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Many of the central equations of mathematical physics, the nonlinear wave equa-
tion, the nonlinear Schrödinger equation, the Euler equations for free surfaces, can
be posed as Hamiltonian systems with infinitely many degrees of freedom. In a
neighborhood of an equilibrium, the linearized equations are those of a harmonic
oscillator and thus solutions exhibit periodic and quasi-periodic motion. To con-
struct solutions of the same nature for the nonlinear partial differential equations
(PDE)s is a small divisor problem in general. This article gives an overview of
some of the techniques and results of KAM-like methods for PDE, which have been
developed to address the analysis of this problem.
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1. Introduction

A Hamiltonian partial differential equation is an evolution equation whose initial
value problem takes the form

∂tv = JgradvH(v) , v(x, 0) = v0(x) , (1.1)

where v ∈ H which is a Hilbert space playing the rôle of the phase space, which
has a symplectic form given by

ω(X,Y ) = 〈X, J−1Y 〉H , JT = −J . (1.2)

The flow of this dynamical system, if it exists on a neighborhood of v0(x), is denoted
by

v(x, t) = ϕt(v0(x)) ,

tracing a curve in H through v0. Our aim is to describe some analytic results
constructing special compact invariant sets for this flow in the phase space H. The
outline of this article are as follows:

Section 2. Hamiltonian PDE – principal examples

Section 3. Invariant tori – a variational problem

Section 4. Estimates of the linearized problem
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2. Principal examples

(a) nonlinear wave equations

This is a model for a class of nonlinear wave equations for which the function
u(x, t) represents a scalar field. We seek solutions of the equation

∂2
t u−∆u+ g(x, u) = 0 , (2.1)

satisfying a boundary condition on a domain Ω ⊆ Rd, which could be Dirichlet or
Neumann conditions. More conveniently one often poses periodic boundary condi-
tions on a torus, which is to say that Ω = Td = Rd/Γ for a given period lattice Γ.
This is what we will do for the most part of this article. The Hamiltonian functional
for problem (2.1) is given by

H(u, p) =
∫

Td

1
2p

2 + 1
2 |∇u|

2 +G(x, u) dx , (2.2)

with respect to which the equations (2.1) can be rewritten as

∂tu = p = gradpH(u, p) (2.3)
∂tp = ∆u− ∂uG(x, u) = −graduH(u, p) ,

where g(x, ·) = ∂uG(x, ·). This is to say that the system has the form

∂t

(
u

p

)
=

(
0 I

−I 0

) (
graduH(u, p)
gradpH(u, p)

)
, (2.4)

and the symplectic form is given by

ω(X,Y ) =
∫

Td

X2(x)Y1(x)−X1(x)Y2(x) dx

for two vector fields X = (X1, X2), Y = (Y1, Y2) ∈ H. Recognizing the canonical
form for

J =
(

0 I

−I 0

)
. (2.5)

we say that this system is posed in Darboux coordinates. Assume that the nonlinear
termG(x, u) is sufficiently smooth, and expand in its Taylor series around (u, p) = 0;

G(x, u) =
1
2
g1(x)u2 +

1
3
g2(x)u3 + . . .

then the point (u, p) = 0 is a stationary point for the dynamical system (2.3), and
an expression for the Hamiltonian reflecting this expansion about this point is given
by

H = H(2) +H(3) + · · ·
An elegant way to linearize this problem about zero is to truncate the Hamiltonian
at quadratic order. In doing so we obtain

H(2) =
∫

Td

1
2p

2 + 1
2 |∇u|

2 +
1
2
g1(x)u2 dx

=
∑
k∈Zd

1
2 |p(k)|

2 + 1
2ω(k)2|u(k)|2 , (2.6)
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where the coefficients (u(k), p(k) are the generalized Fourier coefficients of an eigen-
function expansion (

u(x)
p(x)

)
=

∑
k∈Zd

(
u(k)
p(k)

)
ψk(x)

and where the eigenfunction, eigenvalue pairs (ψk(x), ω2(k)) satisfy the problem

L(g1)ψk = (−∆ + g1(x))ψk = ω(k)2ψk . (2.7)

