionally adapted
Fourier transform F , namely

û(k) = (Fu)(k) :=
1

V 1/2

∫
D

e−ik·xu(x) dx , (12)

where k ∈ R3 when the spatial domain is D = R3, and we set V = (2π)3 in standard units of volume in
R3. In this setting, the norm of the Fourier transform is given by ‖û‖2 =

∫
R3 |û(ξ)|2dξ. When the domain

is D = T3 = R3/Γ, we take k ∈ Γ′ the lattice dual to Γ, we set V = |Γ| := vol(R3/Γ), and we define
‖û‖2 :=

∑
k∈Γ′ |û(k)|2|Γ′|. With this choice, the Plancherel identity reads

‖u‖2 =
V

(2π)3
‖û‖2 . (13)

With respect to the normalization, the function u(x, t) has units of velocity L/T , and its Fourier transform
is such that |û(k, t)|2 has units of Fourier space energy density (L/T )2L3.

2.1. An estimate on F∂xu(·, t) on the torus
Focus the discussion on the case of the spatial domain D = T3. Then any choice of initial data u0(x) ∈

L2(T3) has uniformly bounded Fourier coefficients, indeed |û0(k)| ≤ ‖u0‖. Furthermore, since the complex
exponential eik·x is a perfectly good element of (H−3/2)∗ which, being tested against u(·, t) gives the Fourier
coefficients, we also have the result

Proposition 2.2. For each k ∈ Γ′ the Fourier coefficient û(k, t) ∈ C3 is a Lipschitz function of t ∈ R+.

It is again made clear by this that the problem of singularity formation is not that û(k, t) becomes
unbounded, but rather that H1 mass, including possibly L2 mass, is propagated to infinity in k-space in
finite time.

A (future) invariant set A is one such that u0 ∈ A implies for all t > 0, u(t) ∈ A as well. When f = 0
the energy inequality (10) can be viewed as implying that the ball BR(0) ⊆ L2(D) is an invariant set for
weak solutions satisfying ‖u0‖L2(D) ≤ R. In similar terms, we give another invariant set for weak solutions.
Define the set

AR1 := {u : ∀k ∈ Γ′, |k||û(k)| ≤ R1} , (14)

and as above let BR(0) denote the ball of radius R in L2(T3).
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Theorem 2.3. In the case that f = 0, whenever

R2

√
V
≤ νR1 (15)

then the set AR1 ∩ BR(0) is invariant for weak solutions of the Navier – Stokes equations (7). Thus, if
the initial data satisfies u0 ∈ AR1 ∩ BR(0), for all 0 < t < +∞ the Fourier coefficients of any Leray weak
solution emanating from this data satisfy

sup
0<t<+∞

|û(k, t)| ≤ R1

|k|
, ∀k ∈ Γ′ . (16)

This result appears in the paper [1] in a slightly different form. For nonzero f the ball BR(0) ⊆ L2(D)
is not necessarily invariant. However given u0 ∈ BR(0) and our hypothesis that f ∈ L∞loc([0,+∞);H−1(D)∩
L2(D)), there is always a nondecreasing function R(T ) ≥ R such that for all T > 0, u(·, T ) ∈ BR(T )(0). In-
deed, suppose that a Galilean frame is chosen and the pressure p is suitably normalized so that

∫
D
u(x, T ) dx =

0 =
∫
D
f(x, T ) dx. Let F 2(T ) :=

∫ T
0
‖f‖2

Ḣ−1 dt. Then by standard interpolation one has that

‖u(·, T )‖2L2 + ν

∫ T

0

‖∇u(·, s)‖2L2 ds ≤ R2(T ) . (17)

The function R2(T ) is an upper bound for the LHS of the energy inequality, for which there is an estimate
R2(T ) ≤ R2 + 1

νF
2(T ). In case of a bounded inhomogeneous force f(·, t) ∈ L∞(R+;H−1 ∩ L2), there is an

upper estimate F 2(T ) ≤ CT , so that R2(T ) exhibits (not more than) linear growth in T .

Theorem 2.4. In the case of nonzero f(x, t), let R(t) be an a priori upper bound for ‖u(·, t)‖L2 , for example
as in (17). Suppose that R1(t) is a nondecreasing function such that for all (k, t) we have

R2(t)√
V

+
|f̂(k, t)|
|k|

< νR1(t) , (18)

then the set {(u, t) : 0 < t , u(·, t) ∈ AR1(t) ∩BR(t)(0)} is invariant for weak solutions of the equations (7).
That is, if the initial data satisfies u0 ∈ AR1(0) ∩ BR(0)(0) then for all 0 < t < +∞ the Fourier coefficients
of any weak solution emanating from u0 and being subject to the force f will obey the estimate

|û(k, t)| ≤ R1(t)
|k|

. (19)

It is a common situation for the inhomogeneous force to have properties of recurrence, such as if it were
time-periodic, or if given by a statistical process which is stationary with respect to time. For bounded
f as above, the estimate F 2(T ) ≤ CT holds. Furthermore, one is interested in those solutions which are
themselves statistically stationary. For these solutions it will be the case that the force adds to the total
energy at the same rate as the dissipation depletes it. Indeed, one assumes that there is a constant R such
that ‖u(·, T )‖2L2 ≤ R

2
and ν

∫ T
0
‖∇u(·, s)‖2L2 ds ≤ R

2
T . Therefore, in the statistically stationary case we

expect that for typical solutions the upper bound R(t) in the hypotheses of Theorem 2.4 is given by the
constant R, which in particular gives a uniform bound in time. In this situation, the constant R1 is also
time independent.

Proof of Theorems 2.3 and 2.4. For each k ∈ Γ′ the vector û(k) ∈ C2
k ⊆ C3, where C2

k = {w ∈ C3 : w ⊥
k = 0} is specified by the divergence-free condition. Because (u, p) is a distributional solution, the Fourier
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coefficients satisfy

∂tû(k, t) = −ν|k|2û(k, t)− iΠkk ·
1√
V

∑
k1

û(k − k1)⊗ û(k1) + f̂(k, t) , (20)

:= X(u)k ,

at least in the weak sense, after testing with a smooth cutoff function ϕ(t) ∈ C∞. We use the notation that
X(u)k is the kth component of the vector field represented by the RHS. The convolution has introduced the
factor 1/

√
V . The operator Πk : C3 → C2

k is given by

Πk(z) = z − (z · k)
k

|k|2
.

The Leray projector onto the divergence-free distributional vector fields, considered in Fourier space coordi-
nates, is the direct sum of the Πk.

The radial component of the vector field X(u)k in C2
k ⊆ C3 is expressed by re (û(k) · X(u)k)/|û(k)|.

Consider first Theorem 2.3, which is the case that f = 0. Suppose that |k||û(k)| = R1 for some k, that
is, the solution is on the boundary of the region AR1 . Since |Πkk ·

∑
k1
û(k − k1) ⊗ û(k1)| ≤ |k|‖u‖2L2 , an

estimate of the radial component of X(u)k is that

re (û(k) ·X(u)k) = −ν|k|2|û(k)|2 +
1√
V

im
(
û(k) kΠk

∑
k1

û(k − k1)⊗ û(k1)
)

≤ −νR2
1 +

1√
V
‖u(·, t)‖2L2R1 .

When u(·, t) ∈ BR(0) and R2 < νR1

√
V the RHS is negative, implying that integral curves û(k, t) cannot

exit the region. Thus the ball of radius R1/|k| in C2
k is a trapping set, or a future invariant set, for the vector

field X(u)k.
In case of the presence of a force f , suppose again that |k||û(k, t)| = R1(t) for some (k, t). The radial

component of X(u)k satisfies

re (û(k) ·X(u)k) = −ν|k|2|û(k)|2 +
1√
V

im
(
û(k) kΠk

∑
k1

û(k − k1)⊗ û(k1)
)

+ re (û(k) · f̂(k, t)) (21)

≤ −νR2
1 +

1√
V
‖u(·, t)‖2L2R1 + |f̂(k, t)|R1

|k|
.

