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Abstract

◮ The Kolmogorov & Obukov laws for isotropic turbulence

◮ A new estimate on Leray weak solutions

◮ Estimates on Kolmogorov spectra

◮ Restrictions on the spectral behavior of weak solutions
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Introduction Navier – Stokes equations

Navier – Stokes equations
Theequations of motionof an incompressible viscous fluid

∂tu + (u · ∇)u = ν∆u−∇p + f

∇ · u = 0 (1)

u(x, 0) = u0(x) , ∇ · u0 = 0 initial data

Forcing termf : ∇ · f = 0 Takef to be zero at present
Space-time domain

D = R
3 (x, t) ∈ D × R

+ := Q

AlternativelyD = T
3 and

(x, t) ∈ T
3 × R

+ = Q

A bounded smooth domainD ⊆ R
3; we leave this open.
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Weak solutions
The usual definition of aweak solutionover t ∈ [0, T] is that:

1. Integrability conditions

u ∈ L∞([0, T]; L2(D)) ∩ L2([0, T]; Ḣ1(D)) ,

p ∈ L5/3
loc (Q) (2)

2. The pair(u, p) is adistributional solutionof (1)

3. Theenergy inequalityis satisfied

1
2

∫

D
|u(x, t)|2 dx+ ν

∫ t

0

∫

D
|∇u(x, s)|2 dxds≤ 1

2

∫

D
|u0(x)|

2 dx

(3)
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The existence of weak solutions
Theorem (Leray (1934))
Givenu0 ∈ L2(D) divergence free, then there existsat least one weak
solutionto (1) globally in time. Weak solutions satisfy

u ∈ L∞
t (L2

x)

as well as
u ∈ Ct(L

2
x : weak topology)

A lot is known about such solutions, for example that

u ∈ Ls
t(L

p
x) ,

3
p

+
2
s

=
3
2

Uniqueness and global regularity are unknown
Walter Craig McMaster University
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Fourier transforms
◮ The Fourier transform ofu(x, t) existsa.e. t

û(k, t) =
1

(2π)3/2

∫
e−ik·x′u(x′, t) dx′

andû(·, t) ∈ L∞
t (L2

x)
◮ The Fourier transform is smooth int

Theorem
The function̂u(k, t) is C1 as a function oft for everyk
(whenD = T

3 at least).
◮ Define theenergy spectrumas the spherical integrals

E(κ, t) :=
1
V

∫

|k|=κ
|û(k, t)|2 dS(k) , 0 ≤ κ < +∞ (4)

whereV is a characteristic unit volume.
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Power spectrum
◮ Plancherel’s identity

∫ ∞

0
E(κ, t) dκ =

1
V
‖u(·, t)‖2

L2

◮ Sobolev norms
∫ ∞

0
κ2E(κ, t) dκ =

1
V
‖∇u(·, t)‖2

L2

◮ dimensional analysis, where[∗] denotes dimension

[u] =
L
T

, [|û|2] =
L2(d+1)

T2 [ν] =
L2

T
[E(·, t)] =

L3

T2
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Reynold’s number
There is a literature on theReynold’s numberdefined in terms of the
energy spectrum

◮ Re:= UL/ν a dimensionless parameter
◮ Intrinsic Reynold’s number (Gammond & Gage)

Re1 :=
Λ

ηK
, Λ :=

∫ ∞
0 κ−1E(κ) dκ∫ ∞

0 E(κ) dκ
ηK :=

(ν3

ε

)1/4

for ε := 2ν
∫ ∞

0 κ2E(κ) dκ, the rate of energy dissipation
◮ Proposal for a mathematical Reynold’s number

Re2 :=
‖u‖Ḣ1/2

ν

in the light of the classical Fujita - Kato existence theorem
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Kolmogorov’s hypotheses

For high Reynolds number flows which exhibit fully developed
turbulence, Kolmogorov supposed:

◮ The small scale turbulent motions of a fluid arestatistically
isotropic

◮ The statistics of these motions are determined by the two
parametersν andε
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Kolmogorov’s scaling law
◮ Prediction:For high Reynold’s number fully developed turbulent

flows, forκ in an inertial range, the energy spectrum has
universal behavior

EK(κ) = C0ε
2/3κ−5/3 (5)

Proof : These are the unique exponents for which the
dimensions match
In fact the exponents are independent of space dimension

◮ Considerable experimental and numerical evidence has been
garnered to support this conjecture.

◮ Goal: to give mathematically rigorous upper bounds on the range
of validity of the Kolmogorov scaling law
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SDSC simulation by Turbulence Spectrum
Chowasia, Donzis and Yeung

Walter Craig McMaster University

Bounds on Kolmogorov spectra



Introduction Navier – Stokes equations

Estimates on weak solutions

◮ The energy inequality (3) can be viewed as the statement thatthe
ball BR(0) ⊆ L2

x is aninvariant setfor Navier – Stokes flow

u0(·) ∈ BR(0) =⇒ ∀t > 0 , u(·, t) ∈ BR(0)

◮ Another invariant set. Define
A := {(û(k))k∈R3 : |k||û(k)| < R1} ∩ BR(0)

Theorem (A. Biryuk (2003))
If R2 < νR1 thenA is an invariant set for Navier – Stokes flow.

