McMaster University

Nonlinear Water Waves in Random Bathymetry

Walter Craig

Department of Mathematics & Statistics

Mathematical Topics in Oceanography (Water waves) 2007 SIAM Conference on Analysis of PDE December 10-12, 2007 Mesa, Arizona

Walter Craig

joint work with:

Anne deBouard	Université de Paris - Sud
Oliver Dìaz-Espinosa	McMaster University
Philippe Guyenne	University of Delaware
Catherine Sulem	University of Toronto

Acknowledgements: NSERC, NSF-Focused Research Group Program, Canada Research Chairs Program

Walter Craig Nonlinear Water Waves in Random Bathymetry McMaster University

Overview of the hydrodynamic problem

- Goal: asymptotic description of water waves over a variable bottom, in the long wave limit.
- Basic assumption: large scale topography of the bottom of the fluid region is known, but details of the topography are unknown (and therefore subject to modeling).
- A homogenization problem of separation of scales (or not).
 Our work is a reappraisal of [Rosales & Papanicolaou (1983)]

Overview of the hydrodynamic problem: conclusions

- 1. Periodic bottom topography; the problem homogenizes fully to give a KdV equation with effective coefficients [Craig, Guyenne, Nicholls & Sulem (2005)]
- 2. Random bottom topography given by a stationary ergodic process which is mixing, *i.e.* which decorrelates with spatial distance.
- 3. There remain realization dependent effects in the equations as important as the nonlinearity and the dispersion, given by a canonical process $\sigma_{\beta}\partial_{X}B_{\omega}(X)$ (white noise).
- 4. The solution has both transmitted (nonlinear) and scattered (linear) components. Skewness of the statistics of the random process can stabilize or destabilize solutions.

Euler's equations

• Euler's equations $\Delta \varphi = 0$

 $N \cdot \nabla \varphi = 0$ on the variable bottom $y = -h + \beta(x)$

Nonlinear boundary conditions on the free surface

$$\frac{\partial_t \varphi + \frac{1}{2} (\nabla \varphi)^2 + g\eta = 0}{\partial_t \eta + \partial_x \eta \cdot \partial_x \varphi - \partial_y \varphi = 0} \right\} \quad \text{on} \quad y = \eta(x, t) \,,$$

Figure: Cartoon of a fluid domain with a varying bottom boundary

Walter Craig

McMaster University

Introduction	Long wave regime	Random bathymetry	modulating statistics

► Hamiltonian form: variables $\eta(x, t)$, $\xi(x, t) = \varphi(x, \eta(x, t), t)$

$$H(\eta,\xi) = \frac{1}{2} \int_{-\infty}^{\infty} \xi G(\eta,\beta)\xi + g\eta^2 \, dx \tag{1}$$

▶ $G(\eta, \beta)$ is the Dirichlet – Neumann operator for the fluid domain

Conservation laws

$$\begin{split} M &= \int \eta(x) \, dx \,, \qquad \text{mass} \\ H &= \int \int_{b(x)}^{\eta} \frac{1}{2} |\nabla \varphi|^2 \, dy dx + \frac{g}{2} \int \eta^2(x) \, dx \quad \text{energy} \end{split}$$

Momentum is not conserved, due to the bottom variations $\beta(x)$

Scaling regime

long wave scaling regime:

$$X = \varepsilon x \quad , \qquad \beta(x) = \varepsilon \beta'(X/\varepsilon)$$

$$\varepsilon \xi'(X) = \xi(x) \quad , \qquad \varepsilon^2 \eta'(X) = \eta(x)$$

► Hamiltonian for this problem (Boussinesq regime)

$$H(\eta',\beta';\varepsilon) =$$

$$\frac{1}{2}\int (h+\varepsilon\beta'(X/\varepsilon) - \varepsilon^2 (\beta'D\tanh(hD)\beta')(X/\varepsilon))|D_X\xi'|^2 dX$$

$$+\frac{1}{2}\int g\eta'^2 + \varepsilon^2 (\xi'D\eta'D_X\xi' - \frac{h^3}{3}\xi'D_X^4\xi') dX + \mathcal{O}(\varepsilon^3)$$
(2)

