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Since Ludwig’s first observation[1] that Na+

and Cl− ions migrate and are concentrated by a
thermal gradient imposed on a salt solution, the
separation of the components of a mixture in a
thermal field, known as "thermal diffusion", or
the Ludwig-Soret effect has been found not only
in liquids, but also in gases, and even in solids[2—
5]. Thermal diffusion typically produces a small
separation in solvent mixtures; however, when
suspensions of nanometer sized particles, or sol-
vent mixtures near a consolute critical point are
exposed to thermal gradients[4, 6] the Ludwig-
Soret effect can be large implying substantial sep-
aration of the components. Here, we show, for a
sinusoidal temperature field in a binary mixture
where the Ludwig-Soret effect is large, that mov-
ing fronts, or “shock waves" between the compo-
nents of the mixture are predicted. The thermal
shocks have several properties identical to the fa-
miliar shock waves in fluids generated by super-
sonic flight or that follow the detonation of high
explosives, and obey a relation for their veloci-
ties exactly analogous to the well-known Rankine-
Hugoniot relations that govern the state variables
in fluid shocks.
Although a number of methods have been employed

over the years for imposing a thermal gradient on a solu-
tion to generate thermal diffusion, recently, a new tech-
nique based on the interference of two crossed laser beams
to form an optical grating in a weakly absorbing fluid has
been introduced [4, 7—9] that has sizeable thermal gra-
dients, sinusoidal in space, but with only a small overall
temperature rise[10]. For a steady temperature field
of the form T = T0[1 + sin(Kx)], where T0 is a tem-
perature, K is a wavenumber determined by the optical
fringe spacing in the grating, the Ludwig-Soret effect is
governed by[11]

∂c(z, t)

∂τ
=α

∂

∂z
{c(z, t)[1− c(z, t)] cos z}+ ∂2c(z, t)

∂z2
, (1)

where c is the density fraction[12] of the first species, i.e.
the mass per unit volume of the first species normalized

to the overall mass per unit volume of the solution, 1−
c is the density fraction of the second species, α known
as the thermal diffusion factor is given by α = D0T0/D,
whereD is the mass diffusion constant andD0 is the ther-
mal diffusion coefficient, and where a dimensionless time
τ and coordinate z given by τ = K2Dt and z = Kx have
been used, where t is the time and x is the coordinate
along the grating. It can be seen that Eq. 1 is a par-
tial differential equation in space and time, nonlinear in
the density fraction. As in the case of fluid shocks, de-
termination of the important characteristics of the time
development of the density fraction is approached by ig-
noring dissipative effects, in this case, the second term on
the right hand side of Eq. 1 that describes ordinary mass
diffusion, which acts to negate the effects of thermal dif-
fusion. Without mass diffusion, the differential equation
governing the buildup of c can be written

∂c

∂τ
= −∂f

∂z
, (2)

where a “flux” f(c, z) is defined as f(c, z) = −αc(1 −
c) cos z. Eq. 2 is the differential form of a conservation
equation that expresses the buildup of c in a volume as a
consequence of a flux change in space. Since for a periodic
temperature field the density fraction must be periodic
in z, it follows that c(2π, τ) = c(0, τ) ; hence, from Eq. 2
the integral of the density fraction over one optical fringe
is independent of time and the law ∫2π0 c(z, t) dz = 2πc0
must be valid for any time t, where c0 is the density frac-
tion at time t = 0, assumed to be a constant throughout
the cell. The integral for the density fraction over z
expresses simple mass conservation for the Ludwig-Soret
effect.
The Eulerian description of the profile c = c(z, τ) by

Eq. 1 can be transformed[13] into a Lagrangian de-
scription yielding the coupled pair of ordinary differential
equations,

dz

dτ
=

∂f(c, β)

∂c
= α(2c− 1) cos z (3)

dc

dτ
= −∂f(c, β)

∂β
= −αc(1− c) sin z, (4)

that gives the motion of points with coordinates z =
z(τ , c0,z0) and c = c(τ , c0,z0) on the zc plane for a point
initially at (c0,z0) at time τ = 0. It is noteworthy
that Eqs. 3 and 4 form a Hamiltonian system, analo-
gous to the well-known canonical equations of Hamilton
found in classical mechanics, with the flux function in the
present problem taking on the role of the Hamiltonian
function. The motion of any point in the zc plane can
be found by eliminating dτ from Eqs. 3 and 4, which,
when integrated[14], yields a constant of the motion k1

c0(1− c0) cos z0 = c(1− c) cos z = k1, (5)

from which the locus of points (z, c) in time for a point
initially at (z0, c0) can be found. A family of trajectories
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for several values of k1 is shown in Fig. 1. Eqs. 5
and 4 can be combined and integrated over a path of
constant k1 to give an exact, albeit implicit, solution for
the density fraction versus time as