Proof given at end of talk if there is time
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Global estimates on weak solutions

◮ BoundsonL∞
t (L(∞,1)

k (Fu)), supposing that the initial data lies
in the setA, then for allk ∈ R

3,

sup
t≥0

|û(k, t)| ≤
R1

|k|
(6)

◮ Time average quantitiesobey better estimates:

Corollary
For all k ∈ R

3 and all T ≥ 0, thenν
∫ T

0 |û(k, s)|2 ds≤
R2

1
|k|4

◮ The quantitysupt ‖|k|û(·, t)‖L∞ scales like theBV norm
supt ‖∂xu(·, t)‖L1 (for which there are no known bounds).
P. Constantin (1992) has a global bound onsupt ‖∇x × u(·, t)‖L1
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Estimates on spectra
Proposition (1)
The spectrum of a weak solution with initial datau0 ∈ A satisfies a
global upper bound

E(κ, t) =
1
V

∫

|k|=κ
|û(k, t)|2 dS(k) ≤

R2
1

Vκ24πκ2 =
4πR2

1

V

Proposition (2)
Time averages of energy spectra have auniform decay rate. Weak
solutions with initial datau0 ∈ A satisfy

1
T

∫ T

0
E(κ, t) dt =

1
VT

∫ T

0

∫

|k|=κ
|û(k, t)|2 dS(k)dt ≤

4πκ2

T
R2

1

νVκ4 = O(κ−2)
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rate of decay

How does theenergy spectrumof a solution compare to the
Kolmogorov prediction.

Theorem
The exponent2 is larger than5/3.

Is this a problem with the theory?

◮ One resolution could be that Navier – Stokes flows which exhibit
spectral behavior like the Kolmogorov law are in the supportof a
probability measureP onL2(D)-divergence-free.

◮ And it could be the case that for allR, R1, suppP ∩ A = ∅.
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Better resolution of this dilemma
Bounds on theinertial rangewhere this spectral behavior is manifest

Theorem
The upper and lower bounds for the inertial range[κ1, κ2] over which
the Kolmogorov spectral functionEK does not violate our estimates

κ1 =
( C0V

4πR1

)3/5
ε2/5 (7)

κ2 =
1
T

( R2
1

νC0V

)3 1
ε2 (8)

Maximum time for which this behavior persists isT0 : κ1 = κ2(T)

T0 =
R11/5

1

νε4/5

( 4π

C6
0V6

)1/5
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Comparison with the classical quantities

◮ KolmogorovlengthscaleηK :=
(
ν3/ε

)1/4

2π

ηK
= 2π

( ε

ν3

)1/4
< κ2 =

( R2
1

νC0VT

)3 1
ε2

◮ KolmogorovtimescaleτK :=
(

ν
ε

)1/2

τK =
(ν

ε

)1/2
<< T0 =

R11/5
1

νε4/5

( 4π

(C0V)6

)1/5

This is as it should, since these two times signify differentthings
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Comparison with a Navier – Stokes velocity field

Various definitions ofproximity to ûK(k) ≃ ε1/3|k|11/6

◮ Definition 1: ‖uK − u(·, t)‖L2
x
≤ C1.

SinceûK 6∈ L2 this is not a satisfactory criterion.

◮ Dyadic decompositionu =
∑

j ∆ju with support

supp(∆̂ju(k)) ⊆ Aj

whereAj := {2j−1 < |k| < 2j+1}.

Definition 2: ‖∆j(u− uK)‖L1211j/3 ≤ C2 for all j in the range
log2(κ1) ≤ j ≤ log2(κ2)
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continued comparison
◮ There is the question as to whetherE(κ, t) has spectral behavior

for individual solutions, or does it hold in anaveragesense, over
a statistical ensemble of solutions with probability measure P.

◮ Therefore study theensemble averages

〈E(κ, t)〉 :=

∫

|k|=κ
〈|û(k, t)|2〉dS(k)

Definition 3: Use Definition 2 for ensemble averages of
solutions.

◮ In fact P should be ergodic with regard to NS flow, so that
asymptotically theP average should approximate the time
average

〈E(κ, t)〉 ≃
1
T

∫ T

0
E(κ, t) dt
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Theorem (Bounds on Kolmogorov spectra)
In order thatu(x, t) exhibit Kolmogorov-like behavior of its spectral
energy function, in either of the senses of Definition 2 or Definition 3
over an inertial range[κ1, κ2], then the three constants

κ1 , κ2 , T0

must satisfy the above three relations, up to a constant.

Walter Craig McMaster University

Bounds on Kolmogorov spectra



Introduction Navier – Stokes equations

proof of theL∞
t (L(∞,1)

k (Fu)) estimate
◮ For fixedk the fieldû(k) ∈ C

2
k ⊆ C

3

Because of incompressibilityk · û(k) = 0

Suppose that‖u(·)‖L2 ≤ R
◮ The Fourier transform satisfies

∂tû(k) = −ν|k|2û(k) − ikΠk

∫
û(k− k1) · û(k1) dk1 + f̂ (k, t)

:= X(u)k

◮ Consider the vector fieldX(u) when|û(k)| = R1/|k|. Then

re(û(k) · X(u)k) < −ν|k|2(R1/|k|)
2 + (R1/|k|)|k|R

2 + |f̂ |(R1/|k|)

which isnegativewhenR2 + |f̂ (k)|/|k| < νR1
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proof of corollary

◮ A fact about the vector fieldX(û) is that solutions obey

|û(k, T)|2 − |û0(k)|
2 + 2ν

∫ T

0
|k|2|û(k, t)|2 dt

= 2im[

∫ T

0
û(k) ·

∫
û(k− k1) · k1û(k1)) dk1dt]

(settingf = 0 for simplicity)

◮ Writing I2(k) = (2ν)3
∫ T

0 |k|4|û(k, t)|2 dt
this gives an inequality

I2(k) − 2R2I(k) − (2νR1)
2 ≤ 0

Walter Craig McMaster University

Bounds on Kolmogorov spectra



Introduction Navier – Stokes equations

Thank you
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