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The theory of the motion of a free surface over a body of water is a fascinating
subject, with a long history in both applied and pure mathematical research, and
with a continuing relevance to the enterprises of mankind having to do with the sea.
Despite the recent advances in the field (some of which we will hear about during
this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the
current focus of the mathematical community on the topic, many fundamental
mathematical questions remain. These have to do with the evolution of surface
water waves, their approximation by model equations and by computer simulations,
the detailed dynamics of wave interactions, such as would produce rogue waves in an
opean ocean, and the theory (partially probabilistic) of approximating wave fields
over large regions by averaged ‘macroscopic’ quantities which satisfy essentially
kinetic equations of motion. In this note, we would like to point out open problems
and some of the directions of current research in the field. We believe that the
introduction of new analytical techniques and novel points of view will play an
important role in the future development of the area.
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1. Equations of motion

The problem of surface water waves generally refers to the dynamics of a fluid which
satisfies the Euler equations of motion which occupy a space-time region with a
free surface, and which move under the influence of a ‘body force’ which is the
acceleration of gravity. In addition the fluid is assumed to be incompressible, which
is a very reasonable hypothesis for water under normal conditions, and irrotational,
which is a much less reasonable hypothesis in general. Still, these hypotheses are
quite reasonable for the description of wave propagation on the surface of bodies of
water such as an ocean or a lake, and it is in general use by physical oceanographers
today. The equations of motion in Eulerian coordinates describe a velocity field
u(z,t) which satisfies

V-u=0, Vxu=0,. (1.1)
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Because of these two conditions the velocity field can be described as the gradient
of a harmonic function
u=Vyp, Ap=0. (1.2)

We will take our fluid region to occupy some space-time domain, which for the
purpose of this description will be a subset of Euclidian space ¥ C R**!, d =3 or
2 normally being chosen. Unless we are describing waves of a global extent, such as
a tsunami, for our purposes we will assume a ‘flat’ earth, with spatial coordinates
{(z,y);z € R¥1y € R} and the force of gravity being F = —gy. The fluid
body is normally assumed to have a bottom boundary (the ocean floor) given by
{(z,y) : y = =b(z)}, and a classical problem is to consider the case of an infinitely
flat region, namely b(z) = h a constant. On the bottom, as well as on any solid
components of the boundary of the fluid region, one assumes that the flow has no
normal component;
u-N=0,

while on the free surface itself one poses the two classical free surface boundary
conditions, the kinematic condition and the Bernoulli condition. In case the free
surface is given as a graph {y = n(x,t)} (but everyone from California knows
that the more interesting situation of surf is not covered by this case), these two
boundary conditions are expressed as

O =0yp—0um-Oup,  Opp=—gn—%Vo|*. (1.3)

Adding the effect of surface tension modifies the second equation by adding a term
proportional to the mean curvature of the free surface. The situation where the
surface is not a graph can also be treated, using different and suitably chosen coor-
dinates. The initial value problem consists of finding the solution (n(z,t), ¢(z,y,t))
for the fluid domain S(n(-,t)) = {(x,y) : @ € R —b(z) < y < n(z,t)} over a
period of time ¢ € [T, T, given prescribed data (1o (z), @o(z, y)) such that o (z,y)
is a harmonic function on the initial fluid domain S(7) determined by the initial
free surface {y = no(z)}.

It is evident that in the free boundary conditions (1.3), the constant determining
the acceleration of gravity appears in a lower order term, and therefore should be
of lower order concern in a theory of the evolution of solutions. Yet to anyone who
has carried a container of water, it is clear the difference the sign of g makes to
the dynamics. It turns out that the problem (1.3) is hyperbolic, but with multiple
characteristics. This accounts for the fact that the sign of a lower order term can
play such an important réle in the behavior of solutions of the initial value problem.

