
Chapter 4

Laplace’s equation

4.1. Dirichlet, Poisson and Neumann boundary value

problems

The most commonly occurring form of problem that is associated with
Laplace’s equation is a boundary value problem, normally posed on a do-
main Ω ⊆ Rn. That is, Ω is an open set of Rn whose boundary is smooth
enough so that integrations by parts may be performed, thus at the very
least rectifiable. The most common boundary value problem is the Dirichlet
problem:

∆u(x) = 0 , x ∈ Ω(4.1)

u(x) = f(x) , x ∈ ∂Ω .

The function f(x) is known as the Dirichlet data; physically it corresponds
to a density of charge dipoles fixed on the boundary ∂Ω, whereupon the
solution u(x) corresponds to the resulting electrostatic potential. A function
satisfying ∆u = 0 is called harmonic, as we have stated in Chapter 1.

Perhaps the second most common problem is called the Poisson problem;

∆u(x) = h(x) , x ∈ Ω(4.2)

u(x) = 0 , x ∈ ∂Ω ,

for which the function h(x) represents a distribution of fixed charges in the
domain Ω , while the boundary ∂Ω is a perfect conductor. Again the solu-
tion u(x) represents the resulting electrostatic potential. There are several
other quite common boundary value problems that are similar in character
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34 4. Laplace’s equation

to (4.1), for example the Neumann problem

∆u(x) = 0 , x ∈ Ω(4.3)

∂Nu(x) = g(x) , x ∈ ∂Ω ,

where N(x) is the outward unit normal vector to Ω and ∂Nu(x) = ∇u(x)·N .
The solution corresponds to the electrostatic potential in Ω due to a charge
density distribution on ∂Ω. The Robin problem, or boundary value problem
of the third kind, asks to find u(x) such that

∆u(x) = 0 , x ∈ Ω(4.4)

∂Nu(x)− βu(x) = g(x) , x ∈ ∂Ω ,

where β is a real constant, or possibly a real function of x ∈ Ω. Often this
problem is associated with an imposed impedence on the boundary.

4.2. Green’s identities

Consider two function u(x) and v(x) defined on a domain Ω ⊆ Rn. Calculus
identities for integrations by parts give the following formulae, which is
known as Green’s first identity

(4.5)

∫

Ω
v∆u dx = −

∫

Ω
∇v · ∇u dx+

∫

∂Ω
v∂Nu dSx .

The notation is that the differential of surface area in the integral over the
boundary is dSx. To ensure that the manipulations in this formula are valid
we ask that u, v ∈ C2(Ω) ∩ C1(Ω), that is, all derivatives of u and v up
to second order are continuous in the interior of Ω and at least their first
derivatives have continuous limits on the boundary ∂Ω.

Integrating again by parts (or alternatively using (4.5) in a symmetric
way with the roles of u and v reversed) we obtain Green’s second identity

(4.6)

∫

Ω
v∆u dx−

∫

Ω
∆v u dx =

∫

∂Ω

(

v∂Nu− ∂Nvu
)

dSx .

for u, v ∈ C2(Ω) ∩ C1(Ω). The integral over the boundary ∂Ω is the analog
of the Wronskian in ODEs.

Considering the function v as a test function and substituting several
astute choices for it into Green’s identities, we obtain information about
solutions u of Laplace’s equation. First of all, let v(x) = 1, then (4.5) gives

∫

Ω
∆u dx =

∫

∂Ω
∂Nu dSx .

In case u is harmonic, then ∆u = 0 and the LHS vanishes. This is a
compatibility condition for boundary data g(x) = ∂Nu for the Neumann
problem.
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Proposition 4.1. In order for the Neumann problem (4.3) to have a solu-
tion, the Neumann data g(x) must satisfy

∫

∂Ω
g(x) dSx =

∫

∂Ω
∂Nu(x) dSx = 0 .

For a second choice, let v(x) = u(x) itself. Then Green’s first identity
(4.5) is an ‘energy’ identity

(4.7)

∫

Ω
|∇u(x)|2 dx+

∫

Ω
u∆u dx =

∫

∂Ω
u∂Nu dSx .

One consequence of this is a uniqueness theorem.

Theorem 4.2. Suppose that u ∈ C2(Ω)∩C1(Ω) satisfies the Dirichlet prob-
lem (4.1) with f(x) = 0, or the Poisson problem (4.2) with h(x) = 0, or the
Neumann problem (4.3) with g(x) = 0. Then

∫

Ω
|∇u(x)|2 dx =

∫

∂Ω
u∂Nu dSx = 0 .

Therefore u(x) = 0 in the case of the Dirichlet problem (4.3) and of the
Poisson problem (4.2). In the case of the Neumann problem, the conclusion
is that u(x) is constant.

Proof. The identity (4.7) implies that
∫

Ω
|∇u(x)|2 dx = 0

in each of the three cases, which in turn implies that ∇u = 0 almost ev-
erywhere in Ω. Therefore u(x) must be constant as we have assumed that
u ∈ C2(Ω). In cases (4.1) and (4.2) this constant must vanish in order to
satisfy the boundary conditions. In the case of the Neumann problem (4.3)
we only conclude that u(x) is constant. In this situation we conclude that
the constant functions u(x) ≡ C span the null space of the Laplace operator
with Neumann boundary conditions. �

4.3. Poisson kernel

This component of the course is dedicated to techniques based on the Fourier
transform, For Laplace’s equation we can do this directly only in particular
cases, the most straightforward being that the domain Ω = Rn

+ := {x =
(x1, . . . xn) ∈ Rn : xn > 0}, the half-space, and this is the situation that we
will discuss. It would also be possible to directly use Fourier series to solve
Laplace’s equation on the disk D2 := {x ∈ R2 : |x| < 1}, or the polydisc
D2n := {z = (x1, . . . xn, y1, . . . yn) ∈ R2n : (x2j + y2j ) < 1 , j = 1, . . . n}. We
will however stick with the half space Rn

+.
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The Dirichlet problem (4.1) on Rn
+ is to solve

∆u(x) = 0 , x = (x1, . . . xn) ∈ R
n
+(4.8)

u(x) = f(x′) , x = (x′, 0) , x′ ∈ R
n−1 = ∂Rn

+ .