Furthermore, the energy ‖u(·, t)‖2L2 is bounded by R2(t). As long as the radial component of X(u)k (namely
the quantity in (21) normalized by the length |û(k)| = R1(t)/|k|) is bounded above by the growth rate of the
ball itself, namely by Ṙ1/|k|, then solution curves (u(·, t), t) do not exit the set {(u(·), t) : 0 < t , u(·, t) ∈
AR1(t)∩BR(t)(0)}. In particular this happens for nondecreasing R1(t) whenever (

√
V )−1R2(t)+|f̂(k, t)|/|k| <

νR1(t).
Therefore when the initial data u0 ∈ AR1(0) and the force f satisfies (18), then the solution satisfies

u(x, t) ∈ AR1(t) for R1(t) finite, for all positive times t.

It is natural to ask what constraints are imposed on the data u0 by the condition (15). Given smooth
initial data u0 and a force f satisfying |f̂(k, t)| < F2|k|, the constant νR1 can always be chosen so as to
satisfy (15) (the case f = 0), or if the force f 6= 0, the function R1(t) can be chosen to be nondecreasing and
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to satisfy (18). Thus the hypotheses to this theorem encompass any reasonable smooth class of initial data
and inhomogeneous forcing terms. We note that the constant R1 scales dimensionally in terms of the units
L3/2/T .

Under changes of scale, the quantity supt supk |k||û(k, t)| transforms like the BV-norm supt ‖∂xu(·, t)‖L1 ,
and indeed the latter being finite implies the former. However as far as we know there is no known global
bound on the BV-norm of weak solutions to (7). A related inequality appears in [3], which is a global upper
bound on the L1-norm of the vorticity ω := ∇× u, again uniformly in time.

A corollary to this result gives a stronger estimate for time integrals of the Fourier coefficients of weak
solutions.

Theorem 2.5. Suppose that a weak solution u(x, t) satisfies (17), with its initial conditions satisfying
u0 ∈ AR1 . Then time integrals of the Fourier coefficients obey the stronger estimate∫ T

0

|û(k, t)|2 dt ≤ R2
2(T )
ν|k|4

. (22)

The constant is given by

R2(T ) = 1
2

(
R4(T ) +

√
2R2

1(0) +R2
4(T )

)
,

where

R4(T ) =
R2(T )
ν
√
V

+
F1(k, T )√

ν
, F1(k, T ) =

(∫ T

0

|f̂(k, t)|2 dt
)1/2

.

Assuming that supk∈Z3 F1(k, T ) := F∞(T ) < +∞, the constant R2(T ) will be independent of k.

When the force f = 0, the constants R and R1 can be taken independent of T , implying that R2 is also
constant in time, and the estimate (22) holds uniformly over 0 < T < +∞. For nonzero forces which are L∞

with respect to time, there is an upper bound F1(k, T ) ∼
√
T , and R2(T ) will grow at most linearly in time

for large T . In the situation in which the forcing is given by a stationary process, it is expected (but not
proven at this point in time) that for typical solutions, the quantity R2

2(T )/T will have a limit R
2

2 for large
time T , representing a balance between energy input and dissipation. Notice that R2 scales dimensionally
in terms of L3/2/T .

Proof. Because the field u(·, t) is divergence-free, k · û(k, ·) = 0, implying the vector identity k · û(k − k1)⊗
û(k1) = û(k − k1) · k1 ⊗ û(k1). The absolute value of û can be estimated from (20),

1
2∂t|û(k, t)|2 + ν|k|2|û(k, t)|2 = im

1√
V

(
û(k, t) ·Πk

∑
k1

û(k − k1, t) · k1 ⊗ û(k1, t)
)

+û(k, t) · f̂(k, t) ,

which is valid for each k in the sense of weak solutions in time. When integrated over the time interval [0, T ]
it gives

ν|k|2
∫ T

0

|û(k, t)|2 dt = 1
2 |û0(k)|2 − 1

2 |û(k, T )|2 (23)

+im
1√
V

∫ T

0

(
û(k, t) ·Πk

∑
k1

û(k − k1, t) · k1 ⊗ û(k1, t)
)
dt

+
∫ T

0

û(k, t) · f̂(k, t) dt .
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Multiplying this identity by |k|2, the terms of the RHS are then bounded as follows:

1
2 |k|

2|û0(k)|2 ≤ 1
2R

2
1(0) ,

|k|2
∣∣∫ T

0

û(k, t) · f̂(k, t) dt
∣∣ ≤ 1√

ν

(
ν|k|4

∫ T

0

|û(k, t)|2 dt
)1/2(∫ T

0

|f̂(k, t)|2 dt
)1/2

,

and finally

|k|2 1√
V

∣∣im ∫ T

0

(
û(k, t) ·Πk

∑
k1

û(k − k1, t) · k1 ⊗ û(k1, t)
)
dt
∣∣

≤ 1
ν
√
V

(
ν|k|4

∫ T

0

|û(k, t)|2 dt
)1/2 sup

0<t<T
‖u(·, t)‖L2

(
ν

∫ T

0

|∇u(·, s)|2 ds
)1/2

.

Define I2(k, T ) = ν|k|4
∫ T

0
|û(k, t)|2 dt, then the identity (23) implies the inequality for I(k, T )

I2(k, T ) ≤ R2
1(0)
2

+
(R2(T )
ν
√
V

+
F1(k, T )√

ν

)
I(k, T ) . (24)

where we have used that R(t) is nondecreasing. The quantity I(k, T ), being nonnegative, cannot exceed the
largest positive root of the quadratic equation where equality is attained, giving the estimate (22). This
estimate is uniform in k ∈ Z3 as long as supk∈Z3 F1(k, T ) = F∞(T ) < +∞. We note that

F 2(T ) =
∑

k∈Z3\{0}

F 2
1 (k, T )
|k|2

,

which appears in the discussion of energy estimate bounds (17).

2.2. The analogous estimate on R3

Suppose that ‖u(·, t)‖L2 ≤ R(t) (if there is no force, then R(t) = R(0) suffices). The main difference
in the case of D = R3 is that the functions û(k, t) are elements of a Hilbert space, whose values at a
particular Fourier space-time point (k, t) are not well defined. We work instead with filtered values of the
vector field u(x, t). Let 0 6= k ∈ R3, and for δ < |k|/(2

√
3) define χ̂k(ξ) a smooth cutoff function of the

cube Qk about k ∈ R3 of side length 2δ (δ ≤ 1 is acceptable for large |k|) which takes value χ̂k = 1 on
a cube of half the sidelength. The point is that for ξ ∈ supp (χ̂k) then |k|/2 ≤ |ξ| ≤ 3|k|/2. Now define
(χ̂k(D)u)(x, t) = F−1χ̂k(ξ)û(ξ, t) = (χk ∗ u)(x, t). Since χk ∈ Hm for all m, it and its translations are
admissible test functions, the statement (11) implies that (χk ∗ u)(x, t) is a Lipschitz function of t for each
x. Define ep(k, t) := (

∫
|χ̂k(ξ)û(ξ, t)|p dξ)1/p for 2 ≤ p < +∞, the conclusion is the following.

Proposition 2.6. The function epp(k, t) is a Lipschitz function of t ∈ R+.

We quantify the Fourier behavior of the force f in similar terms. Consider the function χ̂k(D)f(x, t) =
F−1χ̂k(ξ)f̂(ξ, t) and let fp(k, t) := sup0≤s≤t(

∫
(|χ̂k(ξ)f̂(ξ, t)|p/|ξ|p) dξ)1/p. Recalling that f ∈ L∞loc([0,+∞); Ḣ−1∩

L2(D)) we have f2(k, t) ≤ sup0≤s≤t ‖f(k, s)‖Ḣ−1 . However the fact that fp is finite is in general additional
information about the regularity of the forcing.