2. Zakharov’s Hamiltonian

A beautiful paper of V. E. Zakharov [47] reformulated the problem of surface water
waves as a Hamiltonian system with infinitly many degrees of freedom, much in the
way that the KdV equation, the nonlinear Schrédinger equation and the nonlinear
wave equations can be viewed. The total energy functional is easy to predict as the
Hamiltonian, indeed

nx
H :/ / 1Ve|? dydx +/ 202 (z) dz . (2.1)
Rd—1 J_

b(z) Rd—1
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The more subtle question is as to the choice of canonically conjugate variables.
Zakharov’s statement is that the quantities n(z) and £(x) := @(z,n(x)) are the
appropriate variables with which the surface water waves problem can be written
in the form of Hamilton’s canonical equations

O = grad H 0§ = —grad, H . (2.2)

Because of the nature of potential flow, it suffices to know the domain given by
n(z,t) and the boundary values of the velocity potential £(z, ) at any particular
time ¢, in order to recover the flow throughout the fluid region at that time; indeed
given a (sufficiently regular) domain defined through 7, the boundary data &(x, t) is
enough to determine the velocity potential ¢(z,y) as a harmonic function defined
on the fluid domain S(n), and therefore the data (7, £) determine the fluid velocity
field u(z,y,t) = Vo(x,y) throughout the fluid region at time ¢.

Formalizing the comment above, we define the Dirichlet — Neumann operator
for the fluid domain S(n) through the relationship

&(z) = p(z,y) — N - (Vo) (z,n(x)) dS, = Gn)édx . (2.3)

This operator is linear in &(x), but quite nonlinear and certainly non-local in its
dependence upon the fluid domain defined through the free surface given by n(x).
The normalization ensures that the operator G(n) is self-adjoint on (an appropriate
domain in) L?(R?~!). Rewriting the Hamiltonian (2.1) using this operator [15], we
have

706 = [ 366+ g da (2.4

Hamilton’s canonical equations (2.2) are equivalent to the equations of motion and
free boundary conditions (1.3). Indeed the first equation of (1.3) is an immediate
consequence of the definition of the Dirichlet — Neumann operator; the second
equation follows from a calculation which is closely related to the variational formula
of Hadamard.

The case of a quiescent fluid surface n = 0, when the bottom of the fluid region
is flat, gives rise to an explicit expression for the Dirichlet — Neumann operator.
The Fourier transform expression is that

G(0)¢(2) = 57z /RH ¢ (k| sanh(h|k| )& (k) dk = |D| tanh(h|D|)é(x) . (25)

where as usual D := —id,. Using this in the Hamiltonian (2.4) and taking its
quadratic part (the linearized equations about the zero solution), one finds the
classical dispersion relation

w?(k) = g|k|tanh(h|k|) .

Hence the phase and group velocities of solutions are

tanh(h|k|) k
colk) = o L2 ) = 00 GTRTRCRTRD
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The limit of large |k| — oo of the group velocity gives the velocity of the charac-
teristics. In the case of surface water waves,
lim ¢4(k) =0,
k| —o0

hence the characteristics are real, but with zero characteristic velocity for any di-
rection k/|k|. This is a fact that every swimmer knows; in a field of waves in the
water surface, the short waves travel more slowly than the long waves. Without
further effects such as capillarity, there is nothing more to influence their speed,
and the high wavenumber limits of ¢, and ¢, are zero. This is the phenomenon of
hyperbolicity with multiple characteristics, mentioned in the first section, and is
the mathematical reason for the sensitivity of the initial value problem to the sign
of g in the subprincipal symbol of the RHS of (1.3). Surface tension, on the other
hand, is a dispersive effect, which in many cases regularizes the problem to some
extent.

3. The initial value problem

It is natural to start with a discussion of the initial value problem, as (1.3), or
equivalently (2.2) are posed as such. We shall refer to the solution which at time
t = 0 is in the state (no(z),&(x)) in terms of the flow ®4(ng, &), for the latter
equation at least, on a phase space which we have yet to specify. The question can
be succinctly phrased as to whether the flow exists, in what space of functions taken
to be the phase space, for how long of a time interval, and whether data should be
restricted to a small neighborhood of the origin, or can be chosen more globally.

Rigorous mathematical study of the initial value problem for d = 2 date from
the work of Ovsiannikov [], where the phase space is taken to be a space of analytic
functions, and Nalimov [] whose work is in the category of functions with finite
Sobolev norms. Apparently working independently, results in the analytic category
were published by Kano & Nishida []. Reeder & Shinbrot [] have obtained the first
results for the full d = 3 problem, working again in the analytic category, and the
paper of Sulem, Sulem Bardos & Frisch [] also gives a result for the analytic case
as the limit of an interface problem with zero upper fluid density.