It is implied that u(x) and ∇u(x) tend to zero as xn → +∞. For the special

boundary data f(x′) = eiξ
′·x′

, with ξ′ ∈ Rn−1 there are explicit solutions

(4.9) u(x′, xn) = eiξ
′·x′

e−|ξ′|xn ,

since

∆u(x′, xn) =
n−1
∑

j=1

∂2
xj

(

eiξ
′·x′

e−|ξ′|xn
)

+ ∂2
xn

(

eiξ
′·x′

e−|ξ′|xn
)

=
(

n−1
∑

j=1

−ξ′
2
j + |ξ′|2

)(

eiξ
′·x′

e−|ξ′|xn
)

= 0 .

The other possible solution is eiξ
′·x′

e+|ξ′|xn but this is ruled out by its growth
as xn → +∞. The Fourier transform allows us to decompose a general
function f(x′) on the boundary (in L2(Rn−1) or perhaps in L1(Rn−1)) into
a composite of complex exponentials

f(x′) =
1

√
2π

n−1

∫

eiξ
′·x′

f̂(ξ′) dξ′ .

By using (4.9) the solution u(x) is expressed as a superposition

u(x) =
1

√
2π

n−1

∫

eiξ
′·x′

e−|ξ′|xn f̂(ξ′) dξ′

=
1

(2π)n−1

∫

(

∫

eiξ
′·(x′−y′)e−|ξ′|xn dξ′

)

f(y′) dy′

=

∫

D(x′ − y′, xn)f(y
′) dy′ .(4.10)

The function D(x′, xn) is called the Poisson kernel for Rn
+ or the double

layer potential, and the solution u(x) is evidently given by convolution with
D(x′, xn). Evaluating the above Fourier integral expression (4.10) we get an
explicit expression,

D(x′, xn) =
1

(2π)n−1

∫

eiξ
′·x′

e−|ξ′|xn dξ′(4.11)

=
2

ωn

( xn

(|x′|2 + x2n)
n/2

)

.(4.12)

The second line of (4.11) will be verified later; the constant ωn is the surface
area of the unit sphere in Rn.
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Theorem 4.3. The solution of the Dirichlet problem on Rn
+ with data

f(x′) ∈ L2(Rn−1) is given by

u(x) =

∫

Rn−1

D(x′ − y, xn)f(y
′) dy′(4.13)

=
1

(2π)n−1

∫

Rn−1

(

∫

Rn−1

eiξ
′·(x′−y′)e−|ξ′n|xn dξ′

)

f(y′) dy′

For xn > 0 this function is C∞ (differentiable an arbitrary number of times).

Proof. For xn > 0 both of the above integrals in (4.13) converge absolutely,
as indeed we have

∫

Rn−1

∣

∣eiξ
′·x′

e−|ξ′|xn f̂(ξ′)
∣

∣ dξ′ ≤ ‖f̂‖L2(Rn−1)

(

∫

Rn−1

e−2|ξ′|xn dξ′
)1/2

,

(where we have used the Cauchy-Schwarz inequality and the Plancherel iden-
tity) and hence we also learn that the solution u(x) has an upper bound in
Rn
+ which quantifies its decay rate in xn → +∞. Namely

|u(x′, xn)| ≤
(

∫

Rn−1

e−2|ξ′|xn dξ′
)1/2‖f̂‖L2(Rn−1) ≤

C

|xn|(n−1)/2
‖f‖L2(Rn−1) .

Further derivatives of the expression (4.13) don’t change the properties of
absolute convergence of the integral for xn > 0, and we verify that the
function we have produced is indeed harmonic;

∆u(x) =
1

√
2π

n−1

∫

Rn−1

∆
(

eiξ
′·x′

e−|ξ′n|xn
)

f̂(ξ′) dξ′ = 0 .

The issue is whether the harmonic function u(x′, xn) that we have pro-
duced converges to f(x′) as xn → 0, and in what sense. In this paragraph
we will show that for every xn > 0, u(x′, xn) is an L2(Rn−1) function of the
horizontal variables x′ ∈ Rn−1, and that u(x′, xn) → f(x′) in the L2(Rn−1)
sense as xn → 0. By Plancherel,

‖u(x′, xn)− f(x′)‖L2(Rn−1) = ‖e−|ξ′|xn f̂(ξ′)− f̂(ξ′)‖L2(Rn−1) .

Because ‖f̂‖L2 < +∞, for any δ > 0 there is a (possibly large) R > 0 such
that the integral

∫

|ξ′|>R
|f̂(ξ′)|2 dξ′ < δ .

We now estimate

‖u(x′, xn)− f(x′)‖2L2(Rn−1) = ‖
(

e−|ξ′|xn − 1
)

f̂(ξ′)‖2L2(Rn−1)

=

∫

|ξ′|≤R

∣

∣

(

e−|ξ′|xn − 1
)

f̂(ξ′)
∣

∣

2
dξ′ +

∫

|ξ′|>R

∣

∣

(

e−|ξ′|xn − 1
)

f̂(ξ′)
∣

∣

2
dξ′

≤
∣

∣e−Rxn − 1
∣

∣

∫

|ξ′|≤R
|f̂(ξ′)|2 dξ′ + δ .
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The first term of the RHS vanishes in the limit as δ → 0. Since δ is arbitrary,
we conclude that u(x′, xn) converges to f(x′) as xn → 0 in the L2(Rn−1)
sense, which is that the L2 norm of their difference tends to zero. �

4.4. Maximum principle

A property that is evident of the Poisson kernel is that for xn > 0,

D(x′ − y′, xn) =
2

ωn

( xn

(|x′|2 + x2n)
n/2

)

> 0 .

Therefore whenever a solution of the Dirichlet problem (4.8) has the property
that f(x′) ≥ 0, then

u(x) =

∫

Rn−1

D(x′ − y′, xn)f(y
′) dy′ > 0 ;

this follows from an argument that is very similar to the one we used for
Theorem 3.5 on the heat equation.

Theorem 4.4. Suppose that f(x′) ≥ 0, then for x ∈ Rn
+ we have u(x) ≥ 0,

and in fact if at any point x ∈ Rn
+ (meaning, with xn > 0) it happens that

u(x) = 0, then we conclude that u(x) ≡ 0 and f(x′) = 0.

From this result we have a comparison between solutions.