Theorem 2.7. Let initial conditions u0(x) give rise to a weak solution u(x, t) which satisfies ‖u(·, t)‖L2 ≤
R(t). Suppose that there exists a nondecreasing function R1(t) such that for all 2 ≤ p < +∞ and t ∈ R+

(2δ)3/pR
2(t)√
V

+ fp(k, t) <
ν

6
R1(t) , (25)

8



where δ < |k|/2
√

3. Consider a solution to (7) that initially satisfies sup2≤p<+∞ ep(k, 0) < R1(0)/|k|. Then
for all t ∈ R+ ∣∣χ̂k(ξ)û(ξ, t)

∣∣
L∞

<
R1(t)
|k|

. (26)

Theorem 2.8. Suppose a weak solution u(x, t) satisfies (17), and furthermore ask that |χ̂k(ξ)û0(ξ)|L∞ ≤
R1(0)/|k|. Then for all T ∈ R+, ∫ T

0

|χ̂kû(·, t)|2L∞ dt ≤
R2

2(T )
ν|k|4

, (27)

where the constant R2(T ) is given by

R2(T ) = 1
2

(
R5(T ) +

√
4R2

1(0) +R2
5(T )

)
, (28)

where

R5(T ) =
2R2(T )
ν
√
V

+
2F∞(T )√

ν
, F∞(T ) = sup

k∈R3\{0}

(∫ T

0

|χ̂k(ξ)f̂(ξ, t)|2L∞ dt
)1/2

. (29)

The strategy of the proof of these two results is to give an analysis similar to that of Section 2.1 for
a uniform bound on ep(k, t) with the correct behavior in the parameter k. The first lemma controls the
behavior of e2(k, t), pointwise in t.

Lemma 2.9. Suppose that R1(t) is nondecreasing, and is such that for all t ∈ R+

(2δ)3/2R
2(t)√
V

+ f2(k, t) <
ν

6
R1(t) , (30)

where δ < |k|/2
√

3. If e2(k, 0) < R1(0)/|k|, then for all 0 < t < +∞

e2(k, t) ≤ R1(t)
|k|

. (31)

Proof. The quantity e2
2(k, t) satisfies the identity

1
2

d

dt
e2

2(k, t) = 1
2∂t

∫
|χ̂kû|2 dξ (32)

= re
∫

(χ̂k(ξ)û(ξ, t))
(
−ν|ξ|2(χ̂k(ξ)û(ξ, t))

−iχ̂k(ξ)
√
V

(2π)3
Πξ

∫
û(ξ − ξ1, t) · ξ1 ⊗ û(ξ1, t) dξ1

)
dξ

+re
∫

(χ̂k(ξ)û(ξ, t))χ̂k(ξ)f̂(ξ, t) dξ .

The first term of the RHS is negative, bounded above by

−re ν
∫

(χ̂k(ξ)û(ξ, t))|ξ|2(χ̂k(ξ)û(ξ, t)) dξ = −ν
∫
|ξ|2|χ̂k(ξ)û(ξ, t)|2 dξ

≤ −ν |k|
2

4

∫
|χ̂k(ξ)û(ξ, t)|2 dξ ,

9



where we recall that |ξ| > (|k| −
√

3δ) > |k|/2 holds for ξ ∈ supp (χ̂k). The second term of the RHS of (32)
is bounded with two applications of the Cauchy – Schwartz inequality;∣∣∣im ∫

(χ̂k(ξ)û(ξ, t))
(
χ̂k(ξ)

√
V

(2π)3
Πξ

∫
û(ξ − ξ1, t) · ξ1 ⊗ û(ξ1, t) dξ1

)
dξ
∣∣∣

≤
√
V

(2π)3
‖χ̂kû‖L2 ‖χ̂kΠξξ ·

∫
û(ξ − ξ1, t)⊗ û(ξ1, t) dξ1‖L2

≤
√
V

(2π)3
‖χ̂kû‖L2 ‖ξχ̂k‖L2

∣∣∫ û(ξ − ξ1, t)⊗ û(ξ1, t) dξ1
∣∣
L∞

,

where we have used the property of incompressibility that û(ξ − ξ1) · ξ1 = ξ · û(ξ − ξ1). Furthermore on the
support of χ̂k, |ξ| ≤ 3|k|/2 therefore

‖ξχ̂k‖L2 ≤ 3|k|
2

(2δ)3/2 ,
∣∣∫ û(ξ − ξ1, t)⊗ û(ξ1, t) dξ1

∣∣
L∞
≤ ‖û‖2L2 ≤

(2π)3R2(t)
V

.

The third term of the RHS of (32) is not present without a force. When there is a force, it admits an upper
bound ∣∣re ∫ (χ̂k(ξ)û(ξ, t)) χ̂k(ξ)f̂(ξ, t) dξ

∣∣ ≤ ‖|ξ|χ̂kû‖L2 ‖|ξ|−1χ̂kf̂(·, t)‖L2

≤ 3|k|
2
‖χ̂kû‖L2‖f(·, t)‖Ḣ−1 .

An estimate of the RHS is therefore

RHS ≤ −ν
4
|k|2e2

2(k, t) +
3(2δ)3/2

2
1√
V
R2(t) |k|e2(k, t) +

3
2
f2(k, t) |k|e2(k, t) .

This is the situation from which the proof of Theorem 2.4 proceeds. Consider the set BR1 = {e : e ≤
(R1/|k|)}, and suppose that the inequality holds

(2δ)3/2

√
V

R2(t) + f2(k, t) <
ν

6
R1(t) . (33)

When e = e2 is on the boundary of BR1 , that is when e2 = R1(t)/|k|, then

RHS ≤ −ν
4
|k|2e2

2(k, t) +
3(2δ)3/2

2
1√
V
R2(t) |k|e2(k, t) +

3
2
f2(k, t) |k|e2(k, t)

≤
(
−ν

6
R1 + (2δ)3/2 1√

V
R2(t) + f2(k, t)

)3
2
R1 < 0 .

That is ė2(k, t) < 0, and thus BR1 is an attracting set for e2(k, t). If initially e2(k, 0) ≤ R1(0)/|k|, then for
all t ∈ R+, e2(k, t) < R1(t)/|k|. This proves the lemma.

Lemma 2.10. Given k ∈ R3, suppose that for some 2 ≤ p < +∞ there is a nonincreasing function R1(t)
which satisfies

(2δ)3/pR
2(t)√
V

+ fp(k, t) <
ν

6
R1(t) , (34)

for some δ < |k|/2
√

3. If a solution to (7) initially satisfies ep(k, 0) < R1(0)/|k|, then for all t ∈ R+

ep(k, t) <
R1(t)
|k|

. (35)

10



Proof. The principle is to show that the local Lp norms of û(ξ, t) are bounded, using the same strategy as
the proof of Lemma 2.9. Since epp(k, t) is Lipschitz continuous for each k ∈ R3, one calculates

d

dt
epp(k, t) = ∂t

∫
|χ̂kû|p dξ (36)

= re
∫
p |χ̂kû|p−2(χ̂k(ξ)û(ξ, t))∂t(χ̂k(ξ)û(ξ, t)) dξ

= re
∫
p |χ̂kû|p−2(χ̂k(ξ)û(ξ, t))

(
−ν|ξ|2(χ̂k(ξ)û(ξ, t))

−iχ̂k(ξ)
√
V

(2π)3
Πξ

∫
û(ξ − ξ1, t) · ξ1 ⊗ û(ξ1, t) dξ1

)
dξ

+re
∫
p |χ̂kû|p−2(χ̂k(ξ)û(ξ, t))χ̂k(ξ)f̂(ξ, t) dξ .