This is evidently a harmonic oscillator, with frequencies {ω(k)}, for k ∈ Zd.
All solutions of the linearized equations

∂t

(
u

p

)
=

(
0 I

−I 0

) (
graduH

(2)(u, p)
gradpH

(2)(u, p)

)
, (2.8)

are given by this eigenfunction expansion for the linear flow (for reasons of simplicity
of the discussion we have not pursued cases in which some eigenvalues of (2.7) may
be negative, ω2(k) < 0);(

u(x, t)
p(x, t)

)
=

∑
k∈Zd

ψk(x)
(

cos(ξ(k, t)) 1
ω(k) sin(ξ(k, t))

−ω(k) sin(ξ(k, t)) cos(ξ(k, t))

) (
u0(k)
p0(k)

)

= Φt

(
u0(x)
p0(x)

)
. (2.9)

In this expression, the phases are given by

ξ(k, t) = ω(k)t . (2.10)

The simple facts about the flow (2.9) are that

(1) the Hamiltonian H(2) is preserved by the evolution;

H(2)(Φt(v)) = H(2)(v).

(2) Furthermore, the action functionals are preserved by the flow, where the action
is defined by;

Ik(u, p) = 1
2

(
ω(k)|u(k)|2 +

1
ω(k)

|p(k)|2
)
,

Ik(Φt(v)) = Ik(v) ; (2.11)

(3) The phases evolve linearly in time, as in (2.10). Hence all solutions are either
periodic in time, quasiperiodic in time, or at least almost periodic in time. Namely,
the orbit (u(x, t), p(x, t)) = Φt(u0(x), p0(x)) of (2.8) is periodic when each of the
frequencies ω(kj) for which at least one of the Fourier coefficients (u0(kj), p0(kj))
is nonzero (the active frequencies) is an integer multiple of a basic frequency ω0;

ω(kj) = `jω0 , `j ∈ Z .

The orbit Φt(u0(x), p0(x)) is quasiperiodic with a m-dimensional frequency base if
there is a m-dimensional frequency vector ω0 = (ω0(1), . . . ω0(m)) ∈ Rm such that
the active frequencies satisfy

ω(kj) = 〈`j , ω0〉 , `j ∈ Zm .
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That is, the linear span of the set {ω(kj)} over the rationals Q has dimension m.
A solution (u(x, t), p(x, t)) is almost periodic if no finite number of base frequencies
suffices.

These facts motivate a number of basic questions regarding the nonlinear prob-
lem (2.3). Namely

(1) whether some solutions of the nonlinear problem have the same properties of
periodicity, quasiperiodicity, or almost periodicity as the solutions of the linearized
problem. This question is in the area of KAM theory, the study of invariant tori for
such Hamiltonian systems.
(2) Whether all solutions with initial data v0(x) ∈ H remain in the function space
H for all time t ∈ R, which is the question of (global) well posedness; whether for
any δ > 0 there exists a ε > 0 such that for v(x) ∈ Bε(0) then ϕt(v) ∈ Bδ(0) for
all t ∈ R, which is a question of stability; or whether the action variables {Ik} vary
by controlled amounts over long time intervals. More precisely,

|Ik(ϕt(v))− Ik(v)| < εα

over time intervals
|t| < T (ε) ∼ exp(

1
εβ

) ,

which is known as a Nekhoroshov stability result.
(3) Whether there are lower bounds on the growth of the action functionals, or on
higher Sobolev norms of the solutions of (2.3). In finite dimensional Hamiltonian
systems this phenomenon is known as Arnold diffusion.

(b) nonlinear Schrödinger equations

The second example of a Hamltonian PDE that we address is the nonlinear
Schrödinger equation, which appears in the form

i∂tu− 1
2∆u+Q(x, u, u) = 0 , (2.12)

where we take x ∈ Td representing periodic boundary conditions. One could also
take either Dirichlet or Neumann, or other self-adjoint boundary conditions on a
domain Ω ⊆ Rd. Setting initial data u(x, 0) = u0(x) ∈ H, we suppose that we can
solve the initial value problem, and we denote the flow of this dynamical system by

u(x, t) = ϕt(u0(x)) .