Corollary 4.5. Suppose that f1(x
′) ≤ f2(x

′) for all x′ ∈ Rn−1. Then either

u1(x) = (D ∗ f1)(x) < u2(x) = (D ∗ f2)(x)
on all of Rn

+, or else ui(x) ≡ u2(x) if equality holds at any point x ∈ Rn
+. In

particular if f1 = f2 then both f1 ≤ f2 and f1 ≥ f2, so that u1 ≡ u2.

This is our second encounter with the recurring theme in elliptic and
parabolic PDEs of comparison and maximum principles. In the case of the
Laplace’s equation and other elliptic equations, closely analog results hold
on essentially arbitrary domains as well, although the Poisson kernel is not
in general so explicit and the proof is different. In our present setting, the
form of the Poisson kernel gives us a lower bound on the decay rates of
solutions u(x′, xn) for large xn.

Corollary 4.6. Suppose that f(x′) ≥ 0 and that A ⊆ {x′ : f(x′) ≥ δ} is a
bounded set of positive measure meas(A) > 0. Then

u(x′, xn) ≥
2

ωn

( xn

supy′∈A(|x′ − y′|2 + x2n)
n/2

)

δmeas(A) ,

and in particular solutions u(x′, xn) that are positive cannot decay too
rapidly as xn → +∞.
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Proof. Express the solution in terms of the Poisson kernel

u(x) =

∫

Rn−1

D(x′ − y′, xn)f(y
′) dy′

≥
∫

A
D(x′ − y′, xn)f(y

′) dy′

≥ inf
y′∈A

(

D(x′ − y′, xn)
)

∫

A
f(y′) dy′ ,

and of course
∫

A
f(y′) dy′ ≥ δmeas(A) ,

while

inf
y′∈A

(

D(x′ − y′, xn)
)

≥
( xn

supy′∈A(|x′ − y′|2 + x2n)
n/2

)

.

�

4.5. Oscillation and attenuation estimates

Another principle exhibited by solutions of Laplace’s equation is the prop-
erty of attenuation of oscillatory data. This is a feature that is related to
the interior regularity of elliptic equations. It also is very relevant to appli-
cations, such as to imaging strategies in electrical impedence tomography,
which is a medical imaging technique where the idea is to use electrostatic
potentials to probe the interior of a patient’s body in real time.

Theorem 4.7. Suppose that f(x′) ∈ L2(Rn−1) is the Dirichlet data for
(4.8) on Rn

+, and suppose in addition that

dist
(

supp(f̂(ξ′)), 0
)

> ρ .

Then the solution u(x′, xn) decays as xn → +∞ with the upper bounds

(4.14) |u(x′, xn)| ≤
C

|xn|(n−1)/2
e−ρ|xn| .

This estimate (4.14) gives an effective penetration depth of the solution
u(x) into the interior of the domain, in the situation in which the Dirichlet
data f(x′) has no low frequency component.

Proof. Since dist
(

supp(f̂(ξ′)), 0
)

> ρ there is a δ > 0 such that infξ′∈supp(f̂) >

ρ(1 + δ). Using the Fourier representation for u(x),

u(x) =
1

√
2π

n−1

∫

supp(f̂)
eiξ

′·x′
e−|ξ′|xn f̂(ξ′) dξ′ .
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Therefore

|u(x′, xn)| ≤
1

√
2π

n−1

∫

supp(f̂)

∣

∣e−|ξ′|xn f̂(ξ′)
∣

∣ dξ′

≤ 1
√
2π

n−1

∫

supp(f̂)
e
−|ξ′|xn(

1
1+δ

)
e
−|ξ′|xn(

δ
1+δ

)|f̂(ξ′)| dξ′

≤ e
− infξ′∈supp(f̂)(

|ξ′|xn
1+δ

) 1
√
2π

n−1

∫

supp(f̂)
e
−|ξ′|xn(

δ
1+δ

)|f̂(ξ′)| dξ′

≤ e−ρ|xn|
(

∫

|f̂ |2 dξ′
)1/2(

∫

e
−|ξ′|xn(

2δ
1+δ

)
dξ′

)1/2
,

where we have used the Cauchy-Schwarz inequality on the last line. We thus
have the estimate on the decay of u(x′, xn) for large xn, namely

|u(x)| ≤ C(δ)

|xn|(n−1)/2
e−ρ|xn|‖f‖L2 .

�

A similar bound holds for derivatives of u(x) using the same lines of
argument as in the proof above. This is again related to the interior reg-
ularity of solutions of elliptic equations. We will give a bound on multiple
derivatives of u(x). Using multiindex notation

∂α
xu(x) = ∂α1

x1
. . . ∂αn

xn
u(x) ,

and assuming the hypotheses on the support of the Dirichlet data f(x) as
in Theorem 4.7, one follows the same line of argument as in the proof above
to show that

|∂α
xu(x

′, xn)| ≤ e−ρ

∫

(

|ξα1
1 . . . ξ

αn−1

n−1 ||ξ′|αn |f̂(ξ′)|e−|ξ′|xn(
δ

1+δ
))
dξ′

≤ C(δ, α)

|xn|(n−1)/2+|α|
e−ρ|xn|‖f‖L2 .

4.6. The fundamental solution

The Laplace operator is invariant under rotations, and one can imagine that
solutions which are also rotationally invariant are of special interest. In polar
coordinates (r, ϕ) in Rn, where r ∈ [0,+∞) and ϕ ∈ Sn−1 the Laplacian is
expressed

(4.15) ∆u = ∂2
r +

n− 1

r
∂ru+

1

r2
∆ϕu ,

where ∆ϕ is the Laplace operator on the unit sphere Sn−1 ⊆ Rn. A rota-
tionally invariant solution Γ(r) of Laplace’s equation must satisfy

∂2
rΓ +

n− 1

r
∂rΓ = 0 ,
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Figure 1. Domain Ω with a ball Bρ(y) excised.

That is ∂rΓ = C
rn−1 , which in turn implies that

Γ(r) =
C

2− n

1

rn−2
, n ≥ 3

Γ(r) = C log(r) , n = 2 .