The first term of the RHS of (36) is negative,

−pν
∫
|ξ|2|χ̂kû|p dξ ≤ −pν

|k|2

4
epp(k, t) .

Using the assumptions of the lemma and the Hölder inequality, the second term has an estimate∣∣∣im ∫
p |χ̂kû|p−2(χ̂k(ξ)û(ξ, t))

(
χ̂k(ξ)

√
V

(2π)3
Πξξ ·

∫
û(ξ − ξ1, t)⊗ û(ξ1, t) dξ1

)
dξ
∣∣∣

≤ p
(∫
|χ̂kû|p dξ

)(p−1)/p(∫
|ξ|p|χk(ξ)|p dξ

)1/p
√
V

(2π)3

∣∣∣∫ û(ξ − ξ1, t)⊗ û(ξ1, t) dξ1
∣∣∣
L∞

≤ |k|ep−1
p

3p
2

(2δ)3/p 1√
V
R2(t) .

The third term of the RHS of (36) is bounded by∣∣∣re ∫ p
(
|χ̂kû|p−2(χ̂k(ξ)û(ξ, t))

)
χ̂kf̂ dξ

∣∣∣ ≤ p(∫ |χ̂kû|p dξ)(p−1)/p 3|k|
2

(∫ |χ̂kf̂ |p
|ξ|p

dξ
)1/p

≤ 3p
2
|k|ep−1

p fp .

An estimate of the RHS of (36) is thus

RHS ≤ p
(
−ν

4
|k|2epp(k, t) +

3(2δ)3/p

2
1√
V
R2(t) |k|ep−1

p (k, t) +
3
2
fp(k, t)|k|ep−1

p (k, t)
)
.

Consider again the set BR1 = {e : 0 ≤ e ≤ R1/|k|}. When e = ep is on the boundary, that is when
ep = R1(t)/|k|, then

RHS ≤ p
(
−ν

4
Rp1
|k|p−2

+
3(2δ)3/p

2
1√
V
R2(t)

Rp−1
1

|k|p−2
+

3
2
fp
Rp−1

1

|k|p−2

)
=
(
−ν

6
R1 + (2δ)3/p 1√

V
R2(t) + fp

)3
2
pRp−1

1

|k|p−2
.

Supposing that (33) holds, the RHS is negative for e = ep on the boundary, and the set BR1 is attracting
for the quantity ep(k, t) for t ∈ R+.
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These are estimates which are uniform in the parameter p. We are now prepared to complete the proof
of Theorem 2.7, indeed we note that limp→+∞ ep(k, t) = |χ̂kû|L∞ . The quantity ep(k, t) is given a uniform
upper bound in Lemma 2.10 under the stated hypotheses, and hence the theorem follows.

Proof of Theorem 2.8. Start with the identity in (36) for ep(k, t), which we read as

∂te
2
p =

2
p
ep(2/p−1)
p ∂te

p
p . (37)

Because of the support properties of the cutoff functions χ̂k(ξ), there is the comparison |k|/2 ≤ |ξ| ≤ 3|k|/2
on the support of χ̂k, thus one has upper and lower bounds

|k|2

4

∫
|χ̂k(ξ)û(ξ, t)|p dξ ≤

∫
|ξ|2|χ̂k(ξ)û(ξ, t)|p dξ ≤ 9|k|2

4

∫
|χ̂k(ξ)û(ξ, t)|p dξ . (38)

We therefore can rewrite the RHS of (37) as

2ep(2/p−1)
p

(
−ν
∫
|ξ|2|χ̂k(ξ)û(ξ, t)|p dξ (39)

+
√
V

(2π)3
im
∫
|χ̂k(ξ)û(ξ, t)|p−2χ̂k(ξ)û(ξ, t)

×χ̂k(ξ)
(

Πξ

∫
û(ξ − ξ1, t) · ξ1 ⊗ û(ξ1, t) dξ1

)
dξ

+re
∫
|χ̂k(ξ)û(ξ, t)|p−2χ̂k(ξ)û(ξ, t)χ̂k(ξ)f̂(ξ, t) dξ

)
.

:= −I1 + I2 + I3

The first of the three terms of the RHS is

I1 = 2ν
(∫
|ξ|2|χ̂k(ξ)û(ξ, t)|p dξ∫
|χ̂k(ξ)û(ξ, t)|p dξ

)1−2/p (∫
|ξ|2|χ̂k(ξ)û(ξ, t)|p dξ

)2/p

,

which is well-defined because of (38), is positive, and through a lower bound will give us the result of the
theorem. The second term of the RHS is

I2 =
2
√
V

(2π)3
im
∫
|χ̂kû|p−2(χ̂kû) χ̂k

(
Πξ

∫
û(ξ − ξ1, t) · ξ1 ⊗ û(ξ1, t) dξ1

)
dξ

×
(∫
|χ̂k(ξ)û(ξ, t)|p dξ

)−1+2/p

,

for which one uses the Hölder inequality (with (p− 2)/p+ 1/p+ 1/p = 1) to obtain an upper bound;

|I2| ≤
2
√
V

(2π)3

(∫
|χ̂kû|p dξ

)(p−2)/p(∫ |χ̂kû|p dξ)1/p(∫ |χ̂k|p dξ)1/p
×
∣∣∣Πξ

∫
û(ξ − ξ1, t) · ξ1 ⊗ û(ξ1, t) dξ1

∣∣∣
L∞

(∫
|χ̂kû|p dξ

)−1+2/p

.

The third term of the RHS is

I3 = 2re
∫
|χ̂k(ξ)û(ξ, t)|p−2χ̂k(ξ)û(ξ, t)χ̂k(ξ)f̂(ξ, t) dξ

×
(∫
|χ̂kû|p dξ

)−1+2/p

,
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which satisfies an estimate of similar form, namely

|I3| ≤ 2
(∫
|χ̂kû|p dξ

)(p−2)/p(∫ |χ̂kû|p dξ)1/p(∫ |χ̂kf̂ |p dξ)1/p(∫ |χ̂kû|p dξ)−1+2/p

= 2
(∫
|χ̂kû|p dξ

)1/p(∫ |χ̂kf̂ |p dξ)1/p .
Integrating (37) over the interval [0, T ],

2
∫ T

0

ν
(∫
|ξ|2|χ̂k(ξ)û(ξ, t)|p dξ

)2/p
(∫
|ξ|2|χ̂k(ξ)û(ξ, t)|p dξ∫
|χ̂k(ξ)û(ξ, t)|p dξ

)1−2/p

dt (40)

≤ e2
p(k, 0)− e2

p(k, T ) +
∫ T

0

|I2(t)|+ |I3(t)| dt .

Because of the properties of χ̂k, we have |k|/2 ≤ |ξ| ≤ 3|k|/2 in the support of the integrand, and therefore

|k|2−4/p ≤
(

2
∫
|ξ|2|χ̂k(ξ)û(ξ, t)|p dξ∫
|χ̂k(ξ)û(ξ, t)|p dξ

)1−2/p

,

which means that the LHS of (40) gives an upper bound for the quantity∫ T

0

ν|k|2
(∫
|χ̂k(ξ)û(ξ, t)|p dξ

)2/p

dt .

Cancelling terms, one uses Cauchy – Schwartz to estimate the two time integrals on the RHS of (40). Using
that ∣∣∣Πξ

∫
û(ξ − ξ1, t) · ξ1 ⊗ û(ξ1, t) dξ1

∣∣∣
L∞
≤ ‖û(·, t)‖L2‖ξû(·, t)‖L2 ,

we estimate the first time integral as follows:∫ T

0

|I2(t)| dt ≤ 2
√
V

(2π)3

(∫
|χ̂k|p dξ

)1/p(∫ T

0

(∫
|χ̂kû|p dξ

)2/p
dt
)1/2

×
(∫ T

0

‖û(·, t)‖2L2‖ξû(·, t)‖2L2 dt
)1/2

≤ 2
√
V

(2π)3
(23δ3)1/p

(∫ T

0

(∫
|χ̂kû|p dξ

)2/p
dt
)1/2

×

(
(2π)3

√
νV

( sup
0≤t≤T

‖u(·, t)‖L2)
(∫ T

0

ν‖∇u(·, t)‖2L2 dt
)1/2)

.