The Hamiltonian is given by the expression

H(u) =
∫

Td

1
2 |∇u|

2 +G(x, u, u) dx (2.13)

where the nonlinearity G is asked to satisfy two conditions; that ∂uG = Q, and
the complex function G(x, z, w) is real valued whenever w = z. Then (2.12) can be
rewritten as

∂tu = i graduH(u) , (2.14)

where J = iI is the canonical form of complex symplectic coordinates.
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(c) Korteweg deVries equations

A third example of a class of Hamiltonian PDE is the Korteweg deVries equation,
whose original application was to waves in the free surface of a fluid. In general form
this is

∂tq = 1
6∂

3
xq − ∂x(∂qG(x, q)) , (2.15)

where one takes x ∈ R1/Γ = T1. The Hamiltonian is given by

H(q) =
∫

T1

1
12 (∂xq)2 +G(x, q) dx , (2.16)

and the symplectic form is a non-classical one, given by

ω(X,Y ) =
∫

T1
(∂−1

x X(x))Y (x) dx

which is to say that the symplectic form is given in terms of the operator J = −∂x.

(d) large amplitude long waves in an interface

The equations of motion of a free interface between two immiscible fluids of
different densities, which are acted on by gravity, can be described as a Hamiltonian
PDE. Suppose that there is a fixed flat bottom boundary at a finite depth {y =
−h < 0}, a top boundary at {y = +h1 > 0} which is a rigid lid, and a sharp
interface between the two fluids given by {y = η(x, t)}. Denote the acceleration of
gravity by g, the density of the lower fluid by ρ, and that of the upper fluid by
ρ1 < ρ. In both of the upper and lower fluid regions the velocity field of the fluid is
given as a potential flow, namely

u1 = ∇ϕ1 for η(x, t) < y < h1 , u = ∇ϕ for − h < y < η(x, t) .

Both ϕ and ϕ1 are harmonic functions in their respective fluid regions, and they
satisfy Neumann boundary conditions on the two rigid boundaries. Such situations
occur in the laboratory, and under certain conditions these equations model the
behavior of a sharp interface in the ocean between two water layers of different
temperatures, such as occurs in the tropics (called a thermocline layer), or between
two layers of different salinity (a pycnocline layer), such as occurs in deep fjords
subject to large freshwater sources, or on the Mediterranean side of the Gibralter
straits. It was discovered by Benjamin & Bridges [BB97] that this can be written
as a Hamiltonian system, in terms of the canonical variables (η(x), ξ(x)) where one
defines ξ(x) = ρϕ(x, η(x)) − ρ1ϕ1(x, η(x)). A systematic study of the long wave
scaling limits of the resulting system of equations is presented in [CGK03, CGK04].
Perhaps the most interesting limiting system of equations when the slope of the
interface is of order O(ε), without assuming that the actual interface displacement
is small. Changing variables through the transformation

u(x) = ∂xξ(x)

the resulting equations for the interface take the form

∂t

(
η

u

)
=

(
0 −∂x

−∂x 0

) (
gradηH

graduH

)
. (2.17)
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This is evidently a Hamiltonian system with symplectic form given by the expression

ω(X,Y ) =
∫

(∂−1
x X1)Y2 + (∂−1

x X2)Y1 dx , (2.18)

which is the same as that occurring for the more well known Boussinesq system. In
the present case the Hamiltonian functional is given by the expression

H(η, u) =
∫

1
2R0(η)u2 + 1

2g(ρ− ρ1)η2 (2.19)

+R1(η)(∂)xu)2 + 1
4R2(η)∂xη(∂xu

2) +R3(η)(∂)xη)2u2 dx

The nonlinear coefficients of this integrand are rational functions in η, which are
precisely

R0(η) =
(h+ η)(h1 − η)

ρ1(h+ η) + ρ(h1 − η)

R1(η) = − 1
3

(h+ η)2(h1 − η)2[ρ1(h1 − η) + ρ(h+ η)]
[ρ1(h+ η) + ρ(h1 − η)]2

R2(η) = − 1
3ρρ1

(h+ h1)(h+ η)(h1 − η)[(h1 − η)2 − (h+ η)2]
[ρ1(h+ η) + ρ(h1 − η)]3

R3(η) = − 1
3ρρ1

(h+ h1)3[ρ1(h+ η)3 + ρ(h1 − η)3]
[ρ1(h+ η) + ρ(h1 − η)]4

.

