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Overview of the hydrodynamic problem

◮ Goal: asymptotic description of water waves over a variable
bottom, in the long wave limit.

◮ Basic assumption: large scale topography of the bottom of the
fluid region is known, but details of the topography are unknown
(and therefore subject to modeling).

◮ A homogenization problem of separation of scales (or not).
Our work is a reappraisal of[Rosales & Papanicolaou (1983)]
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Overview of the hydrodynamic problem: conclusions

1. Periodic bottom topography; the problem homogenizes fullyto
give a KdV equation with effective coefficients[Craig, Guyenne,
Nicholls & Sulem (2005)]

2. Random bottom topography given by a stationary ergodic
process which is mixing,i.e. which decorrelates with spatial
distance.

3. There remainrealization dependent effectsin the equations as
important as the nonlinearity and the dispersion, given by a
canonical processσβ∂XBω(X) (white noise).

4. The solution has bothtransmitted(nonlinear) andscattered
(linear) components. Skewness of the statistics of the random
process can stabilize or destabilize solutions.
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Euler’s equations
◮ Euler’s equations ∆ϕ = 0

N · ∇ϕ = 0 on the variable bottom y = −h + β(x)

Nonlinear boundary conditions on the free surface

∂tϕ + 1
2(∇ϕ)2 + gη = 0

∂tη + ∂xη · ∂xϕ − ∂yϕ = 0

}

on y = η(x, t) ,

Figure:Cartoon of a fluid domain with a varying bottom boundary
randomly about a constant valueWalter Craig McMaster University
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◮ Hamiltonian form: variablesη(x, t), ξ(x, t) = ϕ(x, η(x, t), t)

H(η, ξ) =
1
2

∫ ∞

−∞
ξG(η, β)ξ + gη2 dx (1)

◮ G(η, β) is the Dirichlet – Neumann operator for the fluid domain

◮ Conservation laws

M =
∫

η(x) dx , mass
H =

∫ ∫ η
b(x)

1
2|∇ϕ|2 dydx+ g

2

∫

η2(x) dx energy

Momentum is not conserved, due to the bottom variationsβ(x)
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Scaling regime
◮ long wave scaling regime:

X = εx , β(x) = εβ′(X/ε)

εξ′(X) = ξ(x) , ε2η′(X) = η(x)

◮ Hamiltonian for this problem (Boussinesq regime)

H(η′, β′; ε) = (2)
1
2

∫

(h + εβ′(X/ε) − ε2
(

β′D tanh(hD)β′
)

(X/ε))|DXξ′|2 dX

+
1
2

∫

gη′2 + ε2(ξ′Dη′DXξ′ − h3

3
ξ′D4

Xξ′) dX + O(ε3)
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Stationary ergodic processes

Realizations of the bottom topographyβ = β(x, ω) are taken from a
statistical ensembleω ∈ Ω

◮ Probability space(Ω,M, P)

◮ Ergodic one parameter group of measure preserving
transformations{τy}y∈R such thatβ(x, τyω) = β(x− y, ω) (and a
filtration of the measurable sets,My, y ∈ R adapted to{τy}y∈R)

◮ Case 1:periodicβ(x + p) = β(x)

◮ Case 2:mixing conditions

|P(A∩ τy(B)) − P(A)P(B)| < ϕ(y)
√

P(A)P(B) , (3)

for setsA ∈ M{y≤0} andB ∈ M{y≥0}
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Mixing rate
In case 2, we require that the mixing rate satisfy

∫ ∞

0
ϕ1/2(y) dy < +∞ (4)

Thevarianceof the processβ(x, ω) is defined to be

σ2
β := 2

∫ ∞

0
E(β(0, ω)β(0, τyω)) dy ,

Lemma
If β(x, ω) = ∂xγ(x, ω) for some stationary processγ ∈ C1 then

σβ = 0
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separation of scales: periodic case

Theorem
Suppose thatγ(x) is periodic, and thatf (X) ∈ S. Then

∫

γ(X/ε)f (X) dX = E(γ)

∫

f (X) dX + O(εN)

for anyN, whereE(γ) = 1
p(

∫ p
0 γ dx).

In theperiodic case(Case 1) the contributions of the new terms
homogenizes, giving a perturbation to the effective wavespeed, due to
the following result.
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effective coefficients: periodic case
◮ SinceE(β′) = 0 the two new terms are therefore

•
∫

β′(X/ε)|DXξ′|2dX = 0 + O(εN)

•
∫

(

β′(X/ε)D tanh(hD)β′(X/ε)
)

|DXξ′|2dX

= E(β′D tanh(hD)β′)
∫

|DXξ′|2dX + O(εN)

◮ the effective wavespeed is
c2 = g(h− ε2E(β′(x)D tanh(hD)β′(x)))

Lemma
There is a strict inequalityc2 < c2 for nonzeroβ′.

