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Introduction

I Tsunami waves are generated relatively often, from various
sources

I Serious tsunamis (serious to the point of loss of lives) take place
on the order of once every several decades

I I think that we were all personally affected by the deadly 2004
Boxing Day Tsunami generated by the very powerful earthquake
off of the Sumatra coast.

I Challenge: search for a credible rôle that mathematicians can
play in predicting their danger or in alleviating their impact;
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Potential Contributions
I Predicting earthquakes: a grand challenge problem, that is not

presently within reach.
I Where is it currently feasible for mathematics to contribute to the

problem of tsunami danger?
I modeling of tsunami wave generation
I and propagation across oceans
I and their impact on coastlines
I Design of early warning systems (or some of its components)

including modeling in faster than real time
I Clarification of the character of tsunami waves

in particular those features which affect tsunami-safe
engineering and architecture
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Description of the Sumatra earthquake

I major earthquake on 26 December 2004, at 7h58 local time,
centered approximately 250km off the west coast of the island of
Sumatra

I Initially estimated at Mw = 8.5 ∼ 9.0, and subsequently classed
at Mw = 9.3.
Rupture along the Sunda Trench subduction zone, of length
1200km.
Slip magnitude 21m horizontal displacement in the southern
region, ∼ 15m in the north.
Vertical displacement estimates from 2− 10m in different
regions.
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Northeastern Indian Ocean tectonic setting

Figure: USGS website: http://soundwaves.usgs.gov/2005/01/tectonicLG.jpg
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Description of the resulting tsunami

I Tsunami generated by the line source of the displacement zone
Soon afterwards, waves impact upon the Sumatra coast

I Waves travel at ∼ 360km/hr propagating east through the
Andaman Basin, and in somewhat over one hour they impinge
on the west coast of the Malay Peninsula, including portions of
Thailand and Myanmar.

I Waves travel at ∼ 720km/hr propagating west through the lower
Bay of Bengal/Indian Ocean, impacting on Sri Lanka and south
India in approximately 2 hours.

I The tsunami is detected globally; within 7 hours on the African
Coast, 20 hours in Rio de Janeiro, 23 hours in Chile, and 29
hours in Halifax, Nova Scotia.
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The global reach of the 26 December 2004 Sumatra tsunami

Figure: Science Express on 25 August 2005: Science 23 September 2005,
Vol. 309. no. 5743, pp. 2045 - 2048 Vasily Titov, Alexander B. Rabinovich,
Harold O. Mofjeld, Richard E. Thomson, Frank I. González
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Bathymetry of the northeastern Indian Ocean

Figure: Novosibirsk Tsunami Laboratory website:
http://tsun.sscc.ru/tsulab/20041226.htm

NB Depth of the Indian Ocean ∼ 3K − 4Km.
Depth of the Andaman Basin ∼ 1Km.
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Three aspects of modeling of large ocean waves
I Generation of the disturbance

point sources
line sources
focusing effects

I Propagation over large distances, at high velocities
varying bottom depth
waveguide effects by mid-oceanic ridges

I Incidence on the coastal regions
reflection by the continental shelf
refraction
run-up amplification on shorelines
resonance effects
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Equations of motion
I potential flow ∇ · u = 0 , ∇× u = 0 , implying u = ∇ϕ.

∆ϕ = 0 (1)

in a three dimensional fluid region {h(x) < y < η(x, t), x ∈ R2}.
I free surface boundary conditions; N = (−∂xη, 1) outward

normal

∂tη − N · ∇ϕ , ∂tϕ = −gη − 1
2 |∇ϕ|2 (2)

I bottom boundary conditions; N = (∂xh(x),−1) outward normal

N · ∇ϕ = 0 (3)

I moving bottom boundary conditions; let N outward unit normal

N · ∇ϕ = −∂th(x, t) the source (4)
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Linear wavespeed
I The wavespeed of long waves (Stokes 1847)

c =
√

gh , h = depth (5)
I Free surface hydrodynamical equations, linearized

∆Φ = 0 , N · ∇Φ|bottom = 0 ,
∂tη = ∂yΦ , ∂tΦ = −gη , on y = −h

I Describe ∂yΦ with the Dirichlet - Neumann operator
G : Φ(x, 0) 7→ Φ(x, y) = the Poisson extension

7→ ∇Φ · Nη := (GΦ)(x)

The linear operator G = G(h(x)) depends upon h(x)
I In case h is a constant depth,

G = |D| tanh(h|D|) , where D =
1
i ∂x
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Phase and group velocities

I The above linear analysis gives to the dispersion relation

ω(k) =
√

gk| tanh(h|k|) , cp =
ω(k)

|k|
k
|k| , cg = ∂kω(k)

(6)
I For large wavelength disturbances

|cp| = limk→0
ω(k)

|k| =
√

gh = |cg|
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Comparison with observations
I Group and phase velocities of longest waves;

|cp| = limk→0
ω(k)

|k| =
√

gh = |cg|

The acceleration of gravity is g = 9.8m/sec2

I In the Bay of Bengal/Indian Ocean, where h ∼ 4Km.

cp =
√

9.8× 4× 103m2/sec2 ∼ 200m/sec = 720km/hour

Travel time from epicenter to the coast of Sri Lanka (1550km) is
2.2 hours.