We have used the Plancherel identity and its constant, as well as the fact that
∫
|χ̂k|p dξ ≤ (2δ)3. Thus∫ T

0

|I2| dt ≤
2R2(T )
ν
√
V

(23δ3)1/p
(∫ T

0

ν
(∫
|χ̂kû|p dξ

)2/p
dt
)1/2

.

Under similar considerations,∫ T

0

|I3| dt ≤ 2
(∫ T

0

(∫
|χ̂kû|p dξ

)2/p
dt
)1/2(∫ T

0

(∫
|χ̂kf̂ |p dξ

)2/p
dt
)1/2

.
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Now multiply the inequality (40) by |k|2 and use the above estimates with the fact that |k|/2 ≤ |ξ| ≤ 3|k|/2
on the support of χ̂k.∫ T

0

ν|k|4
(∫
|χ̂kû|p dξ

)2/p
dt ≤ |k|2e2

p(0)

+2((2δ)3)1/pR
2(T )
ν
√
V

(∫ T

0

ν|k|4
(∫
|χ̂kû|p dξ

)2/p
dt
)1/2

(41)

+
2√
ν

(∫ T

0

(∫
|χ̂kf̂ |p dξ

)2/p
dt
)1/2(∫ T

0

ν|k|4
(∫
|χ̂kû|p dξ

)2/p
dt
)1/2

.

From our hypotheses on the initial data we know that |k|2e2
p(0) ≤ R2

1(0). Defining

I2
p(k, T ) :=

∫ T

0

ν|k|4
(∫
|χ̂kû|p dξ

)2/p
dt ,

the inequality (41) states that

I2
p(k, T ) ≤ R2

1(0) +
(

2(2δ)3/pR
2(T )
ν
√
V

+
2Fp(T )√

ν

)
Ip(k, T ) , (42)

where we define Fp(T ) := (
∫ T

0
(
∫
|χ̂kf̂ |p dξ)2/p dt)1/2. As we have argued before, this implies that Ip(k, t)

cannot exceed the largest positive root R2,p of the associate quadratic equation, resulting in the statement
that

Ip(k, t) ≤ R2,p(T )

where the constant R2,p(T ) is given by

R2,p(T ) = 1
2

(
R5,p(T ) +

√
4R2

1(0) +R2
5,p(T )

)
, (43)

where in turn

R5,p(T ) = 2(2δ)3/pR
2(T )
ν
√
V

+
2Fp(T )√

ν
, F 2

p (T ) =
(∫ T

0

(
∫
|χ̂k(ξ)f̂(ξ, t)|p dξ)2/p dt

)
.

The result of the theorem will follow by taking the limit of large p → +∞, recovering the estimate on
|χ̂kû|L∞ .

3. Estimates of energy spectra

The energy spectral function is the main concern of the present paper. For the problem (7) posed on
D = R3 this is defined by the spherical integrals

E(κ, t) =
∫
|k|=κ

|û(k, t)|2 dS(k) , (44)

where 0 ≤ κ < +∞ is the radial coordinate in Fourier transform variables. When considering the case of
a periodic domain D = T3 the Fourier transform is defined over the dual lattice, and therefore to avoid
questions of analytic number theory one defines the energy spectral function to be a sum over Fourier space
annuli of given thickness a;

E(κ, t) =
1
a

∑
κ≤|k|<κ+a

|û(k, t)|2|Γ′| . (45)
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The classical Sobolev space norms of the function u can be defined in terms of the energy spectral function,
via the Plancherel identity. Indeed in the case D = R3 the L2 norm is given as

‖u‖2L2 =
V

(2π)3

∫ +∞

0

E(κ) dκ , (46)

and the Hr Sobolev norms are

‖u‖2Hr =
V

(2π)3

∫ +∞

0

(κ2 + 1)rE(κ) dκ . (47)

Analogous definitions hold for the case x ∈ T3.

3.1. Kolmogorov spectrum
There is considerable lore and a large literature on the behavior of the spectral function, particularly

for large Reynolds number flows, the most well known statement being due to Kolmogorov and Obukov.
The prediction depends upon a parameter ε, which is interpreted as the average rate of energy transfer
per unit volume. Assuming that a flow exhibiting fully developed and isotropic turbulence has a regime
of wavenumbers over which E(κ, ·) depends only upon ε and κ, The famous argument of Kolmogorov and
Obukov states that over an inertial range κ ∈ [κ1, κ2],

E(κ, ·) ∼ C0ε
2/3κ−5/3 , (48)

for a universal constant C0. Their reasoning is through a dimensional analysis. The actual history of
this prediction, which is well documented in [6] among other references, includes a number of statements
of Kolmogorov as to the small scale structure of the fluctuations in a turbulent flow [7, 8, 9], and an
interpretation of his results by Obukhov [14] in terms of the Fourier transform, as is stated in (48)1. Some
of the issues surrounding this statement are whether the Kolmogorov scaling law (48) should hold for an
individual flow at every instant in time, whether it should hold on time average, or whether it is a statement
for the average behavior for a statistical ensemble of flows with the probability measure for this ensemble
being given by some natural invariant measure for solutions of the Navier – Stokes equations. The bounds
given below have implications on the energy spectral function in all of these cases.

3.2. Bounds on energy spectra
The estimates given in Section 2 on the Fourier transform of solutions translate into estimates on the

energy spectral function for such solutions. Bounds which are pointwise in time are given in the following
theorem.

Theorem 3.1. Suppose that f = 0 and that the initial data satisfies u0 ∈ AR1 ∩ BR(0), where R and R1

satisfy (15). Then for all κ and all times t,

E(κ, t) ≤ 4πR2
1 . (49)

In the case of non-zero forcing f , then there is a finite but possibly growing upper bound given by

E(κ, t) ≤ 4πR2
1(t) (50)

Bounds which concern the time average of the energy spectral function are derived from Theorem 2.5.

1In fact Obukhov formulated an integral version of this result, which he called the ‘two-thirds law of energy distribution’.
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Theorem 3.2. Again suppose that the initial data satisfies u0 ∈ AR1 ∩BR(0), where R and R1 satisfy (15),
and the force f ∈ L∞loc([0,+∞);H−1(D) ∩ L2(D)) is bounded as in (25)(29). Then for every T the energy
spectral function satisfies

1
T

∫ T

0

E(κ, t) dt ≤ 4πR2
2(T )
νT

1
κ2

. (51)

In particular, under the hypotheses of Theorems 2.3, 2.4, and 2.5, the energy spectrum must decay with
an upper bound of order O(κ−2) for every T . In case that the solution is such that lim supT→+∞R2

2(T )/T
is finite, then the time average behavior in (51) has an upper bound which is uniform in T . In any case, this
is evidently faster than the Kolmogorov power law (48) and thus merits a further discussion.

Proof of Theorems 3.1 and 3.2. In the case of spatially periodic solutions, the definition of the energy spec-
tral function gives that

E(κ, t) =
1
a

∑
κ≤|k|<κ+a

|û(k, t)|2|Γ′|

≤ 1
a

∑
κ≤|k|<κ+a

R2
1

|k|2
|Γ′|

≤ 1
a

4πκ2a

|Γ′|
R2

1

κ2
|Γ′| ≤ 4πR2

1(t) .

We have used that the lattice point density of Γ′ is |Γ′|−1. The inequalities of Theorem 3.1 follow. In the
case in which the spatial domain D = R3, the proof is similar.