The initial value problem posed in the category of Sobolev space is the more

important case; in fact results in the category of analytic functions are insensitive
to the sign of the acceleration of gravity g. Extensions of Nalimov’s work have been
given by Yosihara for variable bottom topographies [] and for the problem with
surface tension [|, and by Craig [] for existence over long intervals of time and the
Boussinesq and KdV scaling regimes. More recent results include S. Wu’s work [] on
existence for quite arbitrarily shaped initial fluid domains (for short time intervals,
of course), and the progress by Wu [] and by Lannes [] on the initial value problem
in three (and higher) dimensions.
Problem 1. It seems as though it is a natural question to show that, at least for
sufficiently small initial data, solutions exist globally in time. That is, the flow
Dy(n,€) should be shown to exist for all t € R on a ball B,(0) of possibly small
radius 7 about zero in an appropriate function space.

None of the results cites above gives a result which is global in time, but it is
known that there do exist some such solutions, the periodic traveling waves given
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by Levi-Civita [], Nekrasov [| and Struik [], for example, or the solitary waves of
Lavrentiev [| and Friedrichs & Hyers [|. Three dimensional (and d > 3) multiply
periodic examples also exist. One suggestion for an approach, at least for d = 3,
would be to perform a normal forms transformation on the water waves Hamiltonian
(2.4) to eliminate cubic terms, and then to use time decay estimates to give a global
bound on a supremum norm of the solution. That is, one expects that solutions of
the linearized problem decay at a rate

()€ < 77 (3.1)

and the square of the RHS is integrable in ¢ for d > 3. It is not integrable for d = 2,
but related estimates may lead to very long time existence theorems by similar
considerations. A Strichartz inequality appropriate to the water waves problem
may be an alternative to using precisely the statement (3.1).

Problem 2. Use the coordinates in which the water waves problem has a Hamilto-
nian structure, in an essential way for the initial value problem.

The various approaches to the initial value problem use a variety of coordinates,
including Lagrangian coordinates (Nalimov []), coordinates given through the con-
formal mapping of the fluid domain (for d = 2, as in Levi Civita [], and Kano
& Nishida []), and Eulerian coordinates (Lannes []). These coordinates influence
the character of the analysis to a large extent. Given the analytic techniques and
canonical transformation theory available through the analogy to Hamiltonian me-
chanics, it seems an anomaly that they have so far not been exploited in the initial
value problem in an essential way. For example, one might pursue a Birkhoff normal
forms analysis, with the goal of obtaining a long time or even a global existence
theorem.

Problem 3. How do solutions break down?

There are several versions of this question, including ‘What is the lowest ex-
ponent of Sobolev space H® in which one can produce an existence theorem local
in time?’ Or one could ask ‘For which « is it true that, if one knows a priori that
sup_p,7) [(n(-2),€(+ 1)) |lca < +o00, then C° data (1o, &) implies that the solution
is C* over the time interval [—T,T]. At present, the answer to the first question
is that one can take any s > 4, but it is not so satisfying to say that the solution
fails to exist after t = T because it is no longer lies in H**. It would be more satis-
fying to say that it fails to exist because the ‘curvature of the surface has diverged
at some point’, or a related geometrical and/or physical statement. Furthermore,
although it is deemed ‘obvious’ that solutions don’t exist for very long after they
overturn (that is, after the slope of the free surface becomes infinite, and no longer
given as the graph of a smooth function n(z,t)), there is no rigorous mathematical
proof of this fact. Nor are there even special examples, such as self similar solutions,
to prove the standard intuition is correct.

The free surface problem without the presence of gravity is a related problem,
which is in fact more delicate than the case with gravity as a restoring force. It
does turn out that the condition of incompressibility is enough to maintain the
well-posedness of the initial value problem, locally in time, for nearly stationary
fluid configurations; this is work of Christodoulou & Lindblad []. If the fluid is in
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violent motion, for example if it is rapidly spinning, the initial value problem is
known to be ill posed; see Ebin [].