One can view the first as the nonlinear propagation velocity, and the other three
as coefficients of nonlinear dispersion. This system and its derivation are discussed
in [CGK04].

(e) free surface water waves

The water waves problem in d-dimensions concerns the dynamics of a free surface
{y = η(x, t) : x ∈ Td−1} bounding a fluid region in which the fluid velocity field is
given by a potential flow;

u = ∇ϕ , ∆ϕ = 0 . (2.20)

The potential satisfies Neumann boundary conditions on the bottom boundary
of the fluid region {y = −h}, and as above the fluid has gravity as a restoring
force. Given a fluid domain S(η) fixed by η(x), we parametrize the set of harmonic
functions on S(η) which satisfy Neumann bottom boundary conditions by their top
boundary values ξ(x) = ϕ(x, η(x)). It was shown by Zakharov in a classical paper
[Z68] that the full Euler’s equations with a free surface are equivalent to the system

∂t

(
η

ξ

)
=

(
0 I

−I 0

) (
gradηH(η, ξ)
gradξH(η, ξ)

)
, (2.21)

where the Hamiltonian is given by

H(η, ξ) =
∫

1
2ξG(η)ξ + 1

2gη
2 dx . (2.22)
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This particular version of the problem is given in Craig & Sulem [CS93]. The
Dirichlet-Neumann operator G(η) is an integral operator on the free surface, which
solves the following harmonic extension problem:

ξ(x) 7→ ϕ(x, y) harmonic extension
7→ N · ∇ϕ(x, η(x)) dx normal derivative
:= G(η)ξ(x) dx (2.23)

Notice that the equations of motion (2.21) involve the gradient of the Dirichlet inte-
gral with respect to variations of the domain through an expression for the quantity
δηG(η)ξ. This question was discussed by Hadamard [H10], and was anticipated by
him to be relevant to the study of free surface water waves in [H16].

3. A variational formulation

Consider the mapping of a m-dimensional torus Tm into our phase space H;

S(ξ) : Tm 7→ H , (3.1)

which will be flow invariant under the evolution of a Hamiltonian PDE (1.1) in the
sense that for some frequency vector Ω ∈ Rm,

S(ξ + tΩ) = ϕt(S(ξ)) ,∀ξ ∈ Tm . (3.2)

This implies that both

∂tS = JgradvH(S) ,
∂tS = Ω · ∂ξS .

We may rewrite these two relations in the form

J−1Ω · ∂ξS − gradvH(S) = 0 , (3.3)

and the problem of constructing embedded m-dimensional tori which are invariant
under the flow of the Hamiltonian PDE is the problem of finding solutions (S(ξ),Ω)
of equation (3.3). This is a bifurcation problem with m parameters, which is in
general a small divisor problem.

There have been numerous papers on this subject over the last decade, with
several different points of view. Without presenting an exhaustive survey at this
point, it is nonetheless useful to point out the principal contributions to date.
S. Kuksin [K87, K00] and E. Wayne [W90] first addressed the problem of invariant
tori for PDE using extensions of the classical approach of KAM theory, namely the
construction of a convergent sequence of canonical transformations. This point of
view was pursued in subsequent work, including for example the papers of S. Kuksin
and J. Pöschel [KP96] and J. Pöschel [P96]. An alternate and somewhat more direct
technique was developed by W. Craig and E. Wayne in [CW93, CW94], which relies
on different methods for analysing the linearized operators arising in the problem.
This approach was adopted and extended by J. Bourgain in a series of papers
[B95, B96, B98]. An overview of these results is given in [B00] and in [C00]. In the
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present article, we describe an approach to the problem of resonant tori based on the
latter method. Resonant tori for completely integrable systems arise in parameter
families, as can be seen in the unperturbed harmonic oscillator problem. Under
perturbation, a family of m-dimensional resonant tori will be expected to break
up, with only a few m-dimensional invariant tori surviving the perturbation. These
survivors can be characterized by a variational problem, through which furthermore
one can give an estimate on their number. This is the theme of the section below.