To prove Theorem 3.2, consider first the case of D = R3, where

1
T

∫ T

0

E(κ, t) dt =
∫
|k|=κ

( 1
T

∫ T

0

|û(k, t)|2 dt
)
dS(k)

≤ 4πκ2
(R2

2(T )
νTκ4

)
.

This is the stated estimate. The periodic case is similar.

3.3. Estimates on the inertial range
The two theorems 3.1 and 3.2 have implications on the inertial range of a solution of (7). In particular

the inequalities (49)(50) give uniform upper bounds for E(κ, t), while (51) estimates its time averages from
above with a decay rate Cκ−2. For direct comparison we define the idealized Kolmogorov energy spectral
function with parameter ε to be

EK(κ) = C0ε
2/3κ−5/3 ; (52)

this is to be considered to be stationary in time so that it also represents the idealized time average. These
bounds and the idealized energy spectral function are illustrated in Figure 1. The first constraint implied
by (49)(50) and (51) is that a spectral regime with parameter ε is incompatible with the situation in which
EK(κ) lies entirely above the permitted set S := {E ≤ 4πR2

1} ∩ {E ≤ 4πR2
2(T )/νκ2T}.

Proposition 3.3. In order that the graph of EK(κ) intersect the set S, the parameters must satisfy the
relation

ν5/6C0ε
2/3 ≤ 4π

(
R2(T )√

T

)5/3

R
1/3
1 (T ) . (53)
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0

ln(κ1) ln(κ ) ln(κ )2

ln(E(κ ))

E= 4πR2
1

E = C  e2/3 −5/3κ

πE = (4    R2 /T κ 2)

Figure 1: The accessible set S and a spectral function EK(κ).

The proof is elementary. This gives an upper bound on the parameter ε, in fact on the quantity C0ν
5/6ε2/3,

in terms of quantities that are determined by the initial data and the inhomogeneous forces. In the setting
of statistically stationary solutions, R2

2(T )/T ≤ R2

2, where R2 and R1 are constant. In order that a spectral
regime is achieved, the relation

C0ν
5/6ε2/3 ≤ 4πR

5/3

2 R
1/3
1

must hold. This constrains the values of the parameter ε for any solution regime that exhibits spectral
behavior.

We now take up the question of the endpoints of the inertial range [κ1, κ2], assuming a given value of ε.
We will produce an interval [κ1, κ2] such that upper and lower limits of the inertial range, respectively κ1

and κ2 must necessarily satisfy κ1 ≤ κ1 ≤ κ2 ≤ κ2. First of all, the function EK(κ) will violate the estimate
(49) (if the force is not present) or (50) (when there is a force) unless κ ≥ κ1, where

C0ε
2/3κ

−5/3
1 = 4πR2

1 , (54)

which gives a bound from below for the lower endpoint of the inertial range.

Proposition 3.4. An absolute lower bound for the inertial range is given by

κ1 =
C

3/5
0 ε2/5

(4πR2
1)3/5

. (55)

It is an amusing exercise to check that the RHS has the appropriate units of L−1, for which we note that
the units of ε are L2/T 3. In the case of a nonzero forcing, R1(t) may be increasing, in which case κ1(t)
would decrease. In the case of bounded forces, R1(t) may increase linearly in t, implying that κ1(t) ∼ t−6/5.
For a statistically stationary solution as described above, R and R1, and therefore κ1 are constant.
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The upper bound for the inertial range comes from comparing time averages of EK with the upper bound
(51). Indeed,

1
T

∫ T

0

EK(κ) dt = C0ε
2/3κ−5/3 ≤ 4πR2

2(T )
νTκ2

. (56)

Proposition 3.5. The inequality (56) holds only over an interval of κ bounded above by

κ2 =
(4π)3

(C0ν)3

1
ε2

R6
2(T )
T 3

. (57)

It is again amusing to check that the RHS has units of L−1, noting that ν has units of L2/T . When there
is a force present, the constant R2

2(T ) may grow in T . When f ∈ L∞(R+;H−1 ∩ L2) the constant R2(T )
grows at most linearly in T . When considering the case of a bounded and statistically stationary forcing
term, for example, the ratio R2

2(T )/T is expected to have a limit as T grows large, limT→+∞R2
2(T )/T =

R
2

2, which gives rise to a fixed upper bound for κ2. Indeed in any case in which the constant R
2

2 :=
lim supT→+∞(R2

2(T )/T ) is finite, this argument gives an upper bound for κ2.
However with no force present, or with a force which decays in time, then R2

2(T ) will be bounded, or may
grow sublinearly, which results in the bound for κ2 = κ2(T ) which is decreasing in time. Supposing that at
some time T0 we have that for T > T0 then κ2(T ) ≤ κ1, implying that the interval consisting of the inertial
range is necessarily empty. The explicit bound for T0 in the case of no force present is as follows.

Proposition 3.6. Suppose that the force f = 0, so that R1 and R2 are constant in time. Then κ2(T ) ≤ κ1

for all T ≥ T0, where

T0 =
(4π)6/5R

2/5
1 R2

2

ε4/5C
6/5
0 ν

. (58)

The RHS has units of time. If there is a nonzero force present, then R1 = R1(T ) and R2 = R2(T ), so
that the expressions (55)(57) for κ1 = κ1(T ) and κ2 = κ2(T ) depend on time. It nonetheless could happen
that

lim sup
T→+∞

κ2(T ) < lim inf
T→+∞

κ1(T ) , (59)

then again there is a maximum time T0 for the existence of spectral behavior of solutions.
The above three estimates give lower and upper bounds on the inertial range, and an upper bound of the

time of validity of a spectral description of a solution to (7), if indeed it behaved exactly like the Kolmogorov
power spectrum profile over its inertial range.

As discussed in the introduction, when additional physical assumptions are made as to the behavior
of a solution of (7), then further information is available about the energy transfer rate ε. The classical
hypotheses are stated in [14] among other places, describing the character of flows in a regime of fully
developed turbulence. Specifically, they are that (1) the flow is in a (statistically) steady state of energy
transfer from the inertial range |k| ≤ κν to the dissipative range |k| > κν ; (2) the support of the spectrum
E(κ, t) lies essentially in inertial range; and (3) a certain scale invariant form is assumed for the transport
of energy T (κ) at wavenumber scale κ which assumes a form of homogeneity of the flow. Under hypotheses
(1)(2) and (3), one concludes that the energy dissipation rate ε1 in (6) is equal to the energy transfer rate
ε, and that the upper end of the inertial range κ2 = κν = 2π(ε/ν3)1/4. Alternatively, one can simply work
under the hypothesis that the energy spectral function depends only upon the two quantities κ and the
energy dissipation rate ε1. Assuming that the force is stationary, and that ε = ε1, the conclusion of [4] is
that

ε ≤ c1ν
〈‖u(·)‖2L2〉
V 5/3

+ c2
〈‖u(·)‖2L2〉3/2

V 11/6
,
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where 〈·〉 denotes either time or ensemble averaging, and in any case ‖u(·)‖L2 ≤ R. This is to be compared
with the general estimate (53), and it behaves better for small ν. On the other hand, the estimates in the
present paper hold for all weak solutions of (7), and they give an upper bound on the energy transfer rate
ε, essentially independently of the Obukhov hypotheses. Furthermore, the upper and lower bounds on the
inertial range are conclusions of the analysis rather than assumptions of the theory. In particular this work
gives a lower bound on the inertial range, which is the first such known, either with mathematically rigorous
arguments or under physical hypotheses, at least to the authors.