4. The long wave and modulational limits

The nonlinear equations which have been used to model solutions of the free surface
water waves problem are possibly more well known then the full problem of Euler’s
equations. These equations include the Boussinesq and the Korteweg — deVries
(KdV) equations, the cubic nonlinear Schrédinger equation, the Davey — Stewartson
system, the Kadomtsev — Petviashvili (KP) equations, as well as their higher order
and/or more detailed analogues. Certainly for some of these, the structure of their
orbits in an infinite dimensional phase space is very well studies, due to the fact
that they possess the structure of a completely integrable Hamiltonian dynamical
system. Furthermore, there is a lot of algebraic structure to their integrals, while the
full equations of water waves are generally thought to possess many fewer integrals
of motion (see Benjamin & Olver []), and much less of a rigid structure of their phase
space. In the considerations of this note, we will not take on a survey of results for
these approximate equations, rather we focus on the question of the mathematical
justification of their use in approximating solutions of Euler’s equations (1.3).

The paper of Ovsiannikov [] and the papers by Kano & Nishida [] considered the
free surface problem in the shallow water scaling limit, for d = 2. Further work of of
Kano & Nishida addressed the Friedrichs expansion [], and Craig [] and again Kano
& Nishida studied the Boussinesq and the KdV scaling regimes. Note that the slow
time that is characteristic of the Boussinesq and KdV scaling regimes implies that
it is very relevant to understand the initial value problem over long time intervals
to obtain a correspondence between solutions of the Euler equations and solutions
of the appropriate long wave limit. This subject has had a recent re-emergence, due
to the work of Schuneider & Wayne [|, which addresses solitary wave interactions
and includes the effects of surface tension. Higher order extensions of this work are
given by Wright []. All of the above adresses the case d = 2.

The question of a justification of the modulational limit is also an outstanding
issue, where the goal is to show that solutions of Euler’s equations which satisfy
a modulational Ansatz (i) exist for a sufficiently long time interval, and then (ii)
approach solutions described by the nonlinear Schriodinger equation. Preliminary
work on this question when d = 2 appears in Craig, Sulem & Sulem [], and when
d = 3 in Craig, Schanz & Sulem []. However these two references did not produce
an existence theorem for long intervals of time. The question when d = 2 has been
recently solved by Schneider & Wayne, using in part a normal forms transformation
of Euler’s equations (but not necessarily canonical transformations).

Problem 4. Justify the d = 3 dimensional water wave models, as limits of the
equations of free surface water waves.

Another direction of work that would be very striking would be to use the
structure of the equations for water waves as a Hamiltonian system to elucidate
the long wave and the modulational scaling regimes. This would possibly involve
normal forms transformations, and rigorous analysis along the lines of the formal
approach of transformation theory and expansions of a Hamiltonian system with
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respect to a small parameter, as in Craig & Groves [] and Craig, Guyenne, Nicholls
& Sulem [].

5. Traveling waves

Two types of problems are the usual candidates for study, either (i) periodic lateral
(in # € R4"1) boundary conditions over some periodic fundamental domain, and
(ii) the solitary wave problem. The distinguished history of this problem contains
again several stories of independent research in Russia and in the west. Namely,
the first results on the existence of periodic traveling wave solutions of the problem
of free surfaces in deep water occurs in the work of Nekrasov [| in 1921, which was
essentially unknown in the west until 1967. Levi-Civita studied the problem in a
1925 paper [], which was extended to the case of finite depth bt Struik []. Surface
tension was not considered until Zeidler’s 1971 article on the subject [].

Because the problem can be posed in a frame of reference traveling with the
velocity of the solution, it is posed as an elliptic boundary value problem with
nonlinear boundary conditions on the free surface. There are a variety of ways to
coordinatize the equations in order to handle the boundary, either through confor-
mal mappings (as in Levi-Civita’s work), Lagrangian coordinates, or more ad hoc
methods. The literature to date is very extensive, and cannot be reviewed in detail
in this short paragraph; we will limit ourselves to the following remarks.

The problem of the solitary wave for d = 2 was considered by Lavrentiev |]
(1943) and Friedrichs & Hyers [] (1954). Global considerations of the solitary wave
problem, which is in essence a nonlinear elliptic bifurcation problem, but with its
own essential character and difficulties, appeared in work of Amick & Toland [] and
Amick, Fraenkel & Toland []. The latter reference addresses one aspect of what is
called the ‘Stokes conjecture’ on the highest solitary wave, or at least the solitary
wave ‘of extremal form’; namely that it possesses a non-differentiable crest having
a Lipschitz singularity, of open angle 7/3. Special methods have been introduced
by Kirchgéssner [] and Mielke [] to study solitary waves with and without surface
tension, which have been sucessful at answering a number of further questions on
solitary waves with possible oscillating asymptotic behavior at = +— +o0.