(a) the variational problem

On a formal level, one can restate the equations (3.3) as the Euler - Lagrange
equations for a variational problem for mappings of a torus into phase space. Con-
sider the space of such mappings;

S ∈ X := {S(ξ) : Tm 7→ H} . (3.4)

At this level of discussion we will not specify a particular topology for X, realizing
however that this is an important consideration in such analysis. Define the action
functionals to be

Ij(S) = 1
2

∫
Tm

〈S, J−1∂ξj
S〉H dξ , j = 1, . . .m , (3.5)

whose variation satisfies
δSIj = J−1∂ξj

S . (3.6)

Consider the average Hamiltonian to be

H(S) =
∫

Tm

H(S(ξ)) dξ , (3.7)

where evidently
δSH = gradvH(S) . (3.8)

Consider the subvariety of the space X of torus mappings defined by fixing the
values of the action integrals;

Ma = {S ∈ X : I1(S) = a1, . . . Im(S) = am} ⊆ X . (3.9)

The equation (3.3) can be viewed as the Lagrange multiplier rule for critical points
of H(S) restricted to the variety Ma; suffiently smooth critical points correspond
to solutions of equation (3.3) with Lagrange multipliers the components of the
frequency vector Ω;

δSH − Ω · δSI = 0 . (3.10)

It is important to note that both the action functionals I(S) and the average Hamil-
tonian H(S) are invariant under the group action of a torus Tm, namely under the
transformations

τα : S(ξ) 7→ S(ξ + α) , α ∈ Tm , (3.11)

both I(ταS) = I(S) and H(ταS) = H(S). Therefore the constraint variety Ma

is invariant under the action of τα, and subsequently each critical point is in fact
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a member of a critical orbit by this m-torus action. Such considerations will have
consequences in counting the number of geometrically distinct solutions of the equa-
tions (3.3).

Two questions come to mind at this point.

1. Do critical points exist on Ma? In fact the operators L(Ω)S = Ω · ∂ξS are
degenerate on the space of mappings X, and their analysis depends in a sensitive
way on the diophantine properties of the frequency vector Ω.
2. How to understand the multiplicity of solutions? Each critical point is in fact
a member of a critical orbit, but different members of this orbit are geometrically
indistinguishable. However, the space Ma/Tm possesses nontrivial topology, which
implies certain lower bounds on the number of critical orbits of τα invariant func-
tionals on Ma. This is despite the fact that the torus action is not in general a free
action, and therefore the set Ma/Tm is not in general a smooth variety.

Answers that can be obtained in some cases are that: (1) One uses the Nash
- Moser method to overcome the inherent small divisor problem that is present.
Our own approach has been to use a method developed in [CW93] which employs
Fröhlich - Spencer resolvant estimates for the linearized equations from (3.3). (2)
there are well developed methods for counting critical points and critical orbits of
functionals on infinite dimensional spaces, which go under the name of Morse -
Bott theory. In cases of degeneracies, in which the group action is not necessarily
a free action, this theory employs the analog of a classical construction of Borel.
It is slightly unusual to require the details of this construction in the case of an
m-dimensional torus action, such as we are encountering, so for the most part the
particular details have had to be worked out independently.

(b) the linearized problem

To start with, the equations of evolution (1.1) linearized around the equilibrium
solution v = (q, p) = 0 are given in terms of the quadratic part of the Hamiltonian

H(2)(v) = 1
2

∑
k∈Γ′

ω(k)
( 1
ω(k)

p(k)2 + ω(k)q(k)2
)

=
∑
k∈Γ′

ω(k)I(k) , (3.12)

where we have represented v in terms of its eigenfunction expansion, as in (2.6).
The linearized equations (1.1) around the trivial solution v = 0 are

∂t

(
q(k)
p(k)

)
=

(
0 1
−1 0

) (
ω2(k)q(k)
p(k)

)
, k ∈ Γ′ .

