
Mathematics 742:
Final Exam

Walter Craig
Winter term 2015-2016

Due date: Thursday April 28, 2016.

Problem 1. Liouville and Bernstein theorems.
Consider harmonic functions u(x) defined for all x ∈ Rn;

∆u = 0 .

(a) Suppose that u(x) is bounded;
|u(x)| ≤ C0 .

Show that u(x) = β a constant.

(b) Suppose that u(x) has bounded linear growth;

|u(x)| ≤ C1(|x|+ 1) .

Show that u(x) = ω · x+ β for some constant vector ω and some constant β.

(c) Give a suggestion for an extension of these results, with a sketch of the proof.

Problem 2. Nonlinear heat equations and singularity formation.

Let B1(0) ⊆ Rn and consider a nonlinear heat equation on B1(0)× [0, T ] of the form

∂tu = ∆u+ up , u(t, x) = 0 for x ∈ S1(0) ,

where p > 1.

(a) Suppose the initial data satisfies f(x) ≥ 0; show that for t > 0 then u(t, x) > 0 (or else
f(x) = 0 and u(t, x) = 0).

(b) Show that for all f(x) not identically zero there exists a time T = T (f) < +∞ such
that

lim
t→T
‖u(t, ·)‖L∞ = +∞ .

Problem 3. Regularity in time of solutions of the heat equation. We have shown in lecture
that a solution u(t, x) of the heat equation on Rn×R+ is analytic in x for all t > 0 if we ask
for reasonable conditions on the initial data such as f ∈ L1(Rn). Being analytic means that
for a point (t0, x0) : t0 > 0 there exist constants C0 and N such that

|(∂kxu)(t0, x0)| ≤ C0N
kk!
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Given a point (t0, x0) : t0 > 0 show that there are constants C1 and M such that

|(∂mt u)(t0, x0)| ≤ C1M
m(2M)! .

This bound does not imply analyticity, but it shows that as a function of t, u(t, ·) is in the
Gevrey class.

Problem 4. The Cauchy problem for the wave equation in the Friedman – Robertson –
Walker space-time.

The metric for a Friedman – Robertson – Walker (FRW) space-time is given in terms of the
line element in the form

ds2 = −dt2 + S2(t)dσ2 , S(0) = 0 ,

defined on the half space-time R1
+×R3

x, where dσ2 = dx21 +dx22 +dx23 is the Euclidian metric
of each space-like hypersurface {(t, x) : t = Const.} ' R3. This metric describes an emerging
space-time from a Big Bang at t = 0. Changing time variable

dt

dτ
= S(τ) = τ 2

the metric becomes
ds2 = S2(τ)(−dτ 2 + dσ2) .

Consider the wave equation on R1
+ × R3

x in this metric,

�u :=
1

S2
∂2τu−

2Ṡ

S3
∂τu−

1

S2
∆σu = 0 .

Initial data is given on the Cauchy hypersurface {(τ0, x)} ' R3,

u(τ0, x) = g(x) , ∂τu(τ0, x) = h(x) .

(a) Make the change of variables

v(τ, x) =
1

τ
∂τ (τ

3u)

show that v(τ, x) satisfies the usual wave equation in Minkowski space

∂2t v = ∆σv τ > 0 .

Show that the initial data for v at τ = τ0 > 0 is given by{
v(τ0, x) = 3τ0g(x) + τ 20h(x) := φ(x)

∂τv(τ0, x) = 3g(x) + τ 20 ∆g(x) + τ0h(x) := ψ(x) .
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Thus the solution can be given in terms of spherical means; state this expression for the
solution.

(b) The inverse of the transformation is given by

τ 3u(τ, x) =

∫ τ−τ0

0

(r + τ0)v(r + τ0, x) dr + τ 30 g(x) .

Assume (for simplicity) that h(x) = 0. Give an expression for u(τ, x) in terms of g(x) using
the spherical means expression for v and the above inverse.

(c) The above expression is for fixed τ0 > 0 defining the Cauchy surface, and it gives the
solution at time τ > 0. Now consider the solution expression at a fixed time τ > τ0, and
take the limit as τ0 → 0. What do you get?

(d) Make a sketch of the light cone structure of this problem in the original variables (t, x).

Problem 5. H. Lewy’s example of nonexistence.