In case d = 3 (or more), surface tension plays an important role. Periodic wave
patterns with the symmetry of a ‘symmetric diamond’ were shown to exist in free
surfaces with surface tension by Reeder & Shinbrot []. Only recently has the general
picture of multiply periodic solutions been described; Craig & Nicholls []. What is
seen is a connection between resonant interactions between Fourier modes, and the
multiplicity of solutions to the nonlinear problem. Because of a fifth order resonant
interaction for a particular fundamental domain, two types of traveling waves exist,
with quite different geometries; hexagonal patterns and crescent shaped patterns.
The hexagonal patterns have a shape which depends in a particular way upon the
depth of the fluid domain.

Problem 5. Elucidate the nature of the crescent wave patterns.

The above paragraph refers to traveling wave patterns with nonzero surface
tension. Recently there has been a beautiful series of results by looss, Plotnikov
& Toland [] on standing waves for d = 2. It is conceivable that the techniques



8 W. Craig and C. E. Wayne

they develop can address the problem of three-dimensional traveling wave patterns
without surface tension.

When d = 2 (and without surface tension) it is known [] that all solitary waves
are of positive elevation, symmetric, and monotone decreasing on either side of the
(unique) crest. The paper [] on the Stokes conjecture proves that every solitary
wave of extremal form has a Lipschitz continuous singularity at the crest. This
singularity also is present in periodic traveling wave patterns, when the height of
the crest reaches its maximum allowed by the Bernoulli condition. It is natural to
ask about singularities in the free surface for traveling waves for d = 3 which attain
their maximum allowable amplitude.

Problem 6. What is the nature of the singularity of crests of extremal traveling
waves for the three-dimensional problem?.

For the problem with d = 3 (and without surface tension), nonnegative solitary
waves which decay at spatial infinity (that is, for which |n(z)| — 0 as |z| — +00)
are necessarily the trivial solution n = 0 []. That is, no truly three dimensional and
nonnegative solitary waves exist.

Problem 7. Do truly three dimensional solitary waves exist? These must of course
change sign.

A variant of this problem is related to the Di Georgi problem for nonlinear
elliptic PDE; namely to show that any three dimensional solitary wave solution is
in fact the trivial extension to three dimensions of a two dimensional solitary wave
(this problem was brought to our attention by H. Brezis). When surface tension
is present, and the Bond number is sufficiently big, then genuine solitary waves in
d = 3 do exist []; they are solitary waves of depression.

What is of practical importance is the theory of stability of these traveling
wave patterns, and there has been much attention paid to this point in the applied
mathematics literature. The paper of Plotnikov [] describes a connection between
the stability of the d = 2 solitary wave and secondary bifurcations in its principal
branch of solutions.

However it is not common to see periodic wave patterns in the ocean, and it
seems likely that most if not all doubly periodic solutions in three dimensions are
subject to linear instabilities.

Problem 8. Give a Bloch theory for the stability of doubly periodic water wave
patterns.

It would be also rewarding to have a rigorous theory of the stability of the
solitary wave; when d = 2 one can still call for its stability under perturbations
which are three dimensional.

6. Invariant structures in phase space

The linearization of the system of equations (2.2) is performed in an elegant way
through the Taylor expansion of the Hamiltonian (2.4), and then retaining only
the quadratic terms in (7, ). Restrict ourselves for the moment to the problem of
periodic boundary conditions, which is to say z € R¥~!/T" := T9~! where I' C R4~!
is the imposed lattice of translations. The quadratic part of the Hamiltonian in
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question is thus
HO0.9 = [ 3@606E) +17(e) de (61)

which can be rewritten via the Plancherel identity in terms of the Fourier transform
(a canonical transformation) and the Fourier multiplier expression for the Dirichlet
— Neumann operator, as