Representing mappings S : Tm 7→ H of a torus into our phase space,

S = S(x, ξ) =
∑

k

Sk(ξ)ψk(x)

=
∑
j,k

s(j, k)ψk(x)eij·ξ , j ∈ Zm , (3.13)
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the equations (3.3) linearized about the zero mapping S = 0 is written as(
δ2SH

(2)
(0)− Ω · δ2SI(0)

)
=

∑
j,k

(
ω(k) iΩ · j
−iΩ · j ω(k)

) (
s1(j, k)
s2(j, k)

)
ψk(x)eij·ξ . (3.14)

This represents a decomposition into 2 × 2 block diagonal problems, whose eigen-
values are

µ(j, k) = ω(k)± Ω · j , j ∈ Zm , k ∈ Γ′ . (3.15)

Chose the bifurcation point to be a frequency vector Ω0 = (Ω0
1, . . .Ω

0
m) ∈ Rm which

is the solution of m-many elementary resonance relations

ω(k`)− Ω0 · j` = 0 , ` = 1, . . .m . (3.16)

This represents a choice of null eigenspace X1 ⊆ X within the space of mappings,
spanned by the set {ψk(x)eij·ξ : ω(k) ± Ω0 · k = 0}. The set of indices satisfying
the resonance relations

ω(k)− Ω0 · j = 0

includes at least the set {(j`, k`) : ` = 1 . . .m} given as solutions of the elementary
resonance relations (3.16), but it is possible that there are many more.

Proposition 3.1. The null space X1 is even dimensional, with dimension 2M ≥
2m. It is possible infinite dimensional, but in any case it is a symplectic subspace
of X.

The nonresonant case, which is the analog of a simple bifurcation of invariant
tori, is when dim(X1) = 2m. Otherwise dim(X1) = 2M > 2m, and we say that the
case is resonant. The other eigenvalues (3.15) are

µ(j, k) = ω(k)± Ω0 · j 6= 0 ,

which typically forms a dense set in R. Accumulating at µ = 0, these are the small
divisors.

(c) Lyapunov - Schmidt decomposition

The space X of torus mappings S : Tm 7→ H can be decomposed into the null
space of the linearized operator (3.14) and its orthogonal complement;X = X1⊕X2.
Denote the associated projections by

QX = X1 , PX = (I −Q)X = X2 .

We consider the resulting decomposition of mappings;

S = QS + PS = S1 + S2.

The LHS of the nonlinear equation (3.3) is a transformation from the space of
mappings X to a range space Y , which can also be decomposed into the range Y2

of the linearized operator (3.14) and its co-range Y1. By abuse of notation we will
also denote orthogonal projections onto Y1 and Y2 respectively, by Q and P . The
equation to solve (3.3) are equivalent to

Q
(
J−1Ω · ∂ξS − gradvH(S)

)
= 0 , (3.17)

P
(
J−1Ω · ∂ξS − gradvH(S)

)
= 0 . (3.18)
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(d) critical point theory

In case M < +∞ the Q-equation is finite dimensional, it is in any case called
the bifurcation equation. The hard work in our problem at hand is in fact to solve
the P -equation, for S2 = S2(S1,Ω) as a function of the parameters S1 and Ω.
If this is achieved, the variational problem (3.10) is replaced by a reduced varia-
tional problem, which is the analog of the one proposed by A. Weinstein [W76] and
J. Moser [M79] for periodic orbits of Hamiltonian systems in the resonant case of
the Lyapunov center theorem. Define

I1
j (S1) = Ij(S1 + S2) (3.19)

H
1
(S1) = H(S1 + S2)
M1

a = {S1 ∈ X1 : I1
j (S1) = aj , j = 1 . . .m} .