Walter Craig Nonlinear Water Waves in Random Bathymetry

Stationary ergodic processes

Realizations of the bottom topography $\beta = \beta(x, \omega)$ are taken from a statistical ensemble $\omega \in \Omega$

- Probability space $(\Omega, \mathcal{M}, \mathsf{P})$
- Ergodic one parameter group of measure preserving transformations {τ_y}_{y∈ℝ} such that β(x, τ_yω) = β(x − y, ω) (and a filtration of the measurable sets, M_y, y ∈ ℝ adapted to {τ_y}_{y∈ℝ})
- Case 1: periodic $\beta(x+p) = \beta(x)$
- Case 2: mixing conditions

 $|\mathsf{P}(A \cap \tau_{y}(B)) - \mathsf{P}(A)\mathsf{P}(B)| < \varphi(y)\sqrt{\mathsf{P}(A)\mathsf{P}(B)}, \quad (3)$

for sets $A \in \mathcal{M}_{\{y \leq 0\}}$ and $B \in \mathcal{M}_{\{y \geq 0\}}$

Mixing rate

In case 2, we require that the mixing rate satisfy

$$\int_0^\infty \varphi^{1/2}(y) \, dy < +\infty \tag{4}$$

The variance of the process $\beta(x, \omega)$ is defined to be

$$\sigma_\beta^2 := 2 \int_0^\infty \mathsf{E}(\beta(0,\omega)\beta(0,\tau_y\omega)) \, dy \,,$$

Lemma If $\beta(x,\omega) = \partial_x \gamma(x,\omega)$ for some stationary process $\gamma \in C^1$ then

 $\sigma_{\beta} = 0$

Walter Craig

separation of scales: periodic case

Theorem

Suppose that $\gamma(x)$ is periodic, and that $f(X) \in S$. Then

$$\int \gamma(X/\varepsilon)f(X)\,dX = \mathsf{E}(\gamma)\int f(X)\,dX + \mathcal{O}(\varepsilon^N)$$

for any N, where $\mathsf{E}(\gamma) = \frac{1}{p} (\int_0^p \gamma \, dx).$

In the periodic case (Case 1) the contributions of the new terms homogenizes, giving a perturbation to the effective wavespeed, due to the following result.

effective coefficients: periodic case

 $\blacktriangleright\,$ Since $\mathsf{E}(\beta')=0$ the two new terms are therefore

•
$$\int \beta'(X/\varepsilon) |D_X\xi'|^2 dX = 0 + \mathcal{O}(\varepsilon^N)$$

•
$$\int \left(\beta'(X/\varepsilon) D \tanh(hD)\beta'(X/\varepsilon)\right) |D_X\xi'|^2 dX$$

$$= \mathsf{E}(\beta' D \tanh(hD)\beta') \int |D_X\xi'|^2 dX + \mathcal{O}(\varepsilon^N)$$

• the effective wavespeed is $\overline{c}^2 = g(h - \varepsilon^2 \mathsf{E}(\beta'(x)D \tanh(hD)\beta'(x)))$

Lemma

There is a strict inequality $\overline{c}^2 < c^2$ for nonzero β' .

• The analysis extends to the situation where $\beta(x) = \mathcal{O}(1)$

separation of scales: random case

In the mixing case (Case 2) there are realization dependent contributions which are significant. In particular

Theorem

Let $\gamma(x; \omega)$ be a stationary mixing ergodic process with rate $\varphi(y)$ satisfying (4). Then as $\varepsilon \to 0$

$$\int \gamma(X/\varepsilon,\omega)f(X)\,dX = \int \left(\mathsf{E}(\gamma) + \sqrt{\varepsilon}\sigma_{\gamma}\partial_X B_{\omega}(X)\right)f(X)\,dX + o(\sqrt{\varepsilon})\,,$$

where $B_{\omega}(X)$ is normal Brownian motion.

This principally affects the wavespeed and can affect the stability in the KdV regime

random KdV equation

This results in the following long wave system with random coefficients

$$\partial_T r = -\partial_X \left(c_0(X,\varepsilon,\omega)r + \varepsilon^2 br + \varepsilon^2 (c_1 \partial_X^2 r + c_2 r^2) \right)$$

$$\partial_T s = \partial_X \left(c_0(X,\varepsilon,\omega)s \right) - \frac{1}{4} \sqrt{g/h} \left(\sigma_\beta \partial_X^2 B_\omega(X)r \right)$$

where the random wavespeed is

$$c_0^2(X,\varepsilon,\omega) = g(h - \varepsilon^{3/2}\sigma_\beta \partial_X B_\omega(X) - \varepsilon^2 a_{KdV})$$

constants c_1 and c_2 are effective (homogenized) coefficients of dispersion and nonlinearity, a_{KdV} is a wavespeed adjustment, and $b = c_3 \mathsf{E}(\beta_x^3)$ is statistics dependent and determines stability.

random KdV equation

This results in the following long wave system with random coefficients

$$\partial_T r = -\partial_X (c_0(X,\varepsilon,\omega)r + \varepsilon^2 br + \varepsilon^2 (c_1 \partial_X^2 r + c_2 r^2))$$

$$\partial_T s = \partial_X (c_0(X,\varepsilon,\omega)s) - \frac{1}{4} \sqrt{g/h} (\sigma_\beta \partial_X^2 B_\omega(X)r)$$

where the random wavespeed is

$$c_0^2(X,\varepsilon,\omega) = g(h - \varepsilon^{3/2} \sigma_\beta \partial_X B_\omega(X) - \varepsilon^2 a_{KdV})$$

constants c_1 and c_2 are effective (homogenized) coefficients of dispersion and nonlinearity, a_{KdV} is a wavespeed adjustment, and $b = c_3 \mathsf{E}(\beta_x^3)$ is statistics dependent and determines stability.

The form of a random solution

Solve the deterministic equation

$$\partial_{\tau}Q = c_1 \partial_Y^3 Q + c_2 \partial_Y Q^2 + bQ$$

Introduce random characteristic coordinates

$$X = X(Y, T; \omega) = (Y + T\sqrt{gh} - \varepsilon^2 a_{KdV}T) - \frac{\varepsilon^{3/2}\sigma_\beta}{2}\sqrt{\frac{g}{h}} B_{\omega(Y)}(T\sqrt{gh})$$

• The solution r(X, T) is given up to $o(\varepsilon^2)$ by

$$\begin{aligned} r(X,T) &= \partial_X Q(Y(X,T;\omega),\varepsilon^2 T) \\ &= Q_Y(Y(X,T;\omega),\varepsilon^2 T) \partial_X Y(X,T;\omega) \end{aligned}$$

Consequences: the phase undergoes Brownian motion, the amplitude is modulated by white noise.

Walter Craig

McMaster University

Random characteristic coordinates

The characteristic equations

$$\frac{dX}{dt} = c_0(X,\varepsilon;\omega), \qquad X(0,\varepsilon;\omega) = Y$$
$$\simeq \sqrt{gh}(1 - \frac{\varepsilon^{3/2}\sigma_\beta}{2h}\partial_X B_\omega(X) - \varepsilon^2 a_{KdV})$$

Too singular in general for solutions of SDEs.

Regularized problem

$$\frac{dX}{dt} = c_{\varepsilon}(X,\varepsilon;\omega) \simeq \sqrt{gh} (1 - \frac{\varepsilon\beta(X/\varepsilon)}{2h} - \varepsilon^2 a_{KdV})$$

where $\beta \in C^1$ implies that the characteristic speed $c_{\varepsilon}(X, \varepsilon; \omega)$ is bounded uniformly in C^1 .

Orbits are uniformly bounded in C¹, and by Donsker's theorem the limit points of orbits distribute like Brownian motion (15)

Walter Craig

► The scattered wavefield is solved for s(X, T) by the method of characteristics. Set T' := T + (X − θ)/√gh.

$$s(X,T) = s_0(X + \sqrt{gh}T) + \frac{\sigma_\beta}{4h} \int_X^{X + \sqrt{gh}T} \partial_X^2 B_\omega(\theta) \partial_X Q(Y(\theta,T';\omega),\varepsilon^2 T') d\theta$$

► Notice the irregularity in the scattered wavefield due to the multiple derivatives of Brownian motion $\partial_X^2 B_\omega(X)$ which interact with the random solution $r(X, T; \omega)$.

Instabilities

The coefficient $b = c_3 \mathsf{E}(\beta_x^3)$ determines stability

Proposition

If the statistics of the ensemble $(\Omega, \mathcal{M}, \mathsf{P})$ are reversible, then b = 0

However there are reasonable situations in which this is not the case

Figure: Cartoon of a fluid domain with a bottom boundary with b > 0

Bottom variations on multiple scales

Fluid domains bounded by a bottom with large scale as well as small scale variations with E(β₁(·, X)) = 0

$$\beta(x, X, \varepsilon, \omega) = \beta_0(X, \varepsilon) + \beta_1(x, X, \varepsilon, \omega)$$

Furthermore, the statistics of the bottom may vary

$$\sigma_{\beta_1}^2(X) = 2 \int_0^\infty \mathsf{E}(\beta_1(0, X; \omega)\beta_1(0, X; \tau_y \omega)) \, dy$$

Figure: Cartoon of a fluid domain with a random bottom boundary with varying statistics

Walter Craig

Nonlinear Water Waves in Random Bathymetry

McMaster University

Stationary arrays of mixing processes

Theorem

Let $\gamma(x, X; \omega)$ be a smooth (in X) family of stationary mixing ergodic processes with uniform mixing rate $\varphi(y)$ satisfying (4). Define the local variance to be

$$\sigma_{\gamma}^{2}(X) = \int_{-\infty}^{\infty} \mathsf{E}(\gamma(\cdot, X; \omega)\gamma(\cdot, X; \tau_{y}\omega)) \, dy$$

Then as $\varepsilon \to 0$

$$\int \gamma(X/\varepsilon, X; \omega) f(X) \, dX = \int \left(\mathsf{E}(\gamma(\cdot, X)) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \partial_X B_{\omega}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \right) f(X) \, dX + o(\varepsilon) \int \left(\mathsf{E}(Y, X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) + \sqrt{\varepsilon} \sigma_{\gamma}(X) \right) f(X) \, dX + o$$

where $B_{\omega}(X)$ is normal Brownian motion.

Random characteristics

Random characteristic coordinates

$$\frac{dX}{dt} = c_0(X,\varepsilon;\omega) , \qquad x(0,\varepsilon;\omega) = Y$$

has trajectories which describe a diffusion

$$\begin{split} X(t,Y,\varepsilon;\omega) &= (Y+\sqrt{ght}) \\ &- \frac{1}{2}\sqrt{\frac{g}{h}} \int_0^t \varepsilon \beta_0 (Y+\sqrt{ghs}) + \varepsilon^2 a_{KdV} (Y+\sqrt{ghs}) \, ds \\ &- \epsilon^{3/2} \frac{1}{2h} \int_0^t \sigma_{\beta_1} (Y+\sqrt{ghs}) dB_\omega(s) \end{split}$$

Walter Craig

McMaster University

Thank you

Walter Craig Nonlinear Water Waves in Random Bathymetry McMaster University