HP(5,€) = Y 3[k| tanh(h[k)IE(R)* + $Ak)]* . (6.2)

kel

Hamilton’s equations are expressed succinctly as
nN _ (0 I\ [0,H?
(&)= () (i) 6

Oii(k,t) = |k|tanh(R|k))E(k,t) . 0i(k,t) = —gi(k,t) (6.4)

and in particular

whose solutions are given by the linear flow

0 _ cos(w(k)t) sin(w(k)t) /w(k) (7(k)
‘I’t(”’@‘z(—w<k>sin<w<k>t> cos(w(k)t) )(é(k))’ (6.5)

kel

where w(k) = \/g[k[tanh(A[k]). It is evident that (except for perhaps £(0,t)) all
solutions of the linear equations evolve on invariant tori in phase space, given by
the closure of their orbit; T™ = {®9(n(x),&(z)) : t € R}. This is to say, all solu-
tions of the linearized equations are periodic (when m = 1, and these are invariant
circles in phase space), or quasi-periodic (the case that m < +o0) or respectively
almost periodic (m = oo) as functions of time. Resonant tori give rise to parameter
families of such solutions, and the tori themselves are parametrized by the action
variables I(k) = ((w(k)/2g)|7(k)|* + (9/2w(k))|E(K)[?). It is a natural question as
to whether any of the solutions of the nonlinear equations share these strong recur-
rence properties. From the analogy to Hamiltonian systems, one expects that the
perturbation theory for quasi-periodic solutions involves a small divisor problem.
This is even more true for almost periodic solutions. But because this is a PDE,
the small divisor problem occurs in the case of periodic solutions as well.

In the two-dimensional case (d = 2) there has been recent progress on the
problem of time periodic solutions in the form of standing waves, by Plotnikov &
Toland [] in the case of a fluid body of finite depth, and by Iooss, Plotnikov &
Toland [] in case h = +00. Both of these papers use a version of the Nash — Moser
scheme to overcome the problem of small divisors.

Problem 9. Prove that there exist parameter families of quasi-perodic and/or al-
most periodic solutions for the water waves problem.

This problem includes the case of time periodic solutions in higher spatial di-
mensions as well. A simple version of a periodic solution is a spatially periodic
traveling wave solution; to avoid these simpler solutions one can either impose



10 W. Craig and C. E. Wayne

-:z,é \\

I
7

—=

—

v(hig)"? 0N 0

\\\\\\\\\\\\\\\\\|\\

Figure 1. Head-on collision of two solitary waves of equal height S/h = 0.4, showing the
run-up, the phase lag and the dispersive tail generated by the interaction. The amplitude
of the post-collision solitary waves is slightly less than before the collision, being measured
as ST /h = 0.3976 at time t/1/h/g = 90. The post-collision solitary waves are also delayed
slightly from their pre-collision asymptotically linear trajectories. This phase lag is mea-
sured to be (a; — a;')/h = 0.3257, where a; (respectively aj') are the t-axis intercepts of
the asymptotically linear trajectories before (respectively after) the collision.

Neumann boundary conditions in € R (standing waves), which is the strategy in
[| and []. Or else one can otherwise seek to guarantee that solutions that one finds
are more general than those which are time invariant in an appropriately chosen
moving frame. One expects to find that there are Cantor parameter families of so-
lutions, which are Whitney smooth but not smooth in the classical sense; as is the
conclusion in the case of a finite dimensional Hamiltonian system in the presence
of small divisors.

Now consider the problem for d = 2 and in the non-compact setting € R*. It
is an interesting question how solitary waves interact. For special equations such as
the KdV, in addition to exact solitary waves there is a special class of multi-soliton
solutions, which are asymptotic to a finite number of solitary waves as ¢t — oo,
and which interact cleanly with each other in collisions. These however are solutions
of model equations. It is expected that solitary wave solutions of the free surface
water wave equations do not interact cleanly, but it is quite remarkable how small
a residual there is from collisions of even quite large solitary waves. Numerical
and experimental results [] show that solitary water waves are quite stable, and
that following collisions between two solitary waves, the solution resolves itself into
two slightly modified solitary waves, plus a small trailing residual, and all three
components separate from each other and asymptotic evolve independently, see
the numerical simulations in Figure 1. More generally, one might predict that any
localized initial data for the water waves problem would resolve itself for large time
into two sequences of solitary waves (left-propagating and right-propagating), which
evolve ahead of a dispersing residual component of the solution.

Problem 10. Prove this scattering picture occurs. That is, general initial data,
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suitable localized, resolves itself under time evolution into two trains of solitary
waves plus a residual, and the latter is described by a scattering operator related to
the linear problem.