Critical points of H
1

on the subvariety M1
a ⊆ X1 satisfy

δS1H
1 − Ω · δS1I

1 = 0 , (3.20)

and these correspond to solutions of the Q-equation (3.17). This fact focuses our
attention on the reduced constraint varietyM1

a itself. The solution of the P -equation
is equivariant with respect to the group action τα, and it follows that the reduced
functionals I1

j (S1) and H
1
(S1) are invariant with respect to the Tm action τα. By

its topology alone we can deduce a lower bound for the number of distinct critical
Tm orbits of H

1
(S1) on M1

a . This answer, which is still partially conjectural, is
that in fact that, given the m-dimensional action parameter a, there exist integers
p1, . . . pm such that M1

a is a product of m-many odd dimensional spheres,

M1
a ' ⊗m

j=1S
2pj−1 . (3.21)

The dimensions pj = pj(a) satisfy
∑

j pj = m. They are not constant, but change
as a crosses certain singular homogeneous varieties. This process of transfer of
dimension from some spheres to other ones is an example of symplectic surgery. For
each choice of the sequence (pj(a))m

j=1, the Tm equivariant Morse-Bott inequalities
give a lower bound on the number of critical points of sufficiently nondegenerate
Tm-invariant functionals on M1

a . A simple answer which is uniform under all choices
of (pj)m

j=1 is the following.

Theorem 3.2. The number of distinct critical Tm orbits of H
1

on M1
a is bounded

below:
#{critical orbits ofH

1 } ≥ (M −m+ 1) . (3.22)

This lower bound corresponds to the simplest estimate given by equivariant
cohomology on M1

a/Tm. In fact the estimate holds independently of the orbit-
transversal nondegeneracy condition usually encountered in Morse-Bott theory, us-
ing multiplicative rather than additive techniques.

It is useful to check this inequality in the endpoint cases. Set m = 1 for periodic
orbits, and the number of resonant frequencies M > 1 arbitrary. ThenM1

a ' S2M−1

and M1
a/T1 ' CP (M − 1), a (possibly weighted) complex projective space. The

Morse inequalilies in this case imply that the number of distinct critical orbits of
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T1-invariant functions on M1
a is at least M . This corresponds to the case of the

Weinstein - Moser theorem on the resonant Lyapunov center theorem.
Now set m = M , the case of quasiperiodic motion on a nonresonant m-torus.

In this case,
M1

a ' ⊗m
j=1S

1

which is a product of circles. Under the group action by Tm, we have M1
a/Tm ' ∗, a

point, corresponding to having one critical m-torus. This is a classical KAM torus.
In recent work on doubly periodic surface water wave patterns which are resonant,
the case m = 2, M ≥ 2 occurs, and the estimate on the number of geometrically
distinct doubly periodic solutions is that #{critical orbits} ≥ (M − 1).

4. Estimates of the linear problem

The critical issue is to solve the P -equation (3.18) for the component of an m-torus
embedding S2 = S2(S1,Ω). This is typically a small divisor problem, which we
address with a Nash - Moser implicit function theorem. Central to the workings
of the method is an analysis of the linearized equation. The problem (3.18) is for
an m-torus mapping, projected by P . With S1 = 0 and then differentiating with
respect to S2 ∈ PH at the point S2 = 0, the linearization of (3.18) is

P
(
δ2S2

H(0)− Ω · δ2S2
(0)

)
PV = G , (4.1)

where PV = V and PG = G. In coordinates given by the eigenfunction expansion,
equation (4.1) is expressed as(

ω(k) iΩ · j
−iΩ · j ω(k)

) (
v1(j, k)
v2(j, k)

)
=

(
g1
g2

)
, j ∈ Zm , k ∈ Γ′ . (4.2)

It is seen that the spectrum of the operator on PH is the set {µ(j, k) = ω(k)−Ω·j 6=
0 : (j, k) ∈ Zm⊕Γ′}. Typically this is a dense set of R, the eigenvalues accumulating
at zero constituting the small denominators of the problem. The Newton iteration
scheme that is used in the Nash - Moser technique requires inversion of the linearized
operator about an approximate torus embedding S0 = S1 +S0

2 , more than just the
linearization about zero. That is, for V = PV ∈ X2 we are drawn to the analysis
of the operator

P
(
δ2S2

H(S1 + S0
2)− Ω · δ2S2

(S1 + S0
2)

)
V

= P

(
diag2×2

(
ω(k) iΩ · j
−iΩ · j ω(k)