◮ The analysis extends to the situation whereβ(x) = O(1)
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separation of scales: random case

In the mixing case (Case 2) there arerealization dependent
contributions which are significant. In particular

Theorem
Letγ(x;ω) be a stationary mixing ergodic process with rateϕ(y)
satisfying(4). Then asε → 0
∫

γ(X/ε, ω)f (X) dX =

∫

(

E(γ)+
√

εσγ∂XBω(X)
)

f (X) dX+o(
√

ε) ,

whereBω(X) is normal Brownian motion.

This principally affects the wavespeed and can affect the stability in
the KdV regime
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random KdV equation

This results in the following long wave system with random
coefficients

∂Tr = −∂X
(

c0(X, ε, ω)r + ε2br + ε2(c1∂
2
Xr + c2r2)

)

∂Ts = ∂X
(

c0(X, ε, ω)s
)

− 1
4

√

g/h
(

σβ∂2
XBω(X)r

)

where the random wavespeed is

c2
0(X, ε, ω) = g(h− ε3/2σβ∂XBω(X) − ε2aKdV)

constantsc1 andc2 are effective (homogenized) coefficients of
dispersion and nonlinearity,aKdV is a wavespeed adjustment, and
b = c3E(β3

x) is statistics dependent and determines stability.
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The form of a random solution
◮ Solve the deterministic equation

∂τ Q = c1∂
3
YQ + c2∂YQ2 + bQ

◮ Introduce random characteristic coordinates

X = X(Y, T;ω) = (Y+T
√

gh−ε2aKdVT)−ε3/2σβ

2

√

g
h

Bω(Y)(T
√

gh)

◮ The solutionr(X, T) is given up too(ε2) by

r(X, T) = ∂XQ(Y(X, T;ω), ε2T)

= QY(Y(X, T;ω), ε2T)∂XY(X, T;ω)

◮ Consequences: thephaseundergoes Brownian motion, the
amplitudeis modulated by white noise.
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Random characteristic coordinates
◮ The characteristic equations

dX
dt

= c0(X, ε;ω) , X(0, ε;ω) = Y

≃
√

gh(1− ε3/2σβ

2h
∂XBω(X) − ε2aKdV)

Too singular in general for solutions of SDEs.
◮ Regularized problem

dX
dt

= cε(X, ε;ω) ≃
√

gh(1− εβ(X/ε)

2h
− ε2aKdV)

whereβ ∈ C1 implies that the characteristic speedcε(X, ε;ω) is
bounded uniformly inC1.

◮ Orbits are uniformly bounded inC1, and by Donsker’s theorem
the limit points of orbits distribute like Brownian motion (15)
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Scattering

◮ The scattered wavefield is solved fors(X, T) by the method of
characteristics. SetT′ := T + (X − θ)/

√
gh.

s(X, T) = s0(X +
√

ghT)

+
σβ

4h

∫ X+
√

ghT

X
∂2

XBω(θ)∂XQ(Y(θ, T′;ω), ε2T′) dθ

◮ Notice the irregularity in the scattered wavefield due to the
multiple derivatives of Brownian motion∂2

XBω(X) which interact
with the random solutionr(X, T;ω).
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Instabilities
The coefficientb = c3E(β3

x) determines stability

Proposition
If the statistics of the ensemble(Ω,M, P) are reversible, thenb = 0

However there are reasonable situations in which this is notthe case

Figure:Cartoon of a fluid domain with a bottom boundary withb > 0
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Bottom variations on multiple scales
◮ Fluid domains bounded by a bottom with large scale as well as

small scale variations withE(β1(·, X)) = 0

β(x, X, ε, ω) = β0(X, ε) + β1(x, X, ε, ω)

◮ Furthermore, the statistics of the bottom may vary

σ2
β1

(X) = 2
∫ ∞

0
E(β1(0, X;ω)β1(0, X; τyω)) dy

Figure:Cartoon of a fluid domain with a random bottom boundary
with varying statistics

Walter Craig McMaster University

Nonlinear Water Waves in Random Bathymetry



Introduction Long wave regime Random bathymetry modulating statistics

Stationary arrays of mixing processes

Theorem
Letγ(x, X;ω) be a smooth (inX) family of stationary mixing ergodic
processes with uniform mixing rateϕ(y) satisfying(4). Define the
local variance to be

σ2
γ(X) =

∫ ∞

−∞
E(γ(·, X;ω)γ(·, X; τyω)) dy

Then asε → 0
∫

γ(X/ε, X;ω)f (X) dX =

∫

(

E(γ(·, X))+
√

εσγ(X)∂XBω(X)
)

f (X) dX+o(ε1

whereBω(X) is normal Brownian motion.
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Random characteristics

◮ Random characteristic coordinates

dX
dt

= c0(X, ε;ω) , x(0, ε;ω) = Y

has trajectories which describe a diffusion

X(t, Y, ε;ω) = (Y +
√

ght)

− 1
2

√

g
h

∫ t

0
εβ0(Y +

√

ghs) + ε2aKdV(Y +
√

ghs) ds

− ǫ3/2 1
2h

∫ t

0
σβ1(Y +

√

ghs)dBω(s)
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Thank you
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