There is a basic question as to whether every linear partial differential equation has a solution,
at least locally. If the equation has constant coefficients the answer is affirmative, given by
the Malgrange – Ehrenpreis theorem. And the case of analytic coefficients and analytic data
is addressed by the Cauchy – Kowalevsky theorem. However if the equation has variable
coefficients, even analytic coefficients, there are cases for which there is no solution if data
is C∞ but not analytic.

Define the linear differential operator on a neighborhood of R3;

Lu = −∂xu− i∂yu+ 2i(x+ iy)∂zu ,

and consider the problem Lu = h(x, y, z).

(a) If h = h(z) is real valued, show that a C1 solution of Lu = h(x, y, z) exists only if
h ∈ Cω, i.e. it is real analytic.
Hint: Write (x, y) = (

√
r cos(θ),

√
r sin(θ)) in modified polar coordinates, and change vari-

ables to
v(r, θ, z) =

√
reiθu(

√
r cos(θ),

√
r sin(θ), z) ,

which is C1 for 0 < r ≤ R. The equation is transformed to

Lv = −2∂rv −
i

r
∂θv + 2i∂zv = h(z) .

In polar coordinates v(r, θ, z) is 2π-periodic in θ; denote its average

V (r, z) =
1

2π

∫ 2π

0

v(r, θ, z) dθ ,
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which satisfies
(∂z + i∂r)V = −ih(z) .

Letting H(z) be such that ∂zH(z) = h(z), show that the function W (r, z) = V + iH(z)
satisfies the Cauchy – Riemann equations, and furthermore that it is continuous at r = 0.
Extending W (−r, z) = −W (r, z) by reflection to negative values of r, the point r = 0 is a
removable singularity, and W (r, z) is analytic. This implies that the solution u(x, y, z) must
be analytic in (r, z) as well. Conclude that H(z) must originally have been analytic.

(b) The symbol of L is

σ(L) = −iξ + η + 2i(x+ iy)ζ = (η − 2yζ) + i(−ξ + 2xζ) := σR + iσI .

The terms σR and σI are the real and imaginary parts of the symbol σ(L). Define the
Poisson bracket between two symbols α and β to be the expression

{α, β} := ∂xα∂ξβ − ∂ξα∂xβ + ∂yα∂ηβ − ∂ηα∂yβ + ∂zα∂ζβ − ∂ζα∂zβ .

Show that
{σR, σI} 6= 0 .

In Hörmander’s theory of C∞ solvability, the vanishing of the Poisson bracket {σR, σI} is a
necessary and essentially a sufficient condition.

Problem 6.∗ Invariant norm Sobolev inequality.

In some instances it is more useful to define a Sobolev space with respect to vector fields
that are not simply derivatives in the Euclidian coordinate directions. Namely define the
infinitessimal rotations and dilations as, respectively

Ωk` = xk∂x` − x`∂xk , Λ =
n∑

m=1

xm∂xm = r∂r .

An example is the Sobolev space Hs(Sn−1) of functions on the unit sphere,

‖u‖2Hs(Sn−1) =
∑
|α|≤s

∫
Sn
|Ωαu(ϕ)|2 dSϕ ,

which involves the vector fields of the Lie algebra of rotations in Rn restricted to the unit
sphere Sn−1 ⊆ Rn; of course α is a n(n − 1)/2 component multiindex. A second example
of this is to take Sobolev spaces built on differentiation with respect to the Lie algebra of
rotations and dilations, and form the Sobolev spaces Zab as the closure of Schwartz class
S(Rn) in the following norms:

‖u‖2Zab
:=

∑
|α|≤a,|β|≤b

∫
Rn

|ΛβΩαu(x)|2 dx .
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(a) Show that the vector fields Ωk` = −Ω`k and Λ form a Lie algebra, and in fact their
commutators satisfy the relations

[Ωk`,Ωmp] =


Ωkp , when ` = m , k 6= p

0 when {k, `} = {m, p}
0 when {k, `} ∩ {m, p} = ∅

and
[Ωk`,Λ] = 0 .

(b) Prove the Sobolev lemma on Sn−1, that for s > (n− 1)/2 then

|u(ϕ)| ≤ Cn‖u‖2Hs(Sn−1) .

(c) Prove the invariant norm Sobolev inequality on Rn for a > (n− 1)/2, in the form

|u(x)| ≤ Cn

|x|n2
‖u‖1/2Za0

‖u‖1/2Za1
.

This gives a weighted estimate on the absolute value of the function u(x) as |x| → +∞.
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