)
+W ((j, k), (j′, k′))

)
V = G . (4.3)

The additional off-diagonal terms W come from the linearization of nonlinear terms
of the equation (3.3). They represent a perturbation of a 2 × 2-block diagonal
operator with dense spectrum. Estimates of this linearized operator are obtained
by an adaptation of the method of J. Fröhlich and T. Spencer [FS83] using resolvant
estimates and block decompositions of the lattice of indices of eigenmodes {y :=
(j, k) ∈ Zm ⊕ Γ′}. We work with a scale of Hilbert spaces of sequences on this
lattice, which I will not specify precisely in this note. However we will denote the
appropriate operator norm for this scale of spaces by |·|Op. A more detailed account



Hamiltonian PDE 13

of the analytic procedure appears in [CW93, C00] and [B95, B96, B98]. One first
separates the lattice sites into the singular and the regular regions.

Definition 4.1. A lattice site y = (j, k) ∈ Zm ⊕ Γ′ is d0-singular for the frequency
Ω when

|ω(k)± Ω · j| < d0 . (4.4)

Otherwise, the lattice site y is regular.

Let B be a subset of the lattice Zm ⊕ Γ′, and let the orthogonal projection within
H onto the subspace spanned by sequences (s(y) : y ∈ B) be denoted by PB . The
restriction of an operator H to the subset PBH is denoted by HB = PBHPB .

Proposition 4.1. For a set A ⊆ Zm ⊕ Γ′ consisting of regular lattice sites, and
for |W |Op < d0/2, then the linearized operator (4.3) is invertible, and satisfies the
estimate

|P
(
δ2S2

H(S1 + S0
2)− Ω · δ2S2

(S1 + S0
2)

)−1

A
|Op ≤

4
d0

. (4.5)

Following [FS83], resolvant estimates are used in order to add the singular sites
of the lattice Zm⊕Γ′ in the construction of the inverse operator P (δ2S2

H(S1 +S0
2)−

Ω · δ2S2
(S1 +S0

2))−1. These will be quantified in the iteration scheme, over enlarging
subsets of the lattice Zm⊕Γ′ which grow to exhaust the lattice. Indeed, take regions
Bn = {y = (j, k) ∈ Zm ⊕ Γ′ : |y| ≤ Rn := L02n}. Our ability to carry through the
resolvant estimates depend upon two properties of the frequencies Ω ∈ Rm and the
linearized operator

P
(
δ2S2

H(S1 + S0
2)− Ω · δ2S2

(S1 + S0
2)

)
:= D(Ω) +W . (4.6)

property 1. nonresonance. Suppose that y = (j, k) and y′ = (j′, k′) in Zm⊕Γ′

are two singular sites within the region Bn+1\Bn. Then both

dn < |ω(k)− Ω · j| < d0

dn < |ω(k′)− Ω · j′| < d0 . (4.7)

The lower bound is adapted in the iteration scheme, dn = d0 exp(−βn), and the
frequency parameters Ω for which (4.7) is violated are excised. This is at the origin
of the Cantor set over which the resulting existence theorem will hold.

property 2. separation. Suppose that y, y′ are two singular sites withinBn+1\Bn.
We ask that either
(i). dist(y, y′) < Rα

n , or else
(ii). dist(y, y′) >> Rγ

n.

Typically the choice must be that 0 < α << γ < 1. In words, the requirement is that
within the nth annulus Bn+1\Bn, the singular sites can be divided into clusters,
with slow growth of the cardinality of each cluster, namely Rαm

n , and with large
distances Rγ

n between clusters.
It is principally in this second property that the specific details of the particular

partial differential equation and its nonlinearity and dispersion relation come into
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the analysis in an important way. In particular, the Schrödinger equation in one
space dimension has singular sites which are automatically well separated, due
to the nondegeneracy of the dispersion relation. The nonlinear wave equation in
one dimension achieves the required degree of separation throug a diophantine
condition on the frequency Ω0. Problems in higher space dimensions address the
two conditions with increasingly sophisticated techniques, which can be seen in
more detail in [B95, B96]. It is however beyond the scope of the present article to
pursue this in any further detail.
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