F

·
arcsin (

c

b
), (

b

a
)2
¸
= a(± α τ + k2), (6)

where F is an elliptic integral of the first kind, the

parameters a and b are given by a =
q

1
4 + k1 , and

b =
q

1
4 − k1 , and k2 is a constant depending on the

initial point of the trajectory[15]. The minus sign is
used for points moving in the hot region of the grating
0 < z < π, and the plus sign is used for motion in the
cold region π < z < 2π.
A plot of the concentration versus coordinate for sev-

eral values of the time is given in Fig. 2, which shows
that for short times the density fraction of the first species

FIG. 1: Portrait of the trajectories of points in the zc plane
from Eq. 5 for several values of k1. Points to the right of
z = 3π/2 with c < 1/2 move to the left and upwards initially.
As time progresses the points move upwards and to the right
giving multiple values for c for a single value of z.

builds up forming progressively higher peaks in the cold
region of the grating region (near z = 3π/2) and de-
creases in the warm regions. As time progresses, how-
ever, the curves take on multiple values of c for a single
value of z, at which time, the formal solution from the
Hamiltonian system is disregarded and the problem is
treated by considering the density fraction to behave as
a moving discontinuity, or shock wave. The velocity of
the right-going shock can be found directly from Eq. 4
as dzsh/dτ = [f(cl, z)− f(cr, z)]/(cl − cr), which can be
expressed as

d zsh
dτ

= α[(cr + cl)− 1] cos z, (7)

where cl and cr are the density fractions to the left and to
the right of the discontinuity. The shock velocity varies

FIG. 2: Density fraction against dimensionless distance along
the grating z for several values of the time from numerical
integration of Eqs. 3 and 4 with α = 15 . The initial density
fraction is c0 = 0.3 giving the flat curve; the curves with
successively larger values of c at z = 3π/2 are for values of τ
equal to 0, 0.1, 0.2, and 0.4. Since α can be combined with
τ in Eq. 1 by division by α to give a time parameter ατ,
the curves are universal for values of ατ equal to 0, 1.5, 3.5,
and 6.0.The circles and squares mark the trajectories for two
different starting points on the z axis. For positive α, c(z, τ)
builds up in the region near z = 3π/2; for negative values of
α, c(z, τ) builds up in the region near z = π/2.

in time and can be seen to slow until it stops when cr = 1
and cl = 0, i.e.. where there is complete separation of the
components of the mixture. It is noteworthy that Eq.
7 is an exact analog of the Rankine-Hugoniot relations
for one-dimensional fluid shocks: Eq. 7 expresses the
thermal diffusion shock velocity in terms of the density
fractions on either side of the shock, while the Rankine-
Hugoniot relations express the ratios of the state vari-
ables of the fluid on either side of the shock in terms of
the shock velocity.
Since the effects of diffusion are large when the space

gradient of the density fraction is large, numerical inte-
gration of Eq. 1 was carried out to determine the influ-
ence of mass diffusion on the motion of the shock. It was
found that the mass diffusion term produced a smooth-
ing of the features of the shock, but that the motion of
a front was still evident, the speed and the sharpness of
the front being the highest for large values of α.
It is possible to determine the final distribution of

the two species in space with the effects of diffusion in-
cluded directly from Eq. 1 in closed form by noting
that dc/dt = 0 at long times. Straightforward integra-
tion of Eq. 1 to give the final distribution of cN (z) =
c(z,∞)when thermal diffusion is exactly balanced by
mass diffusion as cN (z) =

£
1 + F (α, c0)e

α sin z
¤−1

, where
F (α, c0) is determined by[16] for a given value of α and
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c0 through use of the mass conservation law given above.
Note that if Eq. 1 is linearized by setting the fac-
tor (1 − c) to unity[13] then the corresponding expres-
sion for the density fraction cL(z) is easily found to be
cL(z) = [c0/Î0(α)] exp(−α sin z), where Î0 is a modified
Bessel function.
A self diffraction experiment[17] was carried out by

passing the 532 nm beam from a frequency doubled, con-
tinuous Nd:YVO4 laser through a Galilean telescope and
dielectric beam splitter, and recombining the resulting
two laser beams in a 10µm path length Pyrex cell to
form a temperature grating, as shown in Fig. 3. The
beams were focused to a spot roughly 2 mm in diameter

Galilean
Telescope

Beam Splitter

532 nm

Sample

N
d:

Y
V

O
4

Beam Splitter

Sample

532 nm

A
r-K

r L
as

er

N
d:

Y
V

O
4

Galilean
Telescope

CCD Camera
Mirrors

Camera

A B

FIG. 3: Diagram of the experimental apparatus for (A) self
diffraction measurements, and (B) recording the absorption
profile in the cell with a CCD camera. The 532nm laser
was operated to give a powers of approximately 200 mW at
the front surface of the cell.

at the front face of the cell; the optical fringe spacing[10]
of the grating was 30µm. The cell was filled with a sus-
pension of 3 nm Fe3O4 particles in dioctyl adipate with
a solution density of 1.2 g/ cm3, which absorbed approx-
imately 80% of the incident 532 nm beam.
The diffracted light pattern from the suspension was

recorded photographically on a white card placed approx-
imately 1 m from the cell. As shown in Fig. 4, the two
spots from the undiffracted 532 nm beams seen immedi-
ately after the laser was switched on were followed by the
appearance of a series of equally spaced diffracted light
spots, with the outermost spots appearing latest in time
and with the lowest intensity. The time dependences of
the intensities of the diffracted beams, recorded with a
photomultiplier and digitizing oscilloscope were fit to a
Fourier series decomposition of the density fraction pro-
file determined from numerical integration of Eq. 1 (with
diffusion included), giving a fitted value of α equal to -3.6
and a mean value for the rate of change in the width of
the density fraction peak of 0.03 µm/ s. When one of
the laser beams forming the grating was blocked, so that
only a single beam illuminated the cell, the series of spots

FIG. 4: Top: Diffracted light pattern from the laser irradiated
cell showing multiple order diffraction. Since the grating
was an absorption grating, the intensity of each diffracted
beam can be attributed to a distinct spatial harmonic of the
absorption profile. Bottom: CCD camera microphotographs
taken at (A) 0 s,(B) 1.8 s, (C) 3.0 s, and (D) 12 s after the
laser beam is turned on. The distance between the dark and
light regions is 30 µm.

from the diffracted beams disappeared over the course of
a few min, with the outermost spots disappearing most
rapidly, eventually leaving only a single spot from the re-
maining laser beam, the rate of the disappearance being
consistent with the highest rate of mass diffusion taking
place from the highest spatial harmonics of the density
fraction distribution[18].
Experiments were also carried out using a microscope

equipped with a CCD camera to view the time develop-
ment of the absorption profile in cell directly. A 488 nm
beam from a continuous, Ar-Kr, mixed gas laser provided
the illumination for the microscope, which was equipped
with narrowband filters to reject the 532 nm beam but
pass the 488 nm beam. The absorption in the cell was
recorded at periodic intervals after the laser beams were
turned on giving a series of images of the density pro-
file in time. The value of α found from fitting the data
to a numerical integration of the absorption profile was
-2.7. The absorption profile recorded at long times was
fit to both cN and cL using the least squares procedure.
The latter gave a poor fit to the data, giving a value of
the error in the least squares procedure over three times
that from a fit using cN , indicating a significant con-
tribution from the nonlinearity in Eq. 1 to the particle
distribution.
The origin of thermal diffusion shocks is identical to

that for fluid shocks: both arise from nonlinearities of the
dependent variables in differential equations of motion
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for the state variables. For thermal diffusion, the den-
sity fraction, which constitutes the "state variable", ap-
pears with a quadratic dependence in its equation of mo-
tion, Eq. 1; for fluid shocks, the pressure, temperature,
density and fluid velocity are the state variables, with
the velocity appearing with quadratic dependences in the
conservation equations for both energy and momentum.
Two important differences between thermal diffusion and
fluid shocks are that the former depend on the existence
of externally imposed temperature gradients—there is no
similar requirement for fluid shocks; and, second, that
thermal diffusion shocks always appear, not as a single
front traveling in one direction, but as a pair of iden-
tical fronts propagating in opposite directions, with the
speed of the shock necessarily slowing to zero even in
the absence of mass diffusion. A further difference in the
two shock phenomena is that in the laboratory observa-
tion of the shocks, the dissipative force, ordinary mass
diffusion in the thermal diffusion shock as opposed to
viscous damping in a fluid shock, is far more dominant
in determining the overall spatial profile of the thermal
diffusion shock wave. However strongly mass diffusion
acts to broaden the features of a thermal diffusion shock,
the nonlinearity of Eq. 1 dictates that the motion of the
density fraction wave is governed by the mathematics of a
shock and that the underlying motion of the components
of the mixture is described as a shock phenomenon; the
degree to which the shock fronts become easily observable
in the laboratory depends solely on the thermal diffusion
factor α, the magnitude of which governs the dominance
of thermal diffusion over mass diffusion.
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