The function Γ(r) is harmonic for 0 < r < +∞ but singular for r = 0. It
is called a fundamental solution, which will be explained by the following
computation that uses Green’s identities. Suppose that u ∈ C2(Ω)∩C1(∂Ω)
and consider y ∈ Ω a point inside the domain under consideration. Take
ρ > 0 sufficiently small so that the ball Bρ(y) ⊆ Ω, as in the Figure 1. Using
Green’s second identity (4.6) over the region Ω\Bρ(y) we have

∫

Ω\Bρ(y)
Γ(|x− y|)∆u dx(4.16)

=

∫

∂Ω

(

Γ∂Nu− ∂NΓu
)

dSx +

∫

Sρ(y)

(

Γ∂Nu− ∂NΓu
)

dSx

+

∫

Ω\Bρ(y)
∆Γu dx .

The fundamental solution Γ is harmonic in Ω\Bρ(y), the singularity at x = y

being inside Bρ(y), therefore that last term of the RHS is zero. The first
term of the RHS is our usual boundary integral from (4.6). We are to
calculate the second integral and its limit as ρ → 0. On the sphere Sρ(y) we
have Γ(|x− y|) = Γ(ρ), while ∂NΓ(|x− y|) = −∂rΓ(ρ), the latter minus sign
coming from the fact that the outward unit normal to Ω\Bρ(y) on Sρ(y) is
pointing inwards towards y. Therefore

∫

Sρ(y)
Γ∂Nu dSx = Γ(ρ)

∫

Sρ(y)
∂Nu dSx = −Γ(ρ)

∫

Bρ(y)
∆u dx ,

and the limit of this quantity vanishes as ρ → 0. Indeed, in case n ≥ 3 then

(4.17) lim
ρ→0

∣

∣

∣
Γ(ρ)

∫

Bρ(y)
∆u dx

∣

∣

∣
≤ lim

ρ→0

C

n− 2

1

ρn−2
ρn‖u‖C2
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which vanishes like ρ2 as ρ → 0. The case n = 2 also vanishes in the limit,
which involves log(ρ) instead. On the other hand the second term of (4.16) is

−
∫

Sρ(y)
∂NΓu dSx =

C

ρn−1

∫

Sρ(y)
u dSx ,

and as ρ tends to zero, by the continuity of u(x) at x = y this has the limit

(4.18) lim
ρ→0

C

ρn−1

∫

Sρ(y)
u dSx = lim

ρ→0

C

ρn−1

( ωn

ρn−1
u(y)

)

= Cωnu(y) ,

where the quantity ωn is the surface area of the unit sphere Sn−1 ⊆ Rn.

Theorem 4.8. For u ∈ C2(Ω)∩C1(∂Ω) and for y ∈ Ω we have the identity

(4.19)

∫

Ω
Γ(|x− y|)∆u(x) dx = Cωnu(y) +

∫

∂Ω

(

Γ∂Nu− ∂NΓu
)

dSx .

Setting C = ω−1
n we recover precisely the value of u(y) with this identity.

In fact this procedure need not be restricted to bounded domains Ω. If we
specify that u ∈ C2(Rn) is such that limR→+∞

∫

SR(0)(Γ∂Nu−∂NΓu) dSx = 0

for y ∈ Rn then the statement of Theorem 4.8 can be interpreted distribu-
tionaly in terms of the Dirac-δ function;

∆xΓ(|x− y|) = δy(x) .

We comment further that away from its pole the fundamental solution
Γ is C∞ smooth, in fact it is real analytic Cω. The results of Theorem 4.8
can be used to deduce that a harmonic functions are C∞, indeed even real
analytic, in the interior of their domain of definition.

Theorem 4.9. Let u ∈ C2(Ω)∩C1(∂Ω) be a harmonic function in Ω, then
in fact u ∈ Cω.

Proof. For harmonic functions u(x) the identity (4.19) reads

u(y) =

∫

∂Ω

(

u ∂NΓ− ∂NuΓ
)

dSx .

Since y ∈ Ω in this expression, while the boundary integral only involves
x ∈ ∂Ω, then dist(x, y) is bounded from below and the RHS clearly is a Cω

function of y, whence the result. �

We may add any harmonic function w(x) to the fundamental solution
Γ(|x− y|) and retain the above properties, as

∆x(Γ + w) = ∆xΓ +∆xw = δy(x) .
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In particular consider any ball Bρ(y) ⊆ Ω within the domain of definition of a
harmonic function u(x). Use the quantity Γ(|x−y|)−Γ(ρ) as a fundamental
solution in (4.19) to find that

u(y) =

∫

Sρ(y)

(

Γ(|x− y|)− Γ(ρ)
)

∂Nu dSx −
∫

Sρ(y)
u ∂rΓ

∣

∣

∣

r=ρ
dSx

=

∫

Sρ(y)
u(x)

1

ωnρn−1
dSx .

This has proved the following result.

Theorem 4.10 (Gauss’ law of arithmetic mean). A harmonic function sat-
isfies the integral identity

(4.20) u(y) =
1

ωnρn−1

∫

Sρ(y)
u(x) dSx =

1

ωn

∫

v∈S1(0)
u(y + ρv) dSv ,

for all Bρ(y) contained in the domain of definition of u. An alternative
version of this statement is that

(4.21) u(y) =
n

ωnρn

∫

Bρ(y)
u(x) dx .

In words, this statement of this result is that a harmonic function u(y) is
equal to its average values over spheres Sρ(y) about y. This fact is consistent
with discretizations of the Laplace operator in numerical simulations. For
example, the simplest version of a finite difference approximation of the
Laplacian at y ∈ Zn is

∆hu(y) :=
1

h2

(

∑

x∈Zn:|x−y|=1

u(x)− 2nu(y)
)

.

A discrete harmonic function ∆hu = 0 explicitly satisfies the property that
u(y) is equal to the average of its values at the nearest neighbor points
|x− y| = 1.

4.7. maximum principle again

The maximum principle is a recurring theme in the theory of elliptic and
parabolic PDEs. The result above of Gauss’ law of arithmetic mean (4.20)
allows us to discuss this sort of behavior of functions which are not even
C2(Ω), but merely continuous.

Definition 4.11. A function u ∈ C(Ω) is subharmonic in Ω when for all
y ∈ Ω and all Bρ(y) ⊆ Ω, one has

u(y) ≤ 1

ωnρn−1

∫

Sρ(y)
u(x) dSx .
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A function u ∈ C(Ω) is superharmonic in Ω when for all y ∈ Ω and all
Bρ(y) ⊆ Ω the opposite inequality holds,

u(y) ≥ 1

ωnρn−1

∫

Sρ(y)
u(x) dSx .