3.4. Limits on spectral behavior
The endpoints κ1, κ2 of the interval which bounds the inertial range, and the temporal upper bound T0

are given in terms of the idealized Kolmogorov spectral function EK(κ), rather than one given by an actual
solution of the Navier – Stokes equations. In order to have a relevance to actual solutions, one must quantify
the meaning of spectral behavior of a solution. This can have a number of interpretations, several of which we
have mentioned in Section 3.1. It could be that we define an individual solution to have spectral behavior if
its energy spectral function E(κ, t) is sufficiently close to the idealized Kolmogorov spectral function EK(κ),
uniformly over a time period [0, T ]. Since the solution u(·, t) ∈ L2 and is indeed in Ḣ1 for almost all times t,
while EK is neither (i.e. neither EK(κ) nor κ2EK(κ) ∈ L1(R+

κ )), this already implies that the inertial range
must be finite.

Definition 3.7. A solution (u, p) to (7) is said to have the spectral behavior of EK(κ), uniformly over the
range [κ1, κ2] and for the time interval [0, T ] if its energy spectral function E(κ, t) satisfies

sup
κ∈[κ1,κ2],t∈[0,T ]

(1 + κ5/3)|E(κ, t)− EK(κ)| < C1 << C0ε
2/3 . (60)

An alternate version of this specification would be to replace the criterion (60) with a weaker one, for
instance asking that a Sobolev space norm be controlled, which for D = R3 could be the statement that

sup
t∈[0,T ]

∫ κ2

κ1

(1 + κ5/3)|E(κ, t)− EK(κ)| dκ < C1 << C0ε
2/3 . (61)

Or else one could specify a criterion which respected the metric of a Besov space. For example, one could
use the Fourier decomposition ∆j = {k : 2j−1/2 < |k| ≤ 2j+1/2}, and ask that over a time period [0, T ] a
solution satisfy ∣∣∣∫

∆j

|û(k, t)|2 dk − C0ε
2/33 sinh((ln 2)/3)2−2j/3

∣∣∣ < C12−5j/3 � C0ε
2/32−5j/3 (62)

for all j1 ≤ j ≤ j2, where j1, j2 are such that j1 < log2 κ1, and log2 κ2 < j2. In any of these cases,
Theorems 3.1 and 3.2 imply bounds on the inertial range given by the interval [κ1, κ2] .

Theorem 3.8. Suppose that an individual solution (u(x, t), p(x, t)) is such that u0(x) ∈ AR1 ∩BR(0), where
R and R1 satisfy (15) and if a force is present, it satisfies (18). If u(x, t) exhibits the spectral behavior of
EK uniformly over the range [κ1, κ2]× [0, T ], then

κ1 ≤ κ1 , κ2 ≤ κ2 , (63)

and if f = 0 then
T ≤ T0 , (64)

with possibly different constants C0 in (55)(57)(58).
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Thus the spectral behavior of solutions whose initial data u0(x) lie in one of the sets AR1 ∩ BR(0) is
limited by the bounds given in (63). The proof will show that the same constraints hold for solutions which
exhibit spectral behavior over a given nonzero proportion of the measure of the time interval [0, T ].

However it could be argued that the behavior of an individual solution is less important, and that
spectral behavior is a property of a statistical ensemble of solutions. Members of this ensemble should
have their spectral behavior considered in terms of the ensemble average, rather than individually as above.
Theorems 3.1 and 3.2 are relevant to this situation as well. Suppose there were a probability measure P
defined on a statistical ensemble Ω ⊂ L2(D) ∩ {u : ∇ · u = 0} which is invariant under the solution map
of the Navier – Stokes equations, however this has been chosen to be defined, with force f (also possibly
stationary, taken from a family of realizations which have their own statistics). Using the standard notation,
define the ensemble average of a functional F (u) defined and P-measurable on Ω by 〈F (u)〉. Without loss of
generality we can take P to be ergodic with respect to the Navier – Stokes solution map.

The ergodicity of the invariant measure P tells us two things. The first is that space averages are a.e.
time averages, so that

〈E(κ, ·)〉 = lim
T→∞

1
T

∫ T

0

E(κ, t) dt ≤ 4π
νκ2

lim
T→∞

R2
2(T )
T

(65)

for P-a.e. initial data u0. The second thing is that whenever R,R1 satisfy (18) then P(AR1 ∩BR(0)) is either
zero or one, as AR1 ∩BR(0) is an invariant set.

Definition 3.9. A statistical ensemble (Ω,P) is said to exhibit the spectral behavior of EK(κ) on average
over the range [κ1, κ2] when the ensemble average of its energy spectral function,

〈E(κ, t)〉 :=
∫
|k|=κ

〈|û(k, t)|2〉 dS(k) (66)

satisfies the estimate

sup
κ∈[κ1,κ2],t∈[0,T ]

(1 + κ5/3)|〈E(κ, t)〉 − EK(κ)| < C1 << C0ε
2/3 (67)

over the range [κ1, κ2].

Let us suppose that the force f satisfies

|f̂(k, t)| ≤ ν|k|R1 and
(∫ t

0

|f̂(k, s)|2 ds
)1/2 ≤ F∞(t) , (68)

as in (18), and we are to examine the spectral behavior of the statistical ensemble of solutions {u(·)}.

Theorem 3.10. Suppose that the ensemble (Ω,P) has the spectral behavior of EK(·) over the range [κ1, κ2].
Then either

P(AR1 ∩BR(0)) = 0 (69)

for all R,R1, or else
κ1 ≤ κ1 , κ2 ≤ κ2 , (70)

with a possibly different constant C0 in (55)(57)(58).

Proof of Theorems 3.8 and 3.10. We will give the argument in the case of Euclidian space D = R3, the torus
case is similar. Start with the proof of Theorem 3.8 with the criterion of (60), and suppose that κ1 < κ1.
Using the estimate of Theorem 3.1 and the form (52) of EK(κ1) we have

C0ε
2/3κ

−5/3
1 − 4πR2

1 ≤ |EK(κ1)− E(κ1)| ≤ o(1)C0ε
2/3 .
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Because of the identity (54), this implies

C0ε
2/3(κ−5/3

1 − κ−5/3
1 ) ≤ o(1)C0ε

2/3 .

A lower bound for the LHS is given by

κ
−5/3
1 − κ−5/3

1 =
∫ κ1

κ1

5
3
κ−8/3 dκ ≥ (κ1 − κ1)

5
3
κ
−8/3
1 .

Therefore
0 ≤ (κ1 − κ1) ≤ o(1)

3
5
κ

8/3
1 ,

that is, κ1 is a bounded distance from κ1. Furthermore the defining relation (54) for the left endpoint κ1 of
the bounds on the inertial range can be rewritten

4πR2
1 = C0ε

2/3κ
−5/3
1 = C0ε

2/3κ
−5/3
1

(κ1

κ1

)5/3

,

and since (1 − o(1)(3/5)κ5/3
1 ) ≤ κ1/κ1 ≤ 1, then (54) continues to hold for κ1, with only a small change in

the constant C0.
Now suppose that κ2 ≤ κ2. The criterion (60) implies that

1
T

∫ T

0

κ5/3|EK(κ)− E(κ, t)| dt ≤ o(1)C0ε
2/3 .

Therefore using (51) and (52), we have

C0ε
2/3 − 4π

ν

R2
2

T
κ−1/3 ≤ o(1)C0ε

2/3 .

for κ ∈ [κ1, κ2] and T ≤ T . This applies in particular to κ = κ2, therefore

C0ε
2/3(1− o(1)) ≤ 4π

ν

R2
2

T

1

κ
1/3
2

.