This will imply that for large times the solution is determined by (i) a finite
number of parameters (the amplitudes and phases of the asymptotic solitary waves)
and (ii) a linear scattering map for the residual. At present it is not even known
whether a solution of the water waves problem exists of the form of a superposi-
tion of N many solitary waves of different speeds, existing over t € [0, +00) and
asymptotically separating as ¢ — 400 (a problem brought up by J. Moser and
R. Sachs).

7. Wave turbulence

While it is useful to study the dynamics of individual water wave interactions in de-
tail, it is impractical both numerically and theoretically to study the fine structure
of fields of water waves of the dimensions of an ocean. Furthermore, predictions
of precisely this nature are of great importance to forecasting of sea state which
is used by the worlds’ shipping. An approach to quantify the behavior of certain
macroscopic quantities having to do with the evolution of ocean waves involves an
averaging process, and results in kinetic theory-like evolution equations for them.
This approximation process merits consideration on a rigorous mathematical level.
The two derivations of a theory along these lines are by Hasselman [] and Za-
kharov [], the former being somewhat ad hoc while the latter is based on formal
physical considerations and a Hamiltonian formulation of the equations of motion.
To adopt our own point of view, describe the canonical variables for the water wave
problem in complex symplectic coordinates as

g w(D)
S — 7.1
afx) =\ [y + iy 5o el (1)
where D = —id,. Under this transformation the quadratic Hamiltonian (giving the

linearized equations of motion) becomes

1 = [ a@)w(D)a(e) ds

which recovers (6.4). Following Zakharov and working on a formal mathematical
level, we take normal forms transformations of the Hamiltonian (2.4) up to a certain
order (say, order N = 4). Denoting the transformed variables b = 7x(a), consider
their Wigner transform

Wl k1) = gy /R B y/e)b(e 4 y/e) dy | (7.2)

Up to higher powers of e, the Wigner transform W = W, [b] will satisfy a kinetic
equation reminiscent of the Boltzmann equation (considerations of Bardos, Craig
& Panferov)

OW + Opw(k) - O.W = Sy (7.3)
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where the nonlinear interaction term S,,; is derived from the quartic and higher
terms of the water waves Hamiltonian H in its normal form expansion. These must
be expressed in terms of the Wigner transform itself, which is one reason for the
normal form. Often at this point one takes an average of W over a statistical
ensemble of wave fields, possibly with some random phase closure assumptions. All
of these manipulations are formal, however.

Problem 11. FElucidate this approach as a kinetic theory of wave field propagation
and interaction. Provide, to the extent possible, a mathematically rigorous deriva-
tion of (7.3).

The mathematical analysis of the normal forms transformation that is implicit
in the above statement is already a good question.

Just as the stationary distributions of the collision operator (the Maxwellian
distributions) play a special role for the Boltzmann equation, the stationary distri-
butions for S,,; should play a role in the theory of solutions of (7.3). Indeed they
should be parametrized by the principal macroscopic variables for the problem,
whose dynamics will be determined by certain macroscopic equations of motion. In
the case of wave fields which are homogeneous in € R4~!, solutions of S,; = 0
in the form of a power law have been found by Zakharov and co-workers, and it is
reasonable to call these solutions Kolmogorov — Zakharov spectra. Similar spectral
behavior of averages of wave fields has been seen in experimental observations, the
first being in Lake Ontario. By analogy with the Maxwellian distributions in the
theory of Boltzmann’s equation, parameter families of such spectra lead to a def-
inition of macroscopic variables, which then vary in x,¢ in the non-homogeneous
problem. The Wigner transform W (z, k,t) is essentially a microlocalization of the
wave field given by b(z,t). However the power law distributions may not be the
only homogeneous wave fields which are solutions of S,; = 0, and it could well be
that there are different parameter families of such solutions in different nonlinear
regimes. The different parameter families of such solutions would give rise to dif-
ferent sets of macroscopic variables in different regimes. This leads us to pose our
final problem.

Problem 12. Prove that power law Kolmogorov — Zakharov spectra exist, and that
they govern the large time asymptotics of wave fields, at least in certain situations.
Find the full set of solutions of Sp; = 0, and their respective macroscopic variables,
and derive the appropriate macroscopic equations which determine their evolution.
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