This nomenclature is motivated by the fact that the graph of a subhar-
monic function lies beneath the graph of the harmonic function with the
same boundary values on ∂Ω, as we will show below. Similarly, superhar-
monic functions lie above harmonic functions sharing their boundary values.
Furthermore, if we also knew that u ∈ C2(Ω) then the inequality

∆u(x) ≥ 0 ,
(

respectively ∆u(x) ≤ 0
)

,

implies that u(x) is subharmonic (respectively, superharmonic).

It turns out that subharmonic functions u ∈ C(Ω) satisfy the maximum
principle, a statement that substantially lessens the necessary hypotheses
for the result, and which proves to be a very useful principle in nonlinear
problems and in other generalizations of Laplace’s equation.

Theorem 4.12. Let Ω be a bounded domain and suppose that u ∈ C(Ω) is
subharmonic. Then

(4.22) max
x∈Ω

(u(x)) = max
x∈∂Ω

(u(x)) .

Furthermore, if Ω is connected then either for all x ∈ Ω we have

(4.23) u(x) < max
x∈∂Ω

(u(x)) ,

or else, if at some point x ∈ Ω equality holds, then u(x) is necessarily a
constant function u(x) ≡ M := maxx∈∂Ω(u(x)). This latter result is known
as the strong maximum principle.

If u(x) is superharmonic then −u(x) is subharmonic, and therefore u

satisfies a minimum principle. A corollary of Theorem 4.12 is that harmonic
functions, which are both sub- and superharmonic, satisfy upper and lower
estimates in the supremum norm. Namely, if u(x) is harmonic in Ω and
u(x) = f(x) for x ∈ ∂Ω, then

min
x∈∂Ω

(f(x)) ≤ u(x) ≤ max
x∈∂Ω

(f(x))

for all x ∈ Ω.

Proof. We will give two proofs of this theorem, for the methods are inter-
esting in their own right. Firstly, we will give a proof of the weak maximum
principle, which is that of statement (4.22), under the stronger hypothesis
that u(x) ∈ C2(Ω) ∩ C(Ω). As a preliminary step, start with the case in
which strict inequality holds; ∆u(x) > 0 in Ω. Suppose that at some point
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x0 ∈ Ω the function u(x) achieves its maximum, u(x0) = maxx∈Ω(u(x)).
Then ∇u(x0) = 0 and the Hessian matrix of u satisfies

H(u) =
(

∂xj∂xℓ
u(x0)

)n

jℓ=1
≤ 0 .

However this contradicts the fact that u is subharmonic, indeed

∆u(x) = tr
(

H(u)
)

> 0 .

Hence no such maximum point can exist in Ω, and even rules out local
maxima. For the general case where we assume that ∆u ≥ 0 in Ω, consider
the subharmonic function v(x) = u(x) + ε|x|2, which satisfies ∆v(x) =
∆u(x)+2εn > 0. Therefore v satisfies the hypotheses of the first case, from
which we conclude

max
x∈Ω

(u(x)) ≤ max
x∈Ω

(u(x) + ε|x|2)

= max
x∈∂Ω

(u(x) + ε|x|2) ≤ max
x∈∂Ω

(u(x)) + εmax
x∈∂Ω

(|x|2) .

Since Ω is bounded, maxx∈∂Ω(|x|2) is finite, and since ε is arbitrary, we have
shown that

max
x∈Ω

(u(x)) ≤ max
x∈∂Ω

(u(x)) .

The advantage of this proof is that it generalizes to many other elliptic
equations, including

n
∑

jℓ=1

ajℓ(x)∂xj∂xℓ
u+

n
∑

j=1

bj(x)∂xju = 0 ,

where the matrices (ajℓ(x))njℓ=1 are positive definite.

The second proof is more specific to Laplace’s equation, using Gauss’
law of arithmetic mean. Consider Ω a domain which is connected, u(x) a
subharmonic function, and set M := supx∈Ω(u(x)). Decompose the domain
into two disjoint subsets,

Ω = {x ∈ Ω : u(x) = M} ∪ {x ∈ Ω : u(x) < M} := Ω1 ∪ Ω2 .

Since u(x) ∈ C(Ω), then Ω2 is open as a subset of Ω, since inequality is an
open condition. The claim is that the set Ω1 is also open in Ω, which we will
prove using the property of subharmonicity. Therefore, because of the fact
of being connected, either Ω = Ω2 and Ω1 = ∅, whereupon strict inequality
holds throughout Ω. Or else Ω = Ω1 and Ω2 = ∅, in which case u(x) = M a
constant.

To prove the claim above that Ω1 is open, consider x0 ∈ Ω1 and refer to
Gauss’ law of mean on all sufficiently small spheres Sρ(x0) about x0 which
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lie in Ω. We have that

0 ≤ 1

ωnρn−1

∫

|x−x0|=ρ
u(x)− u(x0) dSx .

The integrand is nonpositive because u(x) ≤ M = u(x0) in Ω. Buth the
integrand cannot be negative anywhere near x0 either, for that would violate
the above inequality. Therefore we must have Sρ(x0) ⊆ Ω1 for all sufficiently
small ρ, which is the statement that Ω1 is open. �

4.8. Green’s functions and the Dirichlet – Neumann

operator

As we observed in Section 4.6 we may add any harmonic function to the
fundamental solution Γ(|x−y|) and retain the property that ∆(Γ+w) = δy.
Thus we may add a function w(x, y) ∈ C2(Ω× Ω) that satisfies

∆xw(x, y) = 0 forx ∈ Ω ,

w(x, y) = −Γ(|x− y|) forx ∈ ∂Ω .

The function w(x, y) is harmonic in x ∈ Ω and depends parametrically on
y ∈ Ω. Then

G(x, y) := Γ(|x− y|) + w(x, y)

is still a fundamental solution in the distributional sense (4.19), meaning
that ∆xG(x, y) = δy(x). Furthermore G(x, y) = 0 for x ∈ ∂Ω, and therefore

u(x) :=

∫

Ω
G(x, y)h(y) dy

satisfies

∆xu(x) = ∆x

∫

Ω
G(x, y)h(y) dy

= ∆x

∫

Ω
Γ(|x− y|)h(y) dy +

∫

Ω
∆xw(x, y)h(y) dy = h(x) .

It also satisfies Dirichlet boundary conditions; indeed for x ∈ ∂Ω

u(x) =

∫

Ω
G(x, y)h(y) dy = 0 .

The function G(x, y) is called the Green’s function for the domain Ω; it is
the integral kernel of the solution operator P for the Poisson problem (4.2),

(4.24) u(x) =

∫

Ω
G(x, y)h(y) dy := Ph(x) .

While it is usually not possible to have explicit formulae for the Green’s
function G(x, y) for a general domain, it is straightforward for the domain
consisting of the half space Rn

+. Let y = (y′, yn) ∈ Rn
+ so that yn > 0,

denote the point that is its reflection through the boundary {xn = 0} by
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y∗ := (y′,−yn) ∈ Rn
−. The function w(x, y) = −Γ(|x − y∗|) satisfies the

property that it is harmonic in Rn
+ (since its singularity at x = y∗ is in

Rn
−0), and Γ(|x− y∗|) = Γ(|x− y|) when x = (x′, 0) ∈ ∂Rn

+. This gives rise
to the following expression for the Green’s function for the domain Rn

+:

G(x, y) = Γ(|x− y|)− Γ(|x− y∗|)(4.25)

=
1

(2− n)ωn

( 1

(|x′ − y′|2 + (xn − yn)2)(n−2)/2

− 1

(|x′ − y′|2 + (xn + yn)2)(n−2)/2

)

,

when n ≥ 3. When n = 2 then

(4.26) G(x, y) =
1

4π
log

((x1 − y1)
2 + (x2 − y2)

2

(x1 − y1)2 + (x2 + y2)2

)

.

This procedure is similar to the method of images, as one can see. Actually,
in two dimensions there is a connection with the theory of complex variables;
because of the Riemann mapping theorem there is an expression for the
Green’s function for arbitrary simply connected domains in terms of the
formula (4.26) and the Riemann mapping of the domain to the upper half
plane R2

+.

Although it is not so evident from the way we constructed the Green’s
function for a domain Ω, the Green’s function has the symmetry thatG(x, y) =
G(y, x). This reflects the property of the Laplace operator with Dirichlet
boundary conditions being a self-adjoint operator1. This property can be
verified explicitly for the Green’s functions for the upper half-space upon
inspecting the formulae in (4.25) and (4.26).

The Poisson kernel: The Green’s function G(x, y) is the integral kernel
for the solution of the Poisson problem (4.2), but it also is relevant for the
Dirichlet problem (4.1). Let u ∈ C2(Ω)∩C1(Ω) be harmonic. the by Green’s
identities

0 =

∫

Ω
G(x, y)∆u(x) dx

= u(y) +

∫

∂Ω

(

G(x, y)∂Nu(x)− ∂NxG(x, y)u(x)
)

dSx .

Using the fact that G(x, y) = 0 for x ∈ ∂Ω we deduce that

u(y) =

∫

∂Ω
u(x)∂NxG(x, y) dSx(4.27)

=

∫

∂Ω
f(x)∂NxG(x, y) dSx := Df(y) ,

1Technically, the Laplace operator is a symmetric operator which is self-adjoint when re-
stricted to an appropriate subspace H1

0 (Ω) ⊆ L2(Ω)
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where f(x) is the Dirichlet data for u(x) on the boundary ∂Ω. One may
check that in the case of Rn

+ this is indeed the formula for the Poisson

kernel (4.12), namely that −∂xnG(x, y)
∣

∣

yn=0
= D(x′ − y′, xn).

There is a related expression for the analog of the Green’s function for
the Neumann problem, choosing another function w(x, y) which is harmonic
in x, and forming the fundamental solution

N(x, y) = Γ(|x− y|) + w(x, y) .

If w(x, y) is chosen so that ∂NΓ(|x− y|) = −∂Nw(x, y) for all x ∈ ∂Ω, then
the function N(x, y) is the integral kernel for the solution operator of the
Neumann problem (4.3). That is, the analog of the formula (4.27) holds.
On general domains, given Neumann data g(x) such that

∫

∂Ω g(x) dSx = 0,
then

u(y) = −
∫

∂Ω
N(x, y)∂Nu(x) dSx(4.28)

= −
∫

∂Ω
N(x, y)g(x) dSx := Sg(y) ,

analogous to (4.27), as one shows with a calculation using Green’s second
identity. In the case that Ω = Rn

+ the choice is that w(x, y) = Γ(|x − y∗|),
and

N(x, y) = Γ(|x− y|) + Γ(|x− y∗|)(4.29)

=
1

(2− n)ωn

( 1

(|x′ − y′|2 + (xn − yn)2)(n−2)/2

+
1

(|x′ − y′|2 + (xn + yn)2)(n−2)/2

)

,

when n ≥ 3. When n = 2 then
(4.30)

N(x, y) =
1

4π
log

(

(

(x1 − y1)
2 + (x2 − y2)

2
)(

(x1 − y1)
2 + (x2 + y2)

2
)

)

.

Setting xn = 0 this gives the single layer potential

(4.31) S(x′ − y′, yn) =
2

(2− n)ωn

( 1

(|x′ − y′|2 + y2N )(n−2)/2

)

,

with which one solves the Neumann boundary value problem with data g(x),
namely

u(y) =

∫

x′∈Rn−1

S(x′ − y′, xn)g(x
′) dx′ := Sg(x) .

The Dirichlet – Neumann operator: Given Dirichlet data on the boundary
of a domain Ω, it is often the most important part of the solution process
for u(x) of the Dirichlet problem to recover the normal derivatives of the
solution ∂Nu(x) on the boundary. For Ω a conducting body this would be
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the map from applied voltage u(x) = f(x) on ∂Ω to the resulting current
∂Nu(x) = g(x) across the boundary. This map can be expressed in terms of
the Green’s function, in particular using the Poisson kernel we can express
the solution to the Dirichlet problem

u(y) =

∫

∂Ω
(Nx · ∇x)G(x, y)f(x) dSx .

Therefore we have an expression for its normal derivative on ∂Ω, namely
(4.32)

(Ny · ∇y)u(y)
∣

∣

∣

y∈∂Ω
=

∫

∂Ω
(Nx · ∇x)(Ny · ∇y)G(x, y)f(x) dSx := Gf(y) ,

where G is the Dirichlet – Neumann operator for the domain Ω. There is
symmetry in the exchange of x with y in the integrand of (4.32), from which
we deduce that the Dirichlet – Neumann operator is self-adjoint2; GT = G.

Recall the energy identity for a harmonic function u(x),

(4.33) 0 ≤
∫

Ω
|∇u(x)|2 dx =

∫

∂Ω
u(x)∂Nu(x) dSx =

∫

∂Ω
f(x)(Gf)(x) dSx .

This is to say that the operator G is nonnegative definite and self-adjoint.
The formula (4.33) also exhibits the reelation between the Dirichlet integral
of a harmonic function over a domain Ω and the boundary integral over ∂Ω
involving the Dirichlet – Neumann operator.

It is useful to work this out on the domain Rn
+. The solution to the

Dirichlet problem for Rn
+ is given in (4.13) in terms of the Fourier transform

of the Poisson kernel;

u(x) =
1

√
2π

n−1

∫

Rn−1

eiξ
′·x′

e−|ξ′|xn f̂(ξ′) dξ′ .

Recall that 1̂
i ∂xju(ξ) = ξj û(ξ), which motivates the notation for differential

operators that Dj =
1
i ∂xj and the definition of a general Fourier multiplier

operator

(

m(D′)f
)

(x′) =
1

√
2π

n−1

∫

Rn−1

eiξ
′·x′

m(ξ′)f̂(ξ′) dξ′

=
1

(2π)n−1

∫∫

Rn−1×Rn−1

eiξ
′·(x′−y′)m(ξ′)f(y′) dξ′dy′ .

In these terms the harmonic extension u(x) of the boundary conditions f(x′)
can be written as

u(x) = e−xn|D′|f(x′) := (Df)(x′, xn) ,

2Analogous to the case above, technically the operator G is symmetric on C1(∂Ω), and is

self-adjoint on an appropriate subspace H1/2(∂Ω) ⊆ L2(∂Ω)
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which is an interpretation of the formula (4.13) which used a Fourier integral
expression for the Poisson kernel. The operator D extended the Dirichlet
data f(x′) to a harmonic function u(x) = Df(x′, xn) in the upper half space
Rn
+.

Differentiating (4.13) with respect to xn and evaluating the result on the
boundary {xn = 0}, the Dirichlet – Neumann operator has a related Fourier
integral expression, namely

Gf(x′) = −∂xn

∣

∣

xn=0

( 1
√
2π

n−1

∫

Rn−1

eiξ
′·x′

e−|ξ′|xn f̂(ξ′) dξ′
)

(4.34)

=
(

|D′|f
)

(x′) .

Finally, the Dirichlet integral can be expressed in terms of Fourier multipli-
ers, using that

∂x′u(x′, xn) =
1

√
2π

n−1

∫

Rn−1

eiξ
′·x′

iξ′e−|ξ′|xn f̂(ξ′) dξ′ ,

∂xnu(x
′, xn) =

1
√
2π

n−1

∫

Rn−1

eiξ
′·x′ |ξ′|e−|ξ′|xn f̂(ξ′) dξ′ .

Therefore
∫

Rn
+

|∇u(x)|2 dx =

∫ +∞

0

(

∫

Rn−1

|iξ′f̂(ξ′)|2e−2|ξ′|xn + |ξ′|2|f̂(ξ′)|2e−2|ξ′|xn dξ′
)

dxn ,

where we have used the Plancherel identity on the hyperplanes {(x′, xn) :
xn = Constant}. Thus

∫

Rn
+

|∇u(x)|2 dx =

∫

Rn−1

2|ξ′|2|f̂(ξ′)|2
(

∫ +∞

0
e−2|ξ′|xn dxn

)

dξ

=

∫

Rn−1

f(x′)
(

|D′|f(x′)
)

dx′ .

4.9. Hadamard variational formula

It is rare to have such explicit formulae as (4.10) for the Dirichlet problem
or (4.34) for the Dirichlet Neumann operator as is the case for the domain
Rn
+. More often one considers general domains, with less explicit solution

procedures, so that it is reasonable to think to develop more general methods
in order to understand the solution operators. In particular, it is relevant
to ask whether the Green’s function or the Poisson kernel vary continuously
under perturbation of the domain. For the Dirichlet problem there is an
elegant idea due originally to Hadamard, to describe the Taylor expansion
of the Green’s function with respect to variations of the domain itself. We
will describe this idea in a specific case, namely in terms of the Poisson kernel
∂NG(x′, y) for domains which are perturbations of the upper half space Rn

+.
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Consider η(x′) ∈ C1(Rn−1), whose graph defines the boundary of a
domain Ω(η) = {(x′, xn) ∈ Rn : xn > η(x′)}. In this notation Ω(0) =
Rn
+. The domain Ω(η) has its Green’s function GΩ(η)(x

′, y), from which we
obtain the Poisson kernel ∂NGΩ(η)(x

′, y) := DΩ(η)(x
′, y). The solution to the

Dirichlet problem with Dirichlet data is thus given by the integral operator

u(x) = DΩ(η)f(x) =

∫

Rn−1

DΩ(η)(x
′, y)f(y)

√

1 + |∇y′η|2 dy′

where
√

1 + |∇η|2dy′ = dSy. From (4.13) we see that DΩ(0) = e−xn|D′|, a
Fourier multiplier operator. In general u(x) = DΩ(η)f(x) is the bounded
harmonic extension to the domain Ω(η) of the boundary data f(x) defined
on ∂Ω(η) = {(x′, xn) : xn = η(x′)}. The solution operator DΩ(η) clearly
depends upon the domain given by η(x′) in a nonlinear, global and possibly
complicated way. The Hadamard variational formula expresses the deriv-
ative of the operator DΩ(η) with respect to variations of η, giving a linear
approximation to changes of the Green’s function under perturbation of the
domain.

Definition 4.13. Let D(η) be a bounded linear operator from the space L2

to L2 that depends upon functions η(x) ∈ C1. The bounded linear operator
A(η) is the Fréchet derivative of D(η) with respect to η(x) at the point
η = 0 if it satisfies

A(λη) = λA(η) ∀λ ∈ R

‖
(

D(η)f −D(0)f
)

−A(η)f‖L2 ≤ C|η|2C1‖f‖L2 .

This definition can of course be adapted to the more general situation of
the operators D(η) mapping f in a Banach X to a Banach space Y , for η

varying over a neighborhood of a third Banach space Z.

Without actually proving that D(η) is analytic with respect to η ∈ C1

(which it is), we will derive a formula for the Fréchet derivative of D(η)
for the domain that is the upper half space, for small |η|C1 . A standard
harmonic function on Rn

+, and indeed on any of the domains ω(η), is of

course ϕk(x) = eik·x
′
e−|k|xn for each parameter k ∈ Rn−1 fixed. Therefore

D(0)
(

eik·x
′)

= eik·x
′
e−|k|xn = e−xn|D′|eik·x

′
.

Given one of the domains Ω(η), the boundary values of ϕk(x) on ∂Ω(η) are

eik·x
′
e−|k|η(x′), therefore for xn > η(x′) we know that

D(η)
(

eik·x
′
e−|k|η(x′)

)

= eik·x
′
e−|k|xn .

Thus taking any point (x′, xn) ∈ Ω(0) ∩ Ω(η),

0 = D(η)
(

eik·x
′
e−|k|η(x′)

)

−D(0)
(

eik·x
′)

= D(η)
(

(1− η(x′)|k|+ 1
2η

2(x′)|k|2 + . . . )eik·x
′)−D(0)

(

eik·x
′)

.
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This is to say that

D(η)
(

(eik·x
′)−D(0)

(

eik·x
′)−D(η)

(

η(x′)|k|eik·x′)

(4.35)

= D(η)
(

(12η
2(x′)|k|2 + . . . )eik·x

′)

.

The facts are that the operator D(η) does have a Fréchet derivative A(η)
at η = 0, and that the RHS is bounded by C|η|2C1 |k|2 for small |η|C1 . This
allows us to compute A(η) from (4.35). Namely,

D(η)(eik·x
′
)−D(0)(eik·x

′
) = D(0)

(

η(x′)|D′|eik·x′)

+O(|η|2C1) ,

from which we read that

A(η)eik·x
′
= D(0)

(

η(x′)|D′|eik·x′)

= e−xn|D′|
(

η(x′)|D′|
)

eik·x
′
.

In other words, ∂ηD(η)
∣

∣

η=0
f = A(η)f = e−xn|D′|

(

η(x′)|D′|f
)

(x).

Now consider the Dirichlet – Neumann operator G(η) on domains Ω(η)
which are perturbations of Ω(0) = Rn

+, and its Fréchet derivative at η = 0.
Recall that

G(η)f(x′) = Nx · ∇u(x)
∣

∣

xn=η(x′)
,

where u(x) is the bounded harmonic extension of the Dirichlet data f(x′)
to the domain Ω(η). Using again the family of harmonic functions ϕk(x) =

eik·x
′
e−|k|xn we compute its boundary values f(x′) and its normal derivative

Nx · ∇ϕk(x) on {xn = η(x′)}:

f(x′) = eik·x
′
e−|k|η(x′) =

(

1− η(x′)|k|+O(|η|2C1)
)

eik·x
′

G(η)f(x′) = Nx · ∇ϕk(x)(4.36)

=
1

√

1 + |∇η|2
(∂x′η,−1) · (ik,−|k|)∇ϕk(x)

∣

∣

xn=η(x′)
.

The Dirichlet – Neumann operator is not bounded on L2, but it is bounded
from H1(Rn−1) to L2, as can be seen by its expression (4.34) as a Fourier
multiplier when Ω = Rn

+. We seek the linear approximation to it among
domain perturbations Ω(η) at the point η = 0. To calculate B(η) :=
∂ηG(η)

∣

∣

η=0
, compare the first two terms of of the LHS with the RHS of

(4.36) in powers of η:

G(η)f(x′) =
(

G(0) +B(η)
)

eik·x
′
+G(0)

(

−η(x′)|k|eik·x′)

= |D′|eik·x′
+B(η)eik·x

′ − |D′|
(

η(x′)|D′|eik·x′)

which is the LHS, and where the RHS is

Nx · ∇ϕk(x) = |k|eik·x′
+ ∂x′η(x′) · ik eik·x′ − |k|2eik·x′

+O(|η|2C1)

= |D′|eik·x′
+ ∂x′

(

η(x′)∂x′ eik·x
′)

+O(|η|2C1) .
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Equating these expressions, solving for B(η), and applying the operators

to a general f(x′) rather than the particular family of functions eik·x
′
, we

obtain

(4.37) B(η)f(x′) = ∂x′

(

η(x′)∂x′f(x′)
)

+ |D′|
(

η(x′)|D′|f(x′)
)

.

Notice the symmetry under adjoints that is evident in this expression for
B(η), reflecting the self-adjoint property of the Dirichlet – Neumann oper-
ator itself.

Exercises: Chapter 4

Exercise 4.1. Derive the expression (4.12) for the case n = 2 from the
Fourier integral, and show that ω2 = 2π. Hint: Complex variables tech-
niques would be useful.

Derive the expression (4.12) in the general case for n ≥ 3 and show that
ωn is the surface area of the unit sphere Sn−1 ⊆ Rn. Hint: A good starting
place would be to adapt the method of images to the situation.

Exercise 4.2. In the case n = 2 the fundamental solution has the prop-
erty that ∆Γ(|x − y|) = δy(x). Show this by proving that the limit of the
expression in (4.17) vanishes, and that the limit in (4.18) holds.

Exercise 4.3. Prove the second version of the Gauss’ law of arithmetic
mean (4.21).

Exercise 4.4. Prove that a function u(x) ∈ C2(Ω) that satisfies

(4.38) ∆u ≥ 0

is subharmonic in Ω in the sense of Definition 4.11. Prove that if u(x) ∈
C2(Ω) is subharmonic then it satisfies the inequality (4.38).

Exercise 4.5. Show that the Green’s function G(x, y) on a domain Ω ⊆ Rn

satisfies the property of symmetry G(x, y) = G(y, x). Conclude that the
resulting operator ∆−1 with Dirichlet boundary conditions is self-adjoint on
L2(Ω).

Exercise 4.6. Derive the Green’s function and the Poisson kernel for the
disk BR(0) ⊆ Rn.

Exercise 4.7. For simply connected domains Ω in R2 describe the Green’s
function in terms of the Riemann map of Ω to R2

+.