Hence

κ
1/3
2 ≤ 4π

ν

R2
2(1 + o(1))
C0ε2/3T

= (1 + o(1))κ1/3
2 ,

where we have used (57). Therefore

(1− o(1)) ≤ κ2

κ2
≤ 1 ,

and (57) holds for κ2 with only a change of the overall constant C0.
Similar considerations give the analog result to Theorem 3.8 if we accept the Sobolev or Besov criteria for

spectral behavior. For instance, suppose it is considered that the estimate (61) is the indicator of spectral
behavior. If κ1 < κ1 then∫ κ1

κ1

(C0ε
2/3κ−5/3 − 4πR2

1) dκ ≤
∫ κ1

κ1

|EK(κ)− E(κ)| dκ ≤ o(1)C0ε
2/3 .
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Using (54), this implies that

C0ε
2/3

∫ κ1

κ1

(κ−5/3 − κ−5/3
1 ) dκ ≤ o(1)C0ε

2/3 ,

which in turn implies (by convexity) that

C0ε
2/3 (κ1 − κ1)2

2
5
3
κ
−8/3
1 ≤ o(1)C0ε

2/3 .

This controls κ1 − κ1 and also their ratio. Suppose that κ2 < κ2. Then the criterion (61) implies that∫ κ2

κ2

κ5/3(C0ε
2/3κ−5/3 − 4πR2

2

νT
κ−2) dκ ≤

∫ κ2

κ2

κ5/3|EK(κ)− E(κ)| dκ ≤ o(1)C0ε
2/3 .

Therefore, using (57)

(κ2 − κ2)− 3
2
κ

1/3
2 (κ2/3

2 − κ2/3
2 ) ≤ o(1) .

Define a(κ) := κ − 3
2κ

1/3
2 κ2/3, which is increasing and convex for κ ≥ κ2. The last estimate states that

a(κ2)− a(κ2) ≤ o(1), which controls the quantity κ2 − κ2.
The proof of the analogous statements of Theorem 3.10 are similar, except that the upper bounds on κ2

are easier as the ensemble average already subsumes the time average due to the ergodicity hypothesis.

4. Conclusions

The global estimates given in theorems 2.3, 2.4 and 2.5 for the domain D = T3, and theorems 2.7 and
2.8 in the case D = R3, provide control in L∞ of the Fourier transform of weak solutions of the Navier –
Stokes equations. These are in terms of constants R, R1 and R2 which depend only upon the initial data
and the inhomogeneous forces. These results in turn give estimates of the energy spectral function, which
show that E(κ, t) is bounded from above, and its time averages are bounded above by O(1/κ2). These
upper bounds constrain the ability for a weak solution to exhibit spectral behavior in the manner of the
idealized Kolmogorov spectral function EK(κ) = C0ε

2/3κ−5/3. The constraints extend to the case of a
statistical ensemble forces and solutions, applying to the ensemble averages 〈E(κ, t)〉 of the energy spectral
function. We remark that the estimates, and the subsequent constraints on spectral behavior, are valid
for weak solutions of the Navier – Stokes equations, and our considerations are separate from the physical
assumptions of Obukhov on flows exhibiting fully developed turbulence, or the question of possible formation
of singularities.

It is natural to compare the above constraints with the physical quantities describing spectral behavior
and the inertial range that come from the Kolmogorov – Obukhov theory of turbulence. The first of these is
the Kolmogorov length scale ην = (ν3/ε)1/4, or rather its associated wavenumber κν = 2π/ην . On physical
grounds, dissipation is expected to dominate the behavior of E(κ, t) for κ > κν . Comparing κν to our upper
bounds on the inertial range, we find that

κν = 2π
( ε
ν3

)1/4

≤
(

4π
C0ν

R2
2(T )
T

)3 1
ε2

= κ2

for sufficiently small ε and ν. Indeed, with everything else fixed, κν is decreasing in ε while κ2 is increasing,
and furthermore while both κν and κ2 are increasing as ν → 0, however κν � κ2. It seems clear that κ2 is
an absolute, but not necessarily a very sharp, estimate of the upper limit of the inertial range and the start
of the dissipative regime for solutions that is expected on physical grounds.
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As described in section 3.3, if one assumes a number of physical hypotheses, as Obukhov does, on the
form of the energy transfer rate, from which one deduces that κν gives an upper bound on the spectral
regime and that ε = ε1 is given by the energy dissipation rate, then there are better upper bounds available
for ε than our result (53). This assumption however is based on physical assumptions on the character of
solutions of the Navier – Stokes equations in a statistically stationary regime.

The Taylor length scale κλ = 2π(εV/νR2)1/2 is another indicator of the lower limit of the dissipative
regime, one which incidentally is independent of the form of the Kolmogorov idealized energy spectral
function EK . The quantity R2/V is a bound on the energy per unit volume of the solution. We again see
that κ2 is an overly pessimistic upper bound for κλ for small ε and ν, since in such a case

κλ = 2π
(
εV

νR2

)1/2

≤
(

4π
C0ν

R2
2(T )
T

)3 1
ε2

= κ2 .

In both of these comparisons the quantities R2
2(T )/T are to be replaced by R

2

2 in the case of a statistically
stationary ensemble of solutions.

In a flow regime of fully developed turbulence, it is generally expected that κλ < κν , an inequality which
is worthwhile to discuss. Calculate

κλ
κν

=
√
V

R

( ε
ν

)1/2
(
ν3

ε

)1/4

=
√
V

R
(εν)1/4

where (εν)1/4 = uν is the Kolmogorov velocity scale. For solutions that we consider, (15) holds, so that in
particular √

V

R
(εν)1/4 ≥ R

νR1
(εν)1/4 =

R

R1

κν
2π

.

The implication is that

κλ >
R

2πR1
κ2
ν ,

which indicates, for fixed data R,R1, that κλ cannot be too much smaller than κν , and is very possibly much
larger. An inequality in the other sense does not seem to arise from this or similar considerations. We do
find an upper bound for the Kolmogorov velocity scale

uν = (εν)1/4 =
R√
V

κλ
κν
≤ 1
ν1/16

(
4π
C0

)3/8
((

R2√
T

)5

R1

)1/8

.

Considering the case f = 0, which is as in the original papers of Kolmogorov [8], the constraint of
Theorem 3.8 is that T ≤ T0, with the latter given by the expression in (58). This is to be compared with
the Kolmogorov timescale τν = (ν/ε)1/2. It is clear, for R1 and R2 fixed constants, that

τν
T0

= ε3/10ν3/2

(
C

6/5
0

(4π)6/5R
2/5
1 R2

2

)
which is of course small for small ε, ν. This is again as it should be, allowing large multiples of the eddy
turnover time before one runs into the upper allowed limit for the persistence of spectral behavior of solutions.

It is also natural, given the bounds κ1, κ2 on the inertial range, to introduce the dimensionless parameter

rν :=
κ2

κ1
=

1
ε12/5ν3

(
4π
C0

)18/5
(
R

2/5
1 R2

2(T )
T

)3

, (71)

23



which governs the extent of the possibility of spectral behavior of solutions. It is somewhat similar to a
Reynold’s number; when rν < 1 then solutions satisfying (15)(18) (respectively, (25)) are disallowed from
exhibiting spectral behavior. For rν > 1 an inertial range is permitted, although it is not guaranteed by the
analysis of this paper. The larger rν the larger the permitted inertial range, although again it is not the case
that the actual interval of κ over which solutions exhibit spectral behavior will necessarily extend through a
significant proportion of the interval κ1, κ2. In the situation of a statistical ensemble of forces and solutions,
the form of rν is somewhat more compelling,

rν :=
κ2

κ1
=

1
ε12/5ν3

(
4π
C0

)18/5 (
R

2/5
1 R

2

2

)3

. (72)

This quantity is a stand-in for the ratio of the integral scale to the Kolmogorov scale, which is itself often
used as an indicator of the Reynolds number of a flow.

This paper does not address the corrections to the Kolmogorov – Obukhov theory of Navier – Stokes
flows in a turbulent regime, along the lines proposed in Kolmogorov (1962) [10]. This is focused on the
deviations from Gaussian nature of the moments of the structure function for such flows, and it has been a
very active area of research over the past decades. We will reserve our own thoughts on this matter for a
future publication.
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