I Andaman Basin, h ∼ 1Km.

cp =
√

9.8× 103m2/sec2 ∼ 100m/sec = 360km/hour

Travel time to the Malay Peninsula (700Km) is 1.9 hours.
Walter Craig McMaster University
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Modeling of nonlinear waves

I Nonlinearity in the equations of surface wave propagation gives
rise to the possibility that waves can propagate in coherent wave
packet, with little loss of amplitude.

I Observers of the impact of the Sumatra tsunami reported the
arrival of 6 or 7 major crests (on e.g. the Thai coast), with
periods of 20 to 30 minutes.

I Wave amplitudes observed 80cm at sea, amplified to 3− 7m on
the coast.

I Deducing the general character of the waveform from this data
wavelength ` = 180km,
slope ∂xη ∼ 2× 10−5 := ε.
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Comparing dispersion and nonlinearity
I Dimensionless scaling parameters α := a/h and β := h/`,

where a is the amplitude, h the typical depth, and ` the
characteristic wavelength.

dispersive nonlinear regime α ∼ β2 << 1
weakly nonlinear shallow water regime α ∼ β << 1

I Model equations with dispersive and nonlinear character - KdV
(or Boussinesq) equations.

∂tr = c0∂xr − 3α
2 c1r∂xr − β2

6 c2∂
3
x r + β2f (r) (7)

I Linear wavespeed c0 = c0(x;ω) =
√

g(h) + βc1
0 + β2c2

0 is
variable, a function of the bathymetry h(x). Similarly c1 and c2.
The source f is an integral term taking into account reflected
waves of of the topographical features of the ocean basin.
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Determing scaling regime

I Indian Ocean/Bay of Bengal: depth h ∼ 4Km, amplitude
a ∼ 1m, hence α = a/h ∼ 2.5× 10−4.
wavelength 180Km, hence β = h/` ∼ 4Km/180Km ∼ 2× 10−2

β2 ∼ α
I Andaman Basin: depth h ∼ 1Km amplitude a ∼ 1m, hence
α = a/h ∼ 10−3

wavelength 180Km, hence β = h/` ∼ 6× 10−3

β2 << α << β

I This analysis indicates that wave propagation on these scales in
the Indian Ocean is of nonlinear dispersive character, while in
the Andaman Basin it is more ambiguous.
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Dispersion indicated in satellite telemetry

(a) (b)

Figure: (a) from E. Kulikov, Shirshov Institute of Oceanography, Moscow
and Institute of Ocean Sciences, Sydney, BC: ‘Dispersion of the Sumatra
tsunami waves in the Indian Ocean detected by satellite altimetry’, Fisheries
and Oceans Canada, Science - Pacific Region website (2005)
(b) From the Tsunamis and tsunami research website of the Institute of
Ocean Sciences, Sidney BC.
This time/frequency plot of the Sumatra tsunami supports the wavepacket
hypothesis.
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Complexity of the near-shore wave dynamics

Figure: E. Pelinovsky: Dynamics of tsunami waves (1996)[Russian]
Nihonkai - Chubu earthquake tsunami on the north Akita coast.
N. Shuto, Coastal Eng. Japan (1985), vol. 28 pp. 255 - 264
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Sri Lanka images

Figure: Shoreline of Kalutara, Sri Lanka on 26 December 2004. Photo:
DigitalGlobe
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Conclusions
I Further study is crucial, and mathematical theory and scientific

computations can play a major rôle
I The generation of (major) tsunamis is a key

(see A. Lerner-Lam, in this AAAS Symposium).
I There are methods which predict tsunami propagation in the

open ocean. Task - to verify their accuracy, improve their speed.
Specific questions: propagation over random bottom topography,
reflection at the continental shelf.

I Much needs to be done on run-up and other aspects of impact
when a major tsunami is incident on a coastline.
Edge waves, and phenomena associated with other coast
geometries which focus and otherwise amplify an incident